怎样讨论含参函数的单调性
- 格式:doc
- 大小:541.50 KB
- 文档页数:4
单调性是描述函数的变化趋势的重要概念,其中,用导数讨论含参函数的单调性尤为重要。
首先,我们来解释“含参函数”一词的意思。
含参函数是指具有参数的函数,也叫带参数函数,它们可以用参数来控制函数的变化趋势。
其次,让我们来看看如何用导数讨论含参函数的单调性。
在微积分中,导数是用来表示函
数变化率的重要概念,它可以帮助我们确定函数的单调性。
通常情况下,当函数的导数大于0时,函数在此处是单调递增的;当函数的导数小于0时,函数在此处是单调递减的。
例如,考虑函数$y=ax^2+bx+c$,其中a,b,c均为常数。
该函数的导数为$y'=2ax+b$。
因此,当$2a>0$时,函数是单调递增的;当$2a<0$时,函数是单调递减的。
更一般地,如果函数$f(x)$的导数$f'(x)$满足$f'(x)>0$,则函数$f(x)$在$[a, b]$内是单调递
增的;如果$f'(x)<0$,则函数$f(x)$在$[a, b]$内是单调递减的。
再比如,考虑函数$y=sin(x)$,其导数为$y'=cos(x)$,当$cos(x)>0$时,函数$y=sin(x)$是单调递增的;当$cos(x)<0$时,函数$y=sin(x)$是单调递减的。
总之,用导数讨论含参函数的单调性是很有用的,我们可以用它来判断函数是单调递增还是单调递减。
正如著名数学家高斯所说:“数学是一种分析、综合和抽象的技术,它既是
一种艺术,也是一种科学。
”。
利用导数研究含参函数单调性函数的单调性是指函数随着自变量的变化,函数值的增减规律。
利用导数可以研究含参函数的单调性。
考虑含参函数$f(x;a)$,其中$a$是函数的参数。
我们希望研究函数$f$相对于自变量$x$和参数$a$的单调性。
首先,我们来研究函数相对于自变量$x$的单调性。
要研究函数$f(x;a)$的单调性,我们需要计算其导数。
记$f'(x;a)$为函数$f(x;a)$的导数。
根据导数的定义,我们有$$f'(x;a) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x;a) - f(x;a)}{\Delta x}$$这表示了函数$f(x;a)$在$x$处的切线的斜率。
我们可以通过计算导数来研究函数的单调性。
具体来说,当导数$f'(x;a)$在一些区间内始终大于零时,函数$f(x;a)$在该区间内是递增的;当导数$f'(x;a)$在一些区间内始终小于零时,函数$f(x;a)$在该区间内是递减的。
例如,考虑函数$f(x;a) = ax^2 + bx + c$,其中$a,b,c$是参数。
我们可以计算其导数$f'(x;a) = 2ax + b$。
当$a>0$时,$f'(x;a)$在整个实数域上大于零,这表示函数$f(x;a)$是递增的;当$a<0$时,$f'(x;a)$在整个实数域上小于零,这表示函数$f(x;a)$是递减的。
接下来,我们来研究函数相对于参数$a$的单调性。
要研究函数$f(x;a)$相对于参数$a$的单调性,我们需要计算其偏导数。
记$\frac{\partial f}{\partial a}(x;a)$为函数$f(x;a)$相对于参数$a$的偏导数。
根据偏导数的定义,我们有$$\frac{\partial f}{\partial a}(x;a) = \lim_{\Delta a \to 0} \frac{f(x;a+\Delta a) - f(x;a)}{\Delta a}$$类似地,我们可以通过计算偏导数来研究函数相对于参数的单调性。
