物理极值问题
- 格式:docx
- 大小:86.52 KB
- 文档页数:7
初中物理极值题型归纳总结在初中物理学习中,极值问题是一类常见的题型,也是学生们比较容易遇到的难题之一。
本文将对初中物理中的极值题型进行归纳总结,帮助同学们更好地应对此类题目。
一、最大值与最小值在物理问题中,最大值和最小值往往代表着某种物理量的极端情况,是我们需要求解的目标。
以下是一些常见的最大值和最小值问题:1. 最大值问题最大值问题通常涉及到寻找某一物理量在给定条件下的最大取值。
例如,求解一个抛体的最大高度、求解电阻的最大功率等。
对于这类问题,可以采用以下思路来解决:(1)列出问题的相关条件或约束;(2)根据条件或约束,得出物理量的表达式;(3)对表达式求导,找到极值点;(4)通过适当的方法,判断得到的极值点是否满足最大值的条件。
2. 最小值问题最小值问题与最大值问题类似,但是求解的是物理量的最小取值。
例如,求解一个弹簧的最小压缩量、求解电路中电流的最小值等。
解决最小值问题可以按照以下步骤进行:(1)列出问题的相关条件或约束;(2)根据条件或约束,得出物理量的表达式;(3)对表达式求导,找到极值点;(4)通过适当的方法,判断得到的极值点是否满足最小值的条件。
二、具体题型分析1. 坡度问题坡度问题是一种常见的极值问题,通常涉及到物体在斜坡上运动的情况。
在解决坡度问题时,可以根据题目所给条件,利用力学知识和相关公式进行推导和计算。
以某个斜坡上的物体滑动时所具有的最大速度为例,可以通过以下步骤进行解答:(1)根据题目给出的条件,列出物体所受到的力;(2)根据牛顿第二定律,建立物体的运动方程;(3)通过求解运动方程,得到最大速度的表达式;(4)对表达式求导,并求解得到的导数为零的点,即可得到最大速度的取值。
2. 三角函数问题三角函数问题是另一种常见的极值问题类型,通常涉及到角度的取值范围以及某一物理量的极值。
在解决三角函数问题时,需要对三角函数的性质和恒等式有一定的了解。
例如,求解一个正弦函数在给定范围内的最大值,可以按照以下步骤进行:(1)根据给定的范围,列出正弦函数的表达式;(2)对表达式求导,并求解得到的导数为零的点;(3)通过判断该点是否满足最大值的条件,确定极值点的取值。
探讨高中物理极值问题优秀获奖科研论文物理极值问题,就是求某物理量在某过程中的极大值或极小值.物理极值问题是中学物理教学经常遇到的一个重要内容,在高中物理的各部分均出现,涉及的知识面广,综合性强,对学生的综合分析能力和应用数学解决物理问题的的能力要求较高,另外加之学生数理结合能力差,物理极值问题已成为中学生学习物理的难点.解决这类问题有两种思考途径:一是极值问题的物理解法;二是极值问题的数学解法,笔者主要讨论后者情况.在中学物理中,描述某一过程或者某一状态的物理量,在其发展变化中,由于受到物理规律和条件的制约,其取值往往只能在一定的范围内才符合物理问题的实际,求这些量的值的问题便可能涉及到要求物理量的极值.求解物理极值问题,通常涉及到的主要数学知识有:点到直线的距离最短、两数的几何平均值小于或等于它们的算术平均值、二次函数求极值的方法、求导数、三角函数、几何作图法、有关圆的知识等.在求解物理极值过程中要想实际物理过程与数学知识进行灵活的结合,充分发挥数学的作用,往往要进行数学建模.数学建模就是用数学语言描述实际现象的过程,对物理规律或物理概念的描述提供了最简洁、最准确的表达方式,而且在内容上能表述得深刻、精确、简捷.物理问题用图象来描绘,利用图象的直观性,既明了又简捷,往往对问题的解决起到事半功倍的效果. 例略.此外,还有利用不等式、利用三角函数的有界性、利用数学求导的方法、利用向量、利用几何圆等求极值的方法,限于篇幅,这里不再一一列举.以上求极值的方法是解高中物理题的常用数学方法.在使用中,还要注意题目中的条件及“界”的范围.求最大和最小值问题,往往是物理学公式结合必要的教学知识才得出结论,这就要求学生不仅理解掌握物理概念、规律,还要具备运用数学知识解决物理问题的能力.解决极值问题的关键是扎实掌握高中物理的基本概念、基本规律,在分析清楚物理过程后,再灵活运用所学的数学知识.综上所述,无论采用何种方法解物理极值问题,首先都必须根据题意,找出符合物理规律的物理方程,这也是解决物理问题的核心,决不能盲目地将物理问题纯数学化.“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文”。
