含参型函数单调性求解技巧
- 格式:docx
- 大小:13.75 KB
- 文档页数:3
利用导数研究含参函数单调性函数的单调性是指函数随着自变量的变化,函数值的增减规律。
利用导数可以研究含参函数的单调性。
考虑含参函数$f(x;a)$,其中$a$是函数的参数。
我们希望研究函数$f$相对于自变量$x$和参数$a$的单调性。
首先,我们来研究函数相对于自变量$x$的单调性。
要研究函数$f(x;a)$的单调性,我们需要计算其导数。
记$f'(x;a)$为函数$f(x;a)$的导数。
根据导数的定义,我们有$$f'(x;a) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x;a) - f(x;a)}{\Delta x}$$这表示了函数$f(x;a)$在$x$处的切线的斜率。
我们可以通过计算导数来研究函数的单调性。
具体来说,当导数$f'(x;a)$在一些区间内始终大于零时,函数$f(x;a)$在该区间内是递增的;当导数$f'(x;a)$在一些区间内始终小于零时,函数$f(x;a)$在该区间内是递减的。
例如,考虑函数$f(x;a) = ax^2 + bx + c$,其中$a,b,c$是参数。
我们可以计算其导数$f'(x;a) = 2ax + b$。
当$a>0$时,$f'(x;a)$在整个实数域上大于零,这表示函数$f(x;a)$是递增的;当$a<0$时,$f'(x;a)$在整个实数域上小于零,这表示函数$f(x;a)$是递减的。
接下来,我们来研究函数相对于参数$a$的单调性。
要研究函数$f(x;a)$相对于参数$a$的单调性,我们需要计算其偏导数。
记$\frac{\partial f}{\partial a}(x;a)$为函数$f(x;a)$相对于参数$a$的偏导数。
根据偏导数的定义,我们有$$\frac{\partial f}{\partial a}(x;a) = \lim_{\Delta a \to 0} \frac{f(x;a+\Delta a) - f(x;a)}{\Delta a}$$类似地,我们可以通过计算偏导数来研究函数相对于参数的单调性。
用导数解决含参数的函数的单调性单调性是数学中一个重要的概念,用于描述函数在特定区间内的增减性质。
在解决含参数的函数的单调性时,我们可以利用导数的概念和性质进行分析和推导。
本文将介绍如何使用导数解决含参数的函数的单调性,并给出相应的示例。
首先,我们来回顾一下导数的定义。
对于函数$f(x)$在点$x=a$处可导,其导数$f'(a)$表示函数曲线在该点处的斜率,可以通过以下公式计算:$$f'(a)=\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$$其中,$h$为一个无限趋近于0的值。
导数可以帮助我们研究函数的变化趋势、最值以及单调性等性质。
接下来,我们将探讨含参数的函数的单调性。
含参数的函数形式可以表示为$f(x;a)$,其中$a$为参数。
我们的目标是找到使函数单调的参数范围。
解决这个问题的关键是求导。
首先,我们需要计算函数的一阶导数$f'(x;a)$和二阶导数$f''(x;a)$。
一阶导数反映了函数的变化趋势,二阶导数揭示了函数的曲率性质。
接下来,我们需要找出函数的临界点和在其定义域内的驻点。
临界点是导数为0或不存在的点,驻点是导数在该点处为0的点。
当我们求出一阶导数$f'(x;a)$后,我们可以通过求解方程$f'(x;a)=0$来计算临界点和驻点。
这些点将给出函数的极值或拐点。
通过对导数方程进行求解,我们可以找到参数$a$满足$f'(x;a)=0$,从而得到临界点和驻点。
接下来,我们需要进行符号分析,确定函数的区间性质。
具体来说,当一阶导数$f'(x;a)$在一些区间内大于0时,函数$f(x;a)$是递增的;当一阶导数在一些区间内小于0时,函数是递减的;当一阶导数的正负性在一些点发生改变时,该点可能是函数的拐点。