思路探寻导数法是研究函数单调性的“利器”,判断含参函数的单调性是各类试题中的常见题目.含参函数的单调性问题一般较为复杂,需要灵活运用分类讨论思想和导数法进行求解.下面我们来探讨一下如何运用导数法来判断含参函数的单调性.一般地,运用导数法判断含参函数的单调性有如下几个步骤:1.讨论并确定函数的定义域.2.对函数进行求导,并进行适当的化简.3.求出导函数的零点.若函数的零点中含有参数,需讨论零点的符号.4.用零点将函数的定义域分为几个区间段.5.在各个区间段上讨论导函数与0之间的关系.若导函数大于0,则该函数在该区间上单调递增;若导函数小于0,则该函数在该区间上单调递减.下面举例说明.例1.已知函数f (x )=ln x -(a +1)x ,讨论f (x )的单调性.解:由已知得函数的定义域为(0,+∞),且f '(x )=1-(a +1)x x.①当a ≤-1时,f '(x )>0,f (x )在(0,+∞)上单调递增;②当a >-1时,令f '(x )=0,得x =1a +1.当0<x <1a +1时,f '(x )>0;当x >1a +1时,f '(x )<0.所以f (x )在(0,1a +1)上单调递增,在(1a +1,+∞)上单调递减.综合①②可知,当a ≤-1时,f (x )在(0,+∞)上单调递增;当a >-1时,f (x )在(0,1a +1)上单调递增,在(1a +1,+∞)上单调递减.由此可见,讨论含参函数单调性的关键在于判断导函数与0之间的关系.解答本题的关键在于讨论1-(a +1)x 的符号.在求出导函数的零点后,用零点x =1a +1将函数的定义域分为两个区间段:(0,1a +1)、(1a +1,+∞),再进一步讨论导函数与0之间的关系.例2.已知函数f (x )=ax -1x-ln x ,讨论f (x )的单调性.解:由题意知f '(x )=a +1x 2-1x =ax 2-x +1x 2(x >0).①当a =0时,f '(x )=1-xx2.由f '(x )>0得0<x <1,由f '(x )<0得x >1,即f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.②当a ≠0时,令f '(x )=0,即ax 2-x +1=0,Δ=1-4a .若Δ≤0,即a ≥14,f '(x )≥0,则f (x )在(0,+∞)上单调递增.若Δ>0,即a <0或<14,由f '(x )=0得x 1=,x 2,当14时,x 2x 1>0,所以f (x )在,+∞)上单调递增,在上单调递减.当a <0时,x 1>0>x 2,所以f (x )在上单调递增,在+∞)上单调递减.在求出导函数的表达式后,我们就可以发现,只需讨论ax 2-x +1的符号,就可以确定函数的单调性.由于ax 2-x +1为二次函数,且二次项的系数含有参数,所以需运用分类讨论思想分别对二次项的系数、方程的判别式Δ进行讨论.当Δ>0时,方程有两个根,即导函数有两个零点,若为x 1,x 2,则需先比较两个零点的大小,然后再划分定义域[m ,n ]:m <n <x 1<x 2;x 1<m <n <x 2;x 1<x 2<m <n ;m <x 1<n <x 2;x 1<m <x 2<n ;m <x 1<x 2<n ,结合二次函数的图象判断导函数的符号,得出原函数的单调性.综上所述,运用导数法判断含参函数的单调性,不仅要熟练掌握上述步骤,还要明确分类讨论的对象、标准以及层级,学会灵活运用分类讨论思想,合理对参数进行分类讨论.本文系福建省教育科学“十三五”规划课题2020年度教育教学改革专项课题:学科素养视域下“读思达”教学法的数学课堂应用研究(项目编号:Fjjgzx20-077).(作者单位:福建省莆田第二中学)54 Copyright©博看网 . All Rights Reserved.。
利用导数研究含参函数单调性导数是研究函数的一个重要工具,可以用来研究函数的单调性。
含参函数即包含一个或多个参数的函数,我们可以通过对导数的研究来研究含参函数的单调性,下面我们就来详细介绍。
首先,我们先回顾一下导数的定义。
对于含有一个自变量的函数y=f(x),我们可以通过求导来得到函数在其中一点的斜率。
导数的定义为:f'(x) = lim(h->0) {f(x+h)-f(x)} / h其中,f'(x)表示函数f(x)在点x处的导数。