物理临界极值问题归纳总结在物理学中,临界极值问题是一类重要而常见的问题,涉及到各种自然现象和物理过程。
在本文中,我们将对一些典型的临界极值问题进行归纳总结,探讨其背后的物理原理和应用。
1. 能量最小问题当一个物体在受到外力作用下移动时,其可能存在最小能量的位置。
例如,在沿着一条曲线从A点到B点的过程中,求物体在这条曲线上,哪个位置可以实现最小的势能状态。
这种求解问题可以使用变分法或者利用物理原理进行分析。
2. 速度最大问题速度最大问题在机械运动学中经常出现。
例如,一个物体自由下落,求其在离地面一定高度时的速度达到最大值。
这类问题可以通过求解速度函数的导数为零的点,找到极值点,并验证其是否是最大值。
3. 加速度最大问题加速度最大问题与速度最大问题类似,但是关注的是物体的加速度达到最大值的情况。
例如,在自由下落的过程中,求物体离地面一定高度时其加速度达到最大值。
可以通过求解加速度函数的导数为零的点来找到极值点。
4. 碰撞问题碰撞问题是临界极值问题中的一个重要分支,涉及到两个或多个物体之间的相互作用。
例如,求两个物体碰撞后的速度以及碰撞瞬间的能量损失。
这类问题可以通过守恒定律和碰撞动量定律来分析,从而得到系统的临界极值情况。
5. 光线折射问题光的折射现象也涉及到一种临界极值问题。
例如,光线从一个介质进入另一个介质时,求解光线的入射角和折射角之间的关系。
这类问题可以利用斯涅尔定律和临界角的概念来解决。
6. 流体力学中的临界极值问题流体力学研究中也存在临界极值问题。
例如,在管道中液体流动速度达到最大值的问题,或者通过调整管道中的形状,使得流体的流量达到最大值。
这类问题可以通过应用伯努利方程和连续性方程来解决。
通过对上述几类典型的临界极值问题进行总结与归纳,我们可以看到它们在物理学研究和应用中的重要性。
在实际问题中,临界极值问题的解决可以帮助我们了解自然现象背后的物理规律,并且为工程设计和科学研究提供有力支持。
物理竞赛极值问题解法例谈极值问题,是物理竞赛中较为常见的一类问题。
解答这类问题,除了用到相关的物理知识,一般都要借助一定的数学知识才能完成。
现将初中物理竞赛中,常见的几类极值问题的解答方法,举例介绍如下。
一.利用“三角形两边之和大于第三边”求解例1.某中学举办了一次别开生面的“物理体育比赛”。
比赛中有个项目:运动员从如图1(a)所示的A点起跑,到MN槽线上抱起一个实心球,然后跑到B点。
比赛时,谁用的时间最少谁胜。
试问运动员比赛时,应沿着什么路线跑最好?图1(a)图1(b)析与解:假设某运动员在槽线上抱起一个实心球所用的时间、运动员跑步的速度是一定的,那么,他跑过的路程如果最短,则他所用的时间最少。
因此,本题实际上是一道路程极值问题。
如图1(b)所示,作B关于槽线MN的对称点B′,图中、、等,都是可能的路线。
显然,、路线,分别与、、等长,而由“三角形两边之和大于第三边”的结论可知,图中的(直线段)最短,即路线最短。
故,运动员比赛时,应沿着路线跑最好。
二.利用“正弦函数sinθ的最大值为1”求解例2.如图2(a)所示,某人站在离平直公路垂直距离为60m的A处,发现公路上有一汽车,从B处以v0=10m/s的速度沿公路匀速行驶,B与人相距100m。
问此人最少要以多大的速度,沿什么方向奔跑才能与汽车相遇?析与解:设人以速度v,沿与AB成θ角的方向奔跑,如图2(b)所示,并在C处与汽车相遇,所用的时间为t。
则有BC=v0t,AC=vt。
作BE⊥AC,由三角形AOC与三角形BEC相似得:又:,故:BE=AB sinθ,所以:整理得:代入数值计算得:上式中,要使v最小,应使sinθ最大,即sinθ=1,θ=90°时,v最小为v min=6m/s。
故,此人最少要以6m/s的速度,沿与AB成90°的方向向公路奔跑,才能与汽车相遇。
三.利用“”求解例3.如图3所示,一根均匀杠杆,每米长重λ=30N,现以杆的A端为支点,在杆的B端施一竖直向上的力F,在距杆的A端a=0.2m处挂一个重G=300N的重物,要使杠杆在水平位置平衡,求:杠杆为多长时,加在B端的力F有最小值?最小力F是多大?图3析与解:如不考虑杆重,则杠杆越长,力F就越小。
高中物理解题方法之极值法高中物理中的极值问题,是物理教学研究中的活跃话题。
本文通过例题归纳综合出极值问题的四种主要解法。
一、 二次函数求极值二次函数a ac b a b x a c bx ax y 44)2(222--+=++=,当ab x 2-=时,y 有极值ab ac y m 442-=,若a>0,为极小值,若a<0,为极大值。