当我们确定函数的单调性时,还应该考虑到函数的定义域。
特别是当参数$a$对函数的定义域有影响时,我们需要对不同的参数范围进行分析,以确定函数的单调性。
155使用导数来解决含参函数单调性的讨论方法的总结蓝荣升作者发现,使用导数来解决函数的单调性,它在高中数学试卷中占有相当大的份额。
函数的单调性是求解函数极值,最值(范围)以及零点个数问题的基础,它经常出现在压轴题的第一问,并且存在一定的困难。
求函数单调性的最困难的部分是含参函数的分类讨论,而分类讨论的思想又是高中阶段着重培养的思想方法。
因此,利用分类讨论来解决带参数的函数单调性问题已成为近年来高考的重点和热点。
这类问题的难点在于学生不懂得如何讨论,或者讨论不全面,这里总结了带参函数单调性的分类讨论的一般步骤,在学会之后,没有不知道如何讨论或讨论不全面的情况。
以下是对单调性一般步骤的讨论(解决了讨论的大部分单调性问题):第一步:求定义域,单调区间是定义域的子集,因此求单调区间必须先求定义域,定义域有三种常见的情况需要讨论。
(1)偶次根式,根号下整体不小于0。
(2)分式,分母不等于0。
(3)对数,真数大于0。
第二步:求函数导数,令0)('=x f ,求出它的根21,x x ,根的个数一般有三种情况:无根、一个根,两个根。
导函数是分式一般先通分,并且还要考虑能不能因式分解。
第三步:如果方程有两根,则要考虑4种情况;如果只有一根则只需考虑第一种情况;如果根不能被求解,并且导数不能被判断出正的或负的,那么我们就需要求函数的二阶导数,利用二阶导数的正负来确定一阶导数的单调性,然后利用最值得到一阶导数的正负,进而判断出原函数的单调性。
(1)是否存在根(判断根是否在定义域中),得到参数的讨论点。
(2)21x x =,得到参数的讨论点。
(3)21x x >,得到参数的讨论点。
(4)21x x <,得到参数的讨论点。
第四步:判断21,x x 分定义域的每个区间的导数的正负情况,如果导数大于0,则函数单调递增,如果导数小于0,则函数单调递减。
以下三种常见方法可用来判断导数的正负:(1)数轴穿根法:(2)函数图像法:(3)区域判断法:只需要判断每个因式的正负。
用导数求函数的单调区间——含参问题一、问题的提出应用导数研究函数的性质:单调性、极值、最值等,最关键的是求函数的单调区间,这是每年高考的重点,这也是学生学习和复习的一个难点。
其中,学生用导数求单调区间最困难的是对参数分类讨论。
尽管学生有分类讨论的意识,但是找不到分类讨论的标准,不能全面、准确分类二、课堂简介请学生求解一下问题,写出每一题求单调区间的分类讨论的特点。
例1、 求函数R a a x x x f ∈-=),()(的单调区间。
解:定义域为),0[+∞ ,23)('x ax x f -=令,0)('=x f 得,3a x = (1) 0≤a ,0)('≥x f 恒成立,)(x f 在),0[+∞上单调递增;(2) 0>a ,令0)('>x f 得∴>3a x )(x f 在)3,0[a 上单调递减,在),3[+∞a 上单调递增。
所以,当0≤a 时,)(x f 在),0[+∞上单调递增;当0>a 时,)(x f 在)3,0[a 上单调递减,在),3[+∞a 上单调递增。
分类讨论特点:一次型,根3a 和区间端点0比较 例2、 求函数R a x a ax x x f ∈+-+-=,1)1(2131)(23的单调区间。
解:定义域R),1)](1([1)('2---=-+-=x a x a ax x x f令,0)('=x f 得1,121=-=x a x(1) 211>>-a a 即,令0)('>x f 得∴<->11x a x 或)(x f 在)1,(-∞上单调递增,)1,1(-a 上单调递减,),1(+∞-a 上单调递增。
(2) 211==-a a 即,0)('≥x f 恒成立,所以)(x f 在R 上单调递增。