如果函数在其中一点的导数大于0,我们可以认为该点函数是递增的;如果导数小于0,则是递减的。
如果导数恒大于0,则函数是严格递增的;如果导数恒小于0,则函数是严格递减的。
对于含参函数y=f(x,a,b,c...),其中a,b,c...为参数,我们也可以研究其单调性。
我们可以首先将含参函数看作一个关于自变量x的函数,然后求导。
求导后的函数中不再含有参数,其导数的正负号和零点即可以用来研究函数在不同参数取值情况下的单调性。
接下来,我们通过一个具体的例子来说明。
考虑函数y=f(x,a)=ax^2,其中a为参数。
我们可以先固定a的值,然后研究函数关于x的变化情况,再通过参数a的取值来研究函数的单调性。
首先,我们分别求导得到函数关于自变量x的导数:f'(x,a) = 2ax现在我们可以根据导数的正负号来研究函数的单调性。
当a>0时,f'(x,a)恒大于0,即导数恒大于0,说明函数递增;当a<0时,f'(x,a)恒小于0,即导数恒小于0,说明函数递减。
接下来,我们可以通过研究参数a的取值来研究函数的单调性。
当a>0时,函数为开口向上的抛物线,随着a的增大,函数的正值部分会更接近x轴,说明函数递减的速度会更快,即单调性变强;当a<0时,函数为开口向下的抛物线,随着a的减小,函数的负值部分会更接近x轴,说明函数递减的速度会更快,即单调性变强。
导数应用:含参函数的单调性讨论(一)一、思想方法:上为常函数在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('⇒=∈⇒<∈⇒>∈⇔∈⇔<⇔∈⇔>讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。
二、典例讲解例1 讨论xax x f +=)(的单调性,求其单调区间步骤小结:1、先求函数的定义域,2、求导函数(化为乘除分解式,便于讨论正负),3、先讨论只有一种单调区间的(导函数同号的)情况,4、再讨论有增有减的情况(导函数有正有负,以其零点分界),5、注意函数的断点,不连续的同类单调区间不要合并。
变式练习1 : 讨论x a x x f ln )(+=的单调性,求其单调区间例2.讨论x ax x f ln )(+=的单调性 小结:导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性。
即先求出)('x f 的零点,再其分区间然后定)('x f 在相应区间内的符号。
一般先讨论0)('=x f 无解情况,再讨论解0)('=x f 过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x 范围扩大而出现有根,但根实际上不在定义域内的),即根据)('x f 零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性。
变式练习2. 讨论x ax x f ln 21)(2+=的单调性小结:一般最后要综合讨论情况,合并同类的,如i),ii)可合并为一类结果。
对于二次型函数(如1)(2+=ax x g )讨论正负一般先根据二次项系数分三种类型讨论。
用导数研究含参函数的单调性导数是研究函数在各个点上的斜率或变化率的工具,可以用来研究含参函数的单调性。
含参函数是指函数中包含一个或多个参数的函数。
研究含参函数的单调性,既可以固定参数的值,将其视为常数,研究含参函数的单调性;也可以将参数值作为变量,研究函数在不同参数取值下的单调性。
一、固定参数的值,研究含参函数的单调性:对于含参函数$f(x,\theta)$,其中$\theta$为参数,固定参数$\theta$的值,将其视为常数。
此时,可将含参函数简化为仅含有变量$x$的函数$f(x)$。
然后利用导数的概念和性质来研究这个简化后的函数$f(x)$的单调性。
具体步骤如下:1.求出函数$f(x)$的导函数$f'(x)$,即计算$f(x)$关于$x$的导数。