例1试证明在非弹性碰撞中,完全非弹性碰撞(碰撞后两物体粘合在一起)动能损失最大。
设第一个物体的质量为1m ,速度为1V 。
第二个物体的质量为2m ,速度为2V 。
碰撞以后的速度分别为'1V 和'2V 。
假使这四个速度都在一条直线上。
根据动量守恒定律有:'+'=+22112211V m V m V m V m (1)如果是完全非弹性碰撞,两物体粘合在一起,(1)则变为V m m V m V m '+=+)(212211,即212211m m V m V m V ++=' (2)现在就是要证明,在满足(1)式的碰撞中,动能损失最大的情况是(2)式。
碰撞中动能损失为ΔE k =()22()22222211222211'+'-+vm v m v m v m (3) 转变为数学问题:ΔE k 为v 的二次函数:由(1)得:v 2ˊ=2112211)(m v m v m v m '-+ (4)将(4)代入(3)得:k =++++-'12221112'1211)(2)(v m v m v m m v m m m m [2222112222112)(22m v m v m v m v m +-+] 二次函数求极值,当v 1ˊ=)()(212211m m v m v m ++ (5) 时∆E k 有极大值。
回到物理问题,将(5)代入(4)得v 2ˊ=)()(212211m m v m v m ++此两式表明,m 1和m 2碰后速度相等,即粘合在一起,此时动能损失(ΔE k )最大。
物理极值问题
物理极值问题是一个物理量在某过程中的最大或最小值的问题,这是高中物理教学中的重要内容,涉及到的领域包括力学、热学、电学等,并且这一问题的难度较大,对学生的学习综合实力和数学结合能力有较高要求。
在求解极值问题时,我们通常从以下几个方面进行思考:
首先,当物理量达到极值时,该物理系统处于平衡状态,例如汽车以恒定功率启动最后会达到最大速度;其次,当物理量达到极值时,可能存在另一物理量为零的情况,例如从高处掉落的小球掉在竖直放置的弹簧上,当加速度为零时速度最大,而速度为零时加速度最大;第三,瞬时速度相等时,物理量也可能达到极值,例如在一物体撞上中间有弹簧的另一物体时,当两者速度相等时弹簧的弹性势能最大;最后,当物理量达到极值时可能会出现临界状态,如光的折射中入射角变化达到全反射的情况。
物理带电粒子在匀强磁场中运动的临界极值问题由于带电粒子在磁场中的运动通常都是在有界磁场中的运动,所以常常出现临界和极值问题。
1.临界问题的分析思路临界问题分析的是临界状态,临界状态存在不同于其他状态的特殊条件,此条件称为临界条件,临界条件是解决临界问题的突破口。
2.极值问题的分析思路所谓极值问题就是对题中所求的某个物理量最大值或最小值的分析或计算,求解的思路一般有以下两种:(1)根据题给条件列出函数关系式进行分析、讨论;(2)借助几何知识确定极值所对应的状态,然后进行直观分析3.四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。
(2)当速率v一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长。
(3)当速率v变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,根据几何关系求出半径及圆心角等。
(4)在圆形匀强磁场中,当运动轨迹圆半径大于区域圆半径时,则入射点和出射点为磁场直径的两个端点时,轨迹对应的偏转角最大(所有的弦长中直径最长)。
【典例】平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外。
一带电粒子的质量为m,电荷量为q(q>0)。
粒子沿纸面以大小为v的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。
已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。
不计重力。
粒子离开磁场的出射点到两平面交线O的距离为()【应用练习】1、如图所示,半径为r的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,磁场边界上A点有一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为k,速度大小为2kBr。