(3) 211<<-a a 即,令0)('>x f 得∴>-<11x a x 或)(x f 在)1,(--∞a 上单调递增,)1,1(-a 上单调递减,),1(+∞上单调递增。
使用导数来解决含参函数单调性的讨论方法的总结
利用导数来解决含参函数单调性问题,是一个经典的数学问题,也是高数学习者常遇到的一大难题。
要想确定一个参数函数的单调性,就要考虑它的导数变化,这就引出了利用导数来解决含参函数单调性的讨论方法。
首先,我们必须了解如何计算函数的导数。
对于一元函数,可以从原函数中求得导数的定义,即求偏导;也可以使用分部法及牛顿法,直接求出导数;而多元函数的导数一般由偏导方程式求得,其中可利用梯度、相对极值等概念计算函数的偏导数及其导数大小。
之后,可以利用导数把单调性转化为数学上的一种判断,即若一函数的导数大小符合特定条件,则该函数的单调性也得到确定,不断更新函数的参数就可以实现单调性。
如果在更新函数参数的过程中,函数的导数量一直大于0,则函数具有上升的单调性,反之,如果函数的导数量一直小于0,则函数具有下降的单调性。
此外,利用导数来解决含参函数单调性的另一个方面就是,可以根据该函数的导数表达式,计算其函数值的变化与自变量的变化。
当自变量变化时,就可以求取函数的导数值,从而归结出函数某个确定点处的单调性。
总之,利用导数来解决含参函数单调性,总结起来就是这样:首先,计算函数导数,然后根据函数的导数表达式近似计算函数某一确定点处的单调性;最后,根据函数的导数大小,可以判断该函数的单调性,并利用不断更新函数参数的过程来最大程度地实现单调性。
很多同学都觉得导数问题很难,作为高考的最后一道压轴题确实很难,但是本文的任务 就是为了可以让普通的学生也可以做导数大题的第一问。
导数的第二问是留给考试分数在 120左右的同学去突破的。
导函数三种含参的单调性讨论单调性作为研究各种导数问题的基础是至关重要的,针对导数大题第一问讨论函数单调性 问题,我们经常性的思路是:求导通分定义域。
定义域是为了待会求导数零点与定义域区间 端点作为讨论的标准。
通分的目的在于观察通分后分子的三种类型:①一次型 ②二次型可以因式分解 ③二次型不可因式分解类型一:导函数为含参一次型的函数单调性针对通分后分子是一次型的,我们考虑能否参数取得某一个范围使得导数是大于0或者 小于0恒成立,如果可以,再去讨论另外的范围。
这样做的好处是思路清晰,不会导致漏了 讨论的范围。
例题1:已知函数f (x ) = ln x + a (1 - x ),讨论f(x)的单调性解析:f'(x) = - - a = 1—ax (x > 0) x x当a < 0时,尸(x ) > 0在(0,+8)恒成立,所以f(x)在(0,+8)单调递增(1,+8), f '(x ) < 0, f (x )单调递减 a变式1:函数f (x) = x - a In x (a e R ),求函数的单调区间变式2:已知函数f (x) = e a + 3x ,求f(x 的单调区间当 a>0 时,令f 1(x ) = 0,则 x =- a此时(0,-), f'(x) > 0, f (x )单调递增 画分子的图像即可例 2:求函数 f (x ) = (1 一 a )ln x - x + ax 2 的单调区间 依然遵循求导通风定义域解析: 1 一 a . ax 2 — x +1 - a (ax + a —1)( x — 1) f (x ) = --- — 1 + ax = ------- = ------------ x x x (x > 0) 画分子图像即可 1 —x ①当a=0时,f 1(x ① 一 (0,1)f (x ①0, f (x )单调递增 x(1,+ 8)f '( x )< 0, f ( x )单调递减1 — a … ,②当a 牛0时,令f 1(x ) = 0则x = --- 或x = 1 a当a>0时1 — a . 