这一步可以直接用导数的定义来计算,或者应用常见函数的导数公式,例如幂函数、指数函数、对数函数等的导数公式。
2.求出函数$f'(x)$的零点,即求出方程$f'(x)=0$的解。
这些零点对应于函数$f(x)$的驻点,它们是函数在一些点上的斜率为0的点。
3.利用导数的符号来研究函数$f(x)$的单调性。
若$f'(x)>0$,表示函数$f(x)$在该点处的斜率为正,则函数$f(x)$单调递增;若$f'(x)<0$,表示函数$f(x)$在该点处的斜率为负,则函数$f(x)$单调递减。
4.将求出的零点和函数的特殊点(如端点、奇点等)放在数轴上,根据导数的符号,划分函数$f(x)$的单调区间。
通过以上步骤,可以得到函数$f(x,\theta)$在固定参数$\theta$的取值下,函数$f(x)$的单调性。
二、将参数值作为变量,研究函数在不同参数取值下的单调性:对于含参函数$f(x,\theta)$,其中$\theta$为参数,可以将参数值$\theta$看作是一个变量,通过改变参数值来研究函数的单调性。
这种情况下,可以使用偏导数来研究含参函数的单调性。
含参型函数单调性求解技巧单调性是函数在某个定义域上的递增或递减性质。
当一个函数在某个区间上单调递增时,函数的值随着自变量的增大而增大;当一个函数在某个区间上单调递减时,函数的值随着自变量的增大而减小。
要判断一个含参型函数的单调性,可以运用微积分和函数性质的知识。
下面介绍一些常见的求解技巧。
一、求导法1. 单调递增区间如果一个函数在某个区间上的导数大于零,则函数在该区间上单调递增。
即 f'(x) > 0。
2. 单调递减区间如果一个函数在某个区间上的导数小于零,则函数在该区间上单调递减。
即 f'(x) < 0。
判断函数的单调性时,可以求出函数的导数,并根据导数的正负来判断单调性的性质。
例如,对于函数 f(x) = x^2 + 3x + 2,我们可以求出它的导数 f'(x) = 2x + 3。
根据导数 f'(x) 的正负,可以判断函数 f(x) 的单调性。
二、函数性质法有些函数具有特殊的数学性质,可以利用这些性质来判断函数的单调性。
1. 二次函数二次函数是形如 f(x) = ax^2 + bx + c 的函数,其中a, b, c 是常数,并且 a ≠ 0。
当 a > 0 时,二次函数的图像是一个开口向上的抛物线,函数在抛物线开口的两侧上单调递增;当a < 0 时,二次函数的图像是一个开口向下的抛物线,函数在抛物线开口的两侧上单调递减。
例如,对于函数 f(x) = x^2 + 3x + 2,它是一个开口向上的抛物线,函数在整个定义域上单调递增。
2. 反函数如果一个函数在整个定义域上单调递增或单调递减,则它的反函数在整个值域上也单调递增或单调递减。
例如,对于函数f(x) = e^x,它是一个在整个定义域上单调递增的指数函数。
其反函数为f^{-1}(x) = \\ln x,它在整个值域上也单调递增。
三、初等函数的单调性规律对于一些常见的初等函数,也存在一些单调性的规律,可以用来判断函数的单调性。
如何解决与函数单调性相关的参数问题陈今碧函数是高考必考的内容之一,也是众多知识的交汇点之一。
在解答题里面,经常看见有关讨论含参数函数的单调性或者求含参数函数的最值的问题。
学生们常感到不知道怎么讨论,即分类讨论的标准不明确。
本文根据作者的教学经验,归纳出了比较系统和实用的方案供读者参考,不当之处敬请读者指正。
1.讨论含参函数的单调性:先设y=f x,x∈A,令y′=f′x,a=0,解出x0,令x0∉A,求出x0的范围,再依以下顺序讨论:1°看f′x=0在定义域内是否有解.若无解,则f′x定号,否则进入2°.2°若有解,则比较跟的大小.例1.讨论函数y=ax2−2x+1,x∈−1,1的单调性.解:1°当a=0时:y=−2x+1在−1,1↗2°当a>0时:函数的对称轴为x=1>01)当0<1a≤1即a≥1时:y在 −1,1a↘,1a,1↗2)当1a>1即0<a<1时:y在−1,1↘,3°当a<0时:,函数的对称轴为x=1a<01)当−1≤1<0即a≤−1时:y在 −1,1↗,1,1↘2)当1<−1即−1<a<0时:y在−1,1↘.