则粒子在磁场中运动的最长时间为()3.如图所示,直角坐标系中y轴右侧存在一垂直纸面向里、宽为a的有界匀强磁场,磁感应强度为B,右边界PQ平行于y轴,一粒子(重力不计)从原点O以与x轴正方向成θ角的速率v垂直射入磁场,当斜向上射入时,粒子恰好垂直PQ射出磁场,当斜向下射入时,粒子恰好不从右边界射出,则粒子的比荷及粒子恰好不从右边界射出时在磁场中运动的时间分别为( )4、如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B。
物理临界和极值问题总结
物理临界和极值问题是物理学中常见的一类问题,涉及到系统在特定条件下达到某种临界状态或取得极值的情况。
下面是对这两类问题的总结:
1. 物理临界问题:
- 物理临界指系统在某些参数达到临界值时出现突变或重要性质发生显著改变的情况。
- 临界问题常见于相变、相平衡和相变点等领域。
- 典型的物理临界问题包括:磁场的临界温度、压力、电流等;化学反应速率的临界浓度;相变时的临界温度和压力等。
2. 极值问题:
- 极值问题涉及到通过调整系统的参数找到使目标函数取得最大值或最小值的条件。
- 极值问题在物理学中广泛应用于优化、动力学和力学等领域。
- 典型的极值问题包括:能量最小原理和哈密顿原理,用于求解经典力学问题;费马原理,用于求解光路最短问题;鞍点问题,用于求解多元函数的极值等。
无论是物理临界还是极值问题,通常需要使用数学工具进行分析和求解。
对于物理临界问题,常用的方法包括热力学、统计物理和相变理论等;而对于极值问题,则常用的方法包括微积分、变分法和最优化等。
总结起来,物理临界和极值问题是物理学中重要的一类问题,涉及到系统在特定条件下达到临界状态或取得最值的情况。
这些问题需要使用数学工具进行分析和求解,以揭示系统的性质和寻找最优解。
高中物理求极值方法与常用结论总结高中物理中,求极值是一个重要的数学应用问题。
很多物理问题都需要通过求极值来进行分析和解决,因此掌握求极值方法和常用结论是十分重要的。
下面将为你总结高中物理求极值的方法和常用结论。
一、求极值的方法1.寻找最值法:通过寻找物理问题的最大值或最小值来求出极值。
2.解析法:通过建立数学模型,对其求导或使用其他数学方法得出极值。
3.几何方法:通过几何图形的性质和分析来求出极值。
二、常用结论1.极大值与极小值:对于一元函数f(x),若在x=a处,f'(a)=0,并且在a点左侧由正变负,在a点右侧由负变正,则a称为f(x)的极大值点;若在x=b处,f'(b)=0,并且在b点左侧由负变正,在b点右侧由正变负,则b称为f(x)的极小值点。
2.拐点与拐点性质:对于函数f(x),若在x=c处f''(c)=0,并且在c点左侧由负变正,在c点右侧由正变负,则c称为f(x)的拐点。
拐点的性质为:由凹变凸的拐点称为极小值点,由凸变凹的拐点称为极大值点。
3.一元二次函数的最值结论:一元二次函数y=ax^2+bx+c(其中a≠0)的最值点可以通过如下结论求得:当a>0时,最小值为:y_min=c-b^2/(4a)当a<0时,最大值为:y_max=c-b^2/(4a)4.相对速度最小值结论:当两个运动着的物体相对于一些静止参考系运动时,它们的相对速度最小值出现在它们的运动方向夹角为0°或者180°时。
5.成千上万法:在解决物理问题中,当数据较多时,可以通过逐个数值代入进行计算。
6.速度为零但加速度不为零时的移动物体:当一个物体在其中一时刻速度为零(静止),但加速度不为零时,可以通过如下结论求出物体在这一时刻的位置:位移s = (1/2)at^2,其中a为加速度,t为时间。
7.物体自由落体的最高点:自由落体的物体在竖直上抛运动中,最高点时速度为零,也就是物体停止上升,准备掉下来。
高中物理求极值方法与常用结论总结高中物理中,求极值方法和常用结论是常见的问题类型,通过总结这些方法和结论,有助于高中物理学习者更好地理解和应用。
一、求极值方法:1.极值定理:对于一个连续函数f(x)在闭区间[a,b]上,必然存在至少一个极大值和极小值,即f(x)在[a,b]上必然取得极值。
2.导数法则:利用导数的相关概念和性质,可以简化极值的求解过程。
(1)极值的必要条件:函数f(x)在x=c处取得极值,必然满足f'(c)=0。
(2)极值的充分条件:若函数f'(x)在x=c的邻域内存在符号变化,且在c处f''(c)存在,则f(x)在x=c处取得极值。