1 1)当——=1,即a=-时 a2 单调区间可照图像写出1 , 1 - a .2)当0< a <-时——> 1, 2 af 1(x ) > 0所以f (x )单调递增,此时导函数图像如图 此时导函数图像如图,单调区间可照图像写出 1 — a -为何可以快速比较 与1的a大小关系?可以在0 < a <1范围内随便取一个值判断就好,这 样可以省去不必要的求不等式 解集变式训练3:已知函数f (x) = a + ln x — 2,是否存在实数a,使得函数心)在(0,e 2]上有最 x小值?若存在,求a 的值,若不存在,说明理由类型二:导函数为含参二次型可因式分解的函数单调性针对求导后为含参二次型可因式分解的函数单调性,如果参数处在二次项系数,先讨 论能否为0;再通过因式分解为两个因式的积。
通法研究Җ㊀广东㊀张㊀科㊀㊀含参函数因引入了参数使得确定的函数变得不确定,其单调性讨论问题常常涉及分类讨论思想的综合运用,能体现数学思维的深度,体现逻辑推理㊁数学运算㊁直观想象等数学核心素养,是近年来高考的高频考点之一.在实际应用中,能否深入理解问题的本质,能否明确分类的逻辑和依据是求解这类问题的难点.下面就以导函数是二次函数(或类二次函数)为例,探讨求解含参函数单调性问题的通性通法.1㊀以导函数零点的大小为分类依据例1㊀已知函数f (x )=13x 3-(1+a )x 2+4a x +24a (a ɪR ),讨论函数f (x )的单调性.依题意得f ᶄ(x )=x 2-2(1+a )x +4a =(x -2)(x -2a ),令f ᶄ(x )=0,得x =2或x =2a .当2a <2,即a <1时,令f ᶄ(x )>0,得x <2a 或x >2;令f ᶄ(x )<0,得2a <x <2.此时,f (x )的单调递增区间是(-ɕ,2a )和(2,+ɕ),单调递减区间是(2a ,2).当2a =2,即a =1时,fᶄ(x )ȡ0恒成立,此时,f (x )的单调递增区间是(-ɕ,+ɕ).当2a >2,即a >1时,令f ᶄ(x )>0,得x <2或x >2a ;令f ᶄ(x )<0,得2<x <2a .因此,f (x )的单调递增区间是(-ɕ,2)和(2a ,+ɕ),单调递减区间是(2,2a ).综上所述,当a >1时,f (x )的单调递增区间是(-ɕ,2),(2a ,+ɕ),单调递减区间是(2,2a );当a =1时,f (x )单调递增区间是(-ɕ,+ɕ);当a <1时,f (x )的单调递增区间是(-ɕ,2a )和(2,+ɕ),单调递减区间是(2a ,2).由此题可以知道,当导函数的零点大小不确定时,讨论函数单调性的基本步骤如图1所示.求函数f (x )的定义域ң求导函数fᶄ(x )ң求导函数的零点ң以比较零点的大小为依据进行分类ң确定函数的单调区间图12㊀以导函数零点是否在定义域内为分类依据例2㊀已知函数f (x )=12x 2-2(1+a )x +4a l n x ,讨论函数f (x )的单调性.依题意可得,f (x )的定义域为(0,+ɕ),fᶄ(x )=x -2(1+a )+㊀㊀㊀㊀4a x =(x -2)(x -2a )x(x >0).当2a ɤ0,即a ɤ0时,由fᶄ(x )>0,x >0,{得x >2;由fᶄ(x )<0,x >0,{得0<x <2.因此f (x )在(2,+ɕ)上单调递增,在(0,2)上单调递减.当0<2a <2,即0<a <1时,由fᶄ(x )>0,x >0,{得0<x <2a 或x >2;由f (x )<0,x >0,{得2a <x <2.因此,f (x )在(0,2a )和(2,+ɕ)上单调递增,在(2a ,2)上单调递减.当2a =2,即a =1时,f ᶄ(x )ȡ0,所以f (x )在(0,+ɕ)上单调递增.当2a >2,即a >1时,由fᶄ(x )>0,x >0,{得0<x <2或x >2a ;由fᶄ(x )<0,x >0,{可得2<x <2a .因此,f (x )在(0,2)和(2a ,+ɕ)上单调递增,在(2,2a )上单调递减.