综上…例2.讨论f x=1+x1−xe−ax a>0的单调性.解:定义域为:x x≠1,f′x=ae−ax2x2+2−a,令2−a≥0得:0<a≤21°当0<a≤2时:∵x2≥0,2−a≥0∴f′x≥0∴y=f x在−∞,1↗,1,+∞↗2°当a>2时:令f′x=0得x1=−a−2,x2=a−2a >2→0<1a <12→−1<−2a <0→0<1−2a <1→ a −2a<1→x 2<1练1.讨论f ′ x =ax 3+3x +1的单调性.解:1°当a ≥0时:y =f x 在R ↗;2°当a <0时:y =f x 在 −∞,− −1a ↘, − −1a , −1a ↗, −1a,+∞, ↘. 练2.讨论f ′ x =x +a x的单调性. 解:1°当a ≤0时:y =f x 在 −∞,0 ↗, 0,+∞ ↗;2°当a >0时:y =f x 在 −∞,− a ↗, − a,0 ↘, 0, a ↘, a,−∞ ↗.2.求含参函数的值域(最值):依以下顺序讨论:1°先讨论单调性(整个有意义的区间),2°再讨论极值点与定义域的关系. 例6.求值域:1)y =2x 2−ax −3,x ∈ −1,1 ;2)y = x 2− a +1 x +1 e x ,x ∈ −1,1 .解:1)函数的对称轴为:x =a ,结合图像可知: 1°当a <−1即a <−4时:f max x =f 1 =−a −1,f min x =f −1 =a −1; 2°当−1≤a <0即−4≤a <0时:f max x =f 1 =−a −1,f min x =f a =−18a 2−3; 3°当0≤a <1即0≤a <4时:f max x =f −1 =a −1,f min x =f a =−1a 2−3; 4°当a ≥1即a ≥4时:f ma x x =f −1 =a −1,f min x =f 1 =−a −1. 2)令y ′= x +1 x −a e x =0,得:x ==−1或x =a1°当a ≤−1时:y ′>0⇒y 在 −1,1 ↗⇒y ∈ f −1 ,f 1 = a +3e , 1−a e ;2°当a≥1时:y′<0⇒y在−1,1↘⇒y∈f1,f−1=1−a e,a+3;3°当−1<a<1时:列表如下:∴y min=1−a e a,y max=max,1−a e=M⇒y∈1−a e a,M.综上所述:……注:当−1<a<1时:还可因1−a e与a+3e的大小关系,进一步分类讨论为:1°当−1<a≤e2−3e2+3时:y∈1−a ea,1−a e;2°当e2−3e2+3<a<1时:y∈1−a e a,a+3e.总结:含参函数求值域,最核心的是讨论其单调性,讨论的顺序为:1)先讨论y’=0在定义域内是否有解;2)再讨论有几解;3)再讨论解的大小;4)最后比较极值与区间端点值(有时是极限值)的大小,进而求出函数的值域.。
如何解决与函数单调性相关的参数问题
陈今碧
函数是高考必考的内容之一,也是众多知识的交汇点之一。
在解答题里面,经常看见有关讨论含参数函数的单调性或者求含参数函数的最值的问题。
学生们常感到不知道怎么讨论,即分类讨论的标准不明确。
本文根据作者的教学经验,归纳出了比较系统和实用的方案供读者参考,不当之处敬请读者指正。
1.讨论含参函数的单调性:
综上…
列表得:
x
(-))()(1,+) x’y+0-0++ y’y’
综上…
2.求含参函数的值域(最值):
依以下顺序讨论:1°先讨论单调性(整个有意义的区间),
2°再讨论极值点与定义域的关系.
例6.求值域:
x-1(-1,a)a(a,1)1 y’-0+
y ↘↗(1-a)e
综上所述:……
总结:含参函数求值域,最核心的是讨论其单调性,讨论的顺序为:
1)先讨论y’=0在定义域内是否有解;2)再讨论有几解;3)再讨论解的大小;4)最后比较极值与区间端点值(有时是极限值)的大小,进而求出函数的值域.。