3.端点法:闭区间[a,b]上的函数f(x),当x=a或x=b时,可以直接求解f(a)和f(b),作为极值的候选值。
4.区间内部法:闭区间[a,b]上的函数f(x),通过求解f'(x)=0,得到f(x)的驻点。
然后比较驻点和两个端点的函数值,选取最大和最小值作为极值。
5.辅助线法:即画出函数的图像,观察图像的整体形状,然后根据函数的性质和题目要求,确定极值所在的位置。
二、常用结论:1.函数的单调性:函数在给定的定义域内是递增的还是递减的。
(1)若f'(x)>0,则f(x)在区间上递增。
(2)若f'(x)<0,则f(x)在区间上递减。
2.极值判定:通过一、二阶导数的符号来判断函数的极值。
(1)若f''(x)>0,则f(x)在x处取得极小值。
(2)若f''(x)<0,则f(x)在x处取得极大值。
3.凹凸性:函数图像在其中一区间上是凹向上还是凹向下。
(1)若f''(x)>0,则f(x)在区间上是凹向上的。
(2)若f''(x)<0,则f(x)在区间上是凹向下的。
4.零点定理:对于一个连续函数f(x),若f(a)和f(b)异号,则在开区间(a,b)内至少存在一个实根。
物理极值问题,就是求某物理量在某过程中的极大值或极小值。
物理极值问题是中学物理教学的一个重要内容,在高中物理的力学、热学、电学等部分均出现,涉及的知识面广,综合性强,加之学生数理结合能力差,物理极值问题已成为中学生学习物理的难点。
随着高考改革的深入及素质教育的全面推开,各学科之间的渗透不断加强,作为对理解能力和演绎推理能力及运算能力都有很高要求的物理学科,如果能与数学知识灵活结合,将会拓展解决物理极值问题的思路,提高运用数学知识解决物理问题的能力。
在中学物理中,描述某一过程或者某一状态的物理量,在其发展变化中,由于受到物理规律和条件的制约,其取值往往只能在一定的范围内才符合物理问题的实际,求这些量的值的问题便可能涉及到要求物理量的极值。
求解物理极值问题,通常涉及到的数学知识有:点到直线的距离最短 ,两数的几何平均值小于或等于它们的算术平均值,二次函数求极值的方法,因式分解,三角函数,几何作图法,有关圆的知识等等。
在求解物理极值过程中要想能与数学知识进行灵活的结合,充分发挥数学的作用,往往要进行数学建模。
数学建模就是用数学语言描述实际现象的过程。
在科学领域中,数学因为其众所周知的准确而成为研究者们最广泛用于交流的语言。
因此,人们常对实际事物建立种种数学模型以期通过对该模型的考察来描述、解释、预计或分析出与实际事物相关的规律。
利用数学解决实际问题的方框图如下:
物理极值与中学数学知识结合事例
一、用二次函数求极值
1 、用二次函数极值公式求极值
对于典型的一元二次函数,
若, 则当时 ,y 有极小值,为;
若, 则当时 ,y 有极大值,为;
例 1 、一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以 3m/s 2 的加速度开始行驶。
恰在这时一辆自行车以 6m/s 的速度匀速驶来,从后边赶过汽车。
汽车从路口开动后,在追上自行车之前过多长时间两车相距最远?此时距离是多少?
解:经过时间 t后,自行车做匀速运动,其位移为,
汽车做匀加速运动,其位移为:
两车相距为:
这是一个关于 t的二次函数,因二次项系数为负值,故ΔS有最大值。
当
2、利用一元二次方程判别式求极值
对于二次函数,可变形为一元二次方程
用判别式法即:
则由不等式可知 y的极值为:
对于例题 1,我们可以转化为二次方程求解。
将可转化为一元二次方程:
要使方程有解,必使判别式
解不等式得:,即最大值为6m
3利用配方法求极值
对于二次函数,函数解析式经配方可变为
(1)若a>0时,当时,y有极小值为
(2)若a<0时,当时,y有极大值为
对于例题 1还可用配方法求解。
(二)利用不等式求极值
1、如果a,b为正数,那么有:,当且仅当a=b时,上式取“=”号。
推论:
①两个正数的积一定时,两数相等时,其和最小。
②两个正数的和一定时,两数相等时,其积最大。
2、如果a,b,c为正数,则有,当且仅当a=b=c时,上式取“=”号。
推论:
①三个正数的积一定时,三数相等时,其和最小。
②三个正数的和一定时,三数相等时,其积最大。
例 2、一轻绳一端固定在O点,另一端拴一小球,拉起小球使轻绳水平,然后无初速度的释放,如图所示,小球在运动至轻绳达到竖直位置的过程中,小球所受重力的瞬时功率在何处取得最大值?