综上所述,当a ɤ0时,f (x )的单调递增区间是(2,+ɕ),单调递减区间是(0,2);当0<a <1时,f (x )的单调递增区间是(0,2a )和(2,+ɕ),单调递01通法研究减区间是(2a ,2);当a =1时,f (x )的单调递增区间是(0,+ɕ);当a >1时,f (x )的单调递增区间是(0,2)和(2a ,+ɕ),单调递减区间是(2,2a ).由此题可知当导函数的零点是否在定义域内不能确定时,讨论函数单调性的基本步骤如图2所示.求函数f (x )的定义域ң求导函数f ᶄ(x )ң求导函数的零点ң优先以导函数的零点是否在定义域内为依据进行分类ң以零点的大小为依据进行分类ң确定函数的单调区间图23㊀以导函数是否存在零点为分类依据例3㊀(2018年全国卷Ⅰ理21(1))已知函数f (x )=1x-x +a l n x ,讨论f (x )的单调性.f (x )的定义域为(0,+ɕ),且知fᶄ(x )=-x 2-a x +1x 2.令f ᶄ(x )=-x 2-a x +1x 2=0,即x 2-a x +1=0.当-2ɤa ɤ2时,Δɤ0,f ᶄ(x )ɤ0,此时,f (x )在(0,+ɕ)上单调递减.当a <-2或a >2时,Δ>0,此时方程x 2-a x +1=0两根为x 1=a -a 2-42,x 2=a +a 2-42.当a <-2时,两根均为负数,所以x >0时,f ᶄ(x )<0,此时,f (x )在(0,+ɕ)上单调递减.当a >2时,两根均为正数,此时,f (x )的单调递减区间是(0,a -a 2-42)和(a +a 2-42,+ɕ),f (x )的单调递增区间是(a -a 2-42,a +a 2-42).综上所述,当a ɤ2时,f (x )的单调递减区间是(0,+ɕ);当a >2时,f (x )的单调递增区间是(a -a 2-42,a +a 2-42),单调递减区间是(0,a -a 2-42)和(a +a 2-42,+ɕ).由此题可知当不确定导函数是否存在零点(或零点的个数)时,讨论函数单调性的基本步骤如图3所示.求函数f (x )的定义域ң求导函数f ᶄ(x )ң优先以导函数是否存在零点以及零点的个数为依据进行分类ң以零点是否在定义域内为依据进行分类ң确定函数的单调区间图34㊀以导函数的类型为分类依据例4㊀已知函数f (x )=l n x +a x 2-(2a +1)x(a ȡ0),讨论函数f (x )的单调性.f (x )的定义域为(0,+ɕ),且知㊀㊀f ᶄ(x )=1x+2a x -2a -1=2a x 2-(2a +1)x +1x.当a =0时,f ᶄ(x )=-(x -1)x(x >0),令f ᶄ(x )<0,得x >1,f (x )的单调递减区间是(1,+ɕ);令f ᶄ(x )>0,得0<x <1,f (x )的单调递增区间是(0,1).当0<a <12,即12a>1时,fᶄ(x )=2a (x -12a)(x -1)x(x >0),令f ᶄ(x )<0,得1<x <12a,f (x )的单调递减区间是(1,12a );令f ᶄ(x )>0,得0<x <1或x >12a ,f (x )的单调递增区间是(0,1)和(12a,+ɕ).当a =12,即12a=1时,fᶄ(x )=(x -1)2xȡ0(x >0),f (x )的单调递增区间是(0,+ɕ).当a >12,即12a<1时,fᶄ(x )=2a (x -12a)(x -1)x(x >0),令f ᶄ(x )<0,得12a<x <1,f (x )的单调递减区间是(12a ,1);令f ᶄ(x )>0,得0<x <12a 或x >1,f (x )的单调递增区间是(0,12a)和(1,+ɕ).11非常道综上所述,当a =0时,f (x )的单调递增区间是(0,1),单调递减区间是(1,+ɕ);当0<a <12时,f (x )的单调递增区间是(0,1)和(12a ,+ɕ),单调递减区间是(1,12a );当a =12时,f (x )的单调递增区间是(0,+ɕ);当a >12时,f (x )的单调递增区间是(0,12a )和(1,+ɕ),单调递减区间是(12a,1).由此题可知当导函数为类二次函数时,若其类型不确定,讨论函数单调性的基本步骤如图4所示.求函数f (x )的定义域ң求导函数f ᶄ(x )ң优先以导函数的类型为依据进行分类ң以零点的大小为依据进行分类ң确定函数的单调区间图4对含参函数单调性问题,求解的关键在于思考,相对于具体函数而言含参函数的不确定性在哪里?分类的逻辑是什么?分类的不同层次及各层次分类的依据又是什么?通过对上述例题的分析㊁求解,可以得出求解含参函数单调性问题的通性通法,即首先要明确题意,确定参数的范围和函数的定义域,其次按照导函数的类型㊁导函数是否存在零点㊁零点是否在定义域内㊁零点的大小进行分类讨论,最后进行整理和总结就能得到正确的结论.含参函数单调性问题的解决是层层递进的,在递进的过程中,因参数在不同位置,使得问题的解决出现了不确定性,为了将不确定的问题转化为确定性的问题,需进行分类讨论.对于导函数为二次型含参函数单调性的讨论,通法如下.第一步,先看二次项系数是否含有参数,若含有参数,则将系数分大于0㊁小于0和等于0三种情况进行讨论;若二次项系数为0,则将问题转化为一次函数问题去解决;若二次项系数不为0,则进入第二步.第二步,对一元二次方程的判别式分Δɤ0或Δ>0两种情况进行讨论,若Δɤ0,则函数在定义域上单调递增或单调递减;若Δ>0,则进入第三步.第三步,求出对应一元二次方程的两个不等实根,判断两根是否在定义域内,若两根都不在定义域内或只有一个实根在定义域内,可以借助二次函数图象来解决;若两根都在定义域内,则进入第四步.第四步,判断两个根的大小,从而使问题得解.(作者单位:广东省广州市第八十六中学)Җ㊀江西㊀吕文彬㊀㊀e xȡx +1和l n (x +1)ɤx 是两个常见的不等式,当且仅当x =0时,等号成立.要证明这两个不等式可以通过移项构造新函数f (x )=e x -x -1或g (x )=l n (x +1)-x ,再利用导数分别求其最小值或最大值的方法.由于证明过程比较简单,这里不再赘述,下面的解题中也将证明省略,将其直接当作结论来用.这两个不等式可直接使用,也可通过代数变形或者换元变形构造新的不等式,不管哪一种方法,在解题中都有着事半功倍的效果,可以轻松解决很多难题,简化解题步骤.下面通过举例说明,以期抛砖引玉.1㊀直接应用例1㊀(2017年全国卷Ⅲ理21)已知函数f (x )=x -1-a l n x .(1)若f (x )ȡ0,求a 的值;(2)设m 为整数,且对于任意正整数n ,(1+12) (1+122) (1+12n )<m ,求m 的最小值.(1)a =1(求解过程略).(2)因为l n (1+x )ɤx ,故取x =12k >0(k =1,2, ,n ),则l n (1+12k )<12k (k =1,2, ,n ).l n (1+12)+l n (1+122)+ +l n (1+12n )<12+122+ +12n =1-12n <1,即(1+12)(1+122) (1+12n )<e .取n =3,可得m >13564>2,而(1+12)(1+122)(1+123)>2,又因为m 为整数,所以m 的最小值为3.此题的第(1)问其实是第(2)问的铺垫,此题将导数与数列结合起来考查.m 为整数就提示我们,只需将结果控制在两个整数之间,观察其形式,很容易联想到这两个常见的不等式.这两个不等式在此题中起放缩作用,可以将含有复杂的指数式或对21。
1
导数应用之含参函数单调性的讨论
一.预备知识:
(一)二次方程根的分布:
1.已知方程4x 2+2(m-1)x+(2m+3)=0(m ∈R )有两个正根,求实数m 的取值范围。
2.已知方程2x 2-(m+1)x+m=0有一正根和一负根,求实数m 的取值范围。
(二)穿根法拓展:
1.