解:当小球运动到绳与竖直方向成θ角的 C时,重力的
功率为:
P=mgυcosα=mgυsinθ…………①
小球从水平位置到图中 C位置时,机械能守恒有:
……………②
解①②可得:
令y=cosθsin θ
根据基本不等式,定和求积知:
当且仅当,y有最大值
结论:当时,y及功率P有最大值。
(三)利用三角函数求极值
1、利用三角函数的有界性求极值
如果所求物理量表达式中含有三角函数,可利用三角函数的有界性求极值。
若所求物理量表达式可化为“ ”的形式,可变为,
当时,有极值。
例 3、如图所示,底边恒定为b,当斜面与底边所成夹角θ为多大时,物体沿此光滑斜面由静止从顶端滑到底端所用时间才最短?
此题的关键是找出物体从斜面顶端滑至底端所用时间与夹角的关系式 ,这是一道运动学和动力学的综合题,应根据运动学和动力学的有关知识列出物理方程。
解:设斜面倾角为θ时,斜面长为 S,物体受力如
图所示,由图知…………①
由匀变速运动规律得:…………②
由牛顿第二定律提:mgsinθ=ma…………③
联立①②③式解得:
可见,在90°≥θ≥0°内,当2θ=90°时,sin2θ有最大值,t有最小值。
即θ =45°时,有最短时间为:
2、利用“化一”法求三角函数极值。
对于复杂的三角函数,例如
,要求极值时,先需要把不同名的三角函数和,变成同名的三角函数,这个工作叫做“化一”。
故 y的极大值为。
例题 4、物体放置在水平地面上,物理与地面之间的动摩擦因数为μ,物体重为G,欲使物体沿水平地面做匀速直线运动,所用的最小拉力F为多大?
该题的已知量只有μ和G,说明最小拉力的表达式中最多只含有μ和G,但是,物体沿水平地面做匀速直线运动时,拉力F可由夹角的不同值而有不同的取值。
因此,可根据题意先找到F与夹角有关的关系式再作分析。
解:设拉力 F与水平方向的夹角为θ,根据题意可列平衡方程式,
即……①
……②
…………③
由联立①②③解得:
,
其中,∴
(四)利用向量求极值
向量就是物理学中的矢量,当物体受三力平衡时,将三矢量首尾相连后,必定构成三角形。
利用点到直线的垂直线段最短可求极值。
对于例题 4,我们也可用矢量知识求极
值。
将摩擦力 f和地面对木块的弹力N合成
一个力F',如图,F'与竖直方向的夹角
为(为一定值)。
这样
木块可认为受到三个力:重力G,桌面对木块的作用力F'和拉力F的作用。
尽管F大小方向均未确定,F'方向一定,但大小未定,但三力首尾相连后必构成三角形,如右图所示。
只用当F与F'垂直时,即拉力与水平方向成角时,拉力F最小为
而
故
(五)用图像法求极值
通过分析物理过程遵循的物理规律,找到变量之间的函数关系,做出其图像,由图像可求得极值。
例 5、从车站开出的汽车作匀加速运动,它开出一段时间后,突然发现有乘客未上车,于是立即制动做匀减速运动,结果汽车从开动到停下来共用20秒,前进了50米。
求这过程中汽车达到的最大速度。
解:设最大速度为 v m ,即加速阶段的末速度为v m :
画出其速度时间图象如右图所示,图线与 t轴围成的面
积等于位移。
即:
即:
以上求极值的方法是解高中物理题的常用方法。
在使用中,还要注意题目中的条件及“界”的范围。
求最大和最小值问题,这类问题往往是物理学公式结合必要的数学知识才得出结论,这就要求学生不仅理解掌握物理概念、规律,还要具备较好的运用数学解决问题的能力。
解决极值问题的关键是扎实掌握高中物理的基本概念,基本规律,在分析清楚物理过程后,再灵活运用所学的数学知识。
综上所述,无论采用何种方法解物理极值问题,首先都必须根据题意,找出符合物理规律的物理方程或物理图象,这也是解决物理问题的核心,决不能盲目地将物理问题纯数学化。