02
2
2>--+x x x 2.(e x -1)(x-1)>0 3.(e x -1)(x-1)2>0
4.(e -x -1)(x-1)>0 5.(1-lnx)(x-1)>0
二.导后“一次”型:
1.已知函数f(x)=ax-(a+1)·ln(x+1),a ≥-1,求函数f(x)的单调区间。
2.已知函数f(x)=e x -ax ,讨论函数f(x)的单调性。
三.导后“二次型”:
3.已知函数f(x)=lnx+x 2-ax(a ∈R),求函数f(x)的单调区间。
2
4.已知函数f(x)=m ·ln(x+2)+2
1x 2
+1,讨论函数f(x)的单调性。
5.求函数f(x)=(1-a)lnx-x+2
2
ax 的单调区间。
6.已知函数f(x)=(ax 2-x)·lnx-2
1ax 2
+x ,讨论f(x)的单调性。
四.导后求导型
7.已知函数f(x)=e x -x 2,求函数f(x)的单调区间。
8.已知函数f(x)=
x
e
x 1
ln ,求函数f(x)的单调区间。
9.已知函数f(x)=e mx +x 2-mx ,讨论函数f(x)的单调性。
3
4。
〖专题5〗 导数的应用—含参函数的单调性讨论“含参数函数的单调性讨论问题”是近年来高考考查的一个常考内容,也是我们高考复习的重点.从这几年来的高考试题来看,含参数函数的单调性讨论常常出现在研究函数的单调性、极值以及最值中,因此在高考复习中更应引起我们的重视. 一、思想方法:上为常函数在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('⇒=∈⇒<∈⇒>∈⇔∈⇔<⇔∈⇔>Y Y Y Y讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论. 二、典例讲解[典例1] 讨论xax x f +=)(的单调性,求其单调区间. 解:xax x f +=)(的定义域为),0()0,(+∞-∞Y )0(1)('222≠-=-=x xa x x a x f (它与a x x g -=2)(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立,此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f >-<⇔≠>或)0(0)('a x x a x x f <<<<-⇔≠<00)0(0)('或此时)(x f 在),(a --∞和),(+∞a 都是单调增函数,)(x f 在)0,(a -和),0(a 都是单调减函数,即)(x f 的增区间为),(a --∞和),(+∞a ;)(x f 的减区间为)0,(a -和),0(a .步骤小结:1、先求函数的定义域,2、求导函数(化为乘除分解式,便于讨论正负),3、先讨论只有一种单调区间的(导函数同号的)情况,4、再讨论有增有减的情况(导函数有正有负,以其零点分界),5、注意函数的断点,不连续的同类单调区间不要合并.[变式练习1] 讨论x a x x f ln )(+=的单调性,求其单调区间.解:x a x x f ln )(+=的定义域为),0(+∞)0(1)('>+=+=x xa x x a x f (它与a x x g +=)(同号) I )当0≥a 时,)0(0)('>>x x f 恒成立,此时)(x f 在),0(+∞为单调增函数, 即)(x f 的增区间为),0(+∞,不存在减区间; II) 当0<a 时 a x x x f ->⇔>>)0(0)('; a x x x f -<<⇔><0)0(0)('此时)(x f 在),(+∞-a 为单调增函数,)(x f 在),0(a -是单调减函数,即)(x f 的增区间为),(+∞-a ;)(x f 的减区间为),0(a -.[典例2] 讨论x ax x f ln )(+=的单调性. 解:x ax x f ln )(+=的定义域为),0(+∞)0(11)('>+=+=x xax x a x f (它与1)(+=ax x g 同号) I )当0=a 时,)0(0)('>>x x f 恒成立 (此时ax x f 10)('-=⇔=没有意义)此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞ II )当0>a 时,)0(0)('>>x x f 恒成立, (此时ax x f 10)('-=⇔=不在定义域内,没有意义) 此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞III)当0<a 时, 令ax x f 10)('-=⇔= 于是,当x 变化时,)(),('x f x f 的变化情况如下表:(结合g(x)图象定号)所以, 此时)(x f 在),0(a-为单调增函数,)(x f 在),1(+∞-a是单调减函数, 即)(x f 的增区间为)1,0(a -;)(x f 的减区间为),1(+∞-a.小结:导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性.即先求出)('x f 的零点,再其分区间然后定)('x f 在相应区间内的符号.一般先讨论0)('=x f 无解情况,再讨论解0)('=x f 过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x 范围扩大而出现有根,但根实际上不在定义域内的),即根据)('x f 零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性. [变式练习2] 讨论x ax x f ln 21)(2+=的单调性. 解:x ax x f ln 21)(2+=的定义域为),0(+∞ )0(11)('2>+=+=x xax x ax x f , 它与1)(2+=ax x g 同号. 令)0(010)('2>=+⇔=x ax x f ,当0≥a 时,无解;当0<a 时,aaa x --=-=1(另一根不在定义域内舍去)i)当0=a 时,)0(0)('>>x x f 恒成立 (此时ax x f 10)('2-=⇔=没有意义) 此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞ii)当0>a 时,)0(0)('>>x x f 恒成立,(此时 方程012=+ax 判别式0<∆,方程无解)此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞iii)当0<a 时,当x 变化时,)(),('x f x f 的变化情况如下表:(结合g(x)图象定号))+∞是单调减函数,即)(x f 的增区间为)1,0(a -;)(x f 的减区间为),1(+∞-a. 小结:一般最后要综合讨论情况,合并同类的,如i),ii)可合并为一类结果.对于二次型函数(如1)(2+=ax x g )讨论正负一般先根据二次项系数分三种类型讨论.[典例3] 求1)(232--+=x ax x a x f 的单调区间. 解:1)(232--+=x ax x a x f 的定义域为R ,)1)(13(123)('22+-=-+=ax ax ax x a x fI) 当0=a 时,⇒<-=01)('x f )(x f 在R 上单调递减,)(x f 减区间为R ,无增区间. II) 当0≠a 时032>a ,)('x f 是开口向上的二次函数,令)0(1,310)('21≠-===a ax a x x f 得, 因此可知(结合)('x f 的图象) i)当0>a 时,21x x >ax a x f a x a x x f 3110)(';3110)('<<-⇔<>-<⇔>或 所以此时,)(x f 的增区间为),31()1,(+∞--∞aa 和;)(x f 的减区间为)31,1(a a -ii) 当0<a 时,21x x <ax a x f ax a x x f 1310)(';1310)('-<<⇔<-><⇔>或所以此时,)(x f 的增区间为),1()31,(+∞--∞aa 和;)(x f 的减区间为)1,31(aa -. 小结:求函数单调区间可化为导函数的正负讨论(即分讨论其相应不等式的解区间),常见的是化为二次型不等式讨论,当二次函数开口定且有两根时,一般要注意讨论两根大小(分大、小、等三种情况)。
含参型函数单调性求解技巧
单调性是函数在某个定义域上的递增或递减性质。
当一个函数在某个区间上单调递增时,函数的值随着自变量的增大而增大;当一个函数在某个区间上单调递减时,函数的值随着自变量的增大而减小。
要判断一个含参型函数的单调性,可以运用微积分和函数性质的知识。
下面介绍一些常见的求解技巧。
一、求导法
1. 单调递增区间
如果一个函数在某个区间上的导数大于零,则函数在该区间上单调递增。
即 f'(x) > 0。
2. 单调递减区间
如果一个函数在某个区间上的导数小于零,则函数在该区间上单调递减。
即 f'(x) < 0。
判断函数的单调性时,可以求出函数的导数,并根据导数的正负来判断单调性的性质。
例如,对于函数 f(x) = x^2 + 3x + 2,我们可以求出它的导数 f'(x) = 2x + 3。
根据导数 f'(x) 的正负,可以判断函数 f(x) 的单调性。
二、函数性质法
有些函数具有特殊的数学性质,可以利用这些性质来判断函数的单调性。
1. 二次函数
二次函数是形如 f(x) = ax^2 + bx + c 的函数,其中a, b, c 是常数,并且 a ≠ 0。
当 a > 0 时,二次函数的图像是一个开口向上的抛物线,函数在抛物线开口的两侧上单调递增;当a < 0 时,二次函数的图像是一个开口向下的抛物线,函数在抛物线开口的两侧上单调递减。
例如,对于函数 f(x) = x^2 + 3x + 2,它是一个开口向上的抛物线,函数在整个定义域上单调递增。
2. 反函数
如果一个函数在整个定义域上单调递增或单调递减,则它的反函数在整个值域上也单调递增或单调递减。
例如,对于函数f(x) = e^x,它是一个在整个定义域上单调递增的指数函数。
其反函数为f^{-1}(x) = \\ln x,它在整个值域上也单调递增。
三、初等函数的单调性规律
对于一些常见的初等函数,也存在一些单调性的规律,可以用来判断函数的单调性。
1. 幂函数
对于正整数 n,当 n 为偶数时,幂函数 f(x) = x^n 在整个定义域上是单调递增的;当n 为奇数时,幂函数在整个定义域上单调递减。
2. 指数函数
对于指数函数 f(x) = a^x,其中 a > 0, a ≠ 1,当 a > 1 时,函数在整个定义域上单调递增;当 0 < a < 1 时,函数在整个定义域上单调递减。
3. 对数函数
对于对数函数 f(x) = \\log_a x,其中 a > 0, a ≠ 1,当 a > 1 时,函数在整个定义域上单调递增;当 0 < a < 1 时,函数在整个定义域上单调递减。
以上是一些常见的求解含参型函数单调性的技巧。
在实际解题中,可以结合函数的图像、定义域和值域等性质,用相关的方法来判断函数的单调性。