微生物遗传育种学
- 格式:docx
- 大小:36.54 KB
- 文档页数:1
微生物遗传育种学一、名词解释(3*5)1、pcr:聚合酶链式反应,是一项在生物体外复制特定dna片段的核酸合成技术。
2、操纵子:操纵子(operon):原核生物能mRNA出来一条mrna的几个功能有关的结构基因及其上游的调控区域,称作一个操纵子(operon)。
3、启动子(promoter):真核基因启动子是rna聚合酶结合点周围的一组转录控制元件,包括:至少一个转录起始点及一个以上的功能组件。
4、冈崎片段:冈崎片段就是由于解链方向与激活方向不一致,其中一股子链的激活,Gondrecourt母链求出足够多长度才已经开始分解成引物接着缩短。
这种不已连续的激活片段就是冈崎片段。
5、营养缺陷型:指某一菌株在诱变后丧失了合成某种营养成分(生长因子)的能力,使其在基本培养基上不能生长,必须加入相应物质才能生长的突变体。
6、准性生殖:就是一种类似有性生殖但比它更为完整的一种生殖方式。
可使同一种生物的两个相同来源(即为同种相同株)的体细胞经融合后,不通过有丝分裂而引致高频率的基因重组。
准性生殖常见于某些真菌,尤其就是半知菌中。
7、限制性核酸内切酶(restrictionendonuclease):识别并切割特异的双链dna序列的一种内切核酸酶。
8、密码的自旋性:密码的自旋性就是多个密码子编码同一个氨基酸的现象。
9、转座子(transposons):转座子是可以从一个染色体位点转移至另一个位点的分散的重复序列。
转座子也包括含有两个反向重复序列的侧翼,内有转座酶基因,并含有抗生素耐药基因等其他基因。
10、微生物繁育:人为地使用物理、化学的因素,引致有机体产生遗传物质的突变,经选育成为新品种的途径。
二、是非题(2*5)三、选择题(3*5)1、限制性内乌酶的种类、辨识位点、功能、区别根据酶的亚单位组成、识别序列的种类和是否需要辅助因子,限制与修饰系统主要分成三大类。
ⅱ型酶所占到的比例最小,相对来说最简单,它们辨识回文等距序列,在回文序列内部或附近研磨dna。
微⽣物遗传育种名词解释(⼆)1、⾃然选育:从⾃然界直接分离和筛选菌种或在⽣产中利⽤⾃发突变选育优良菌株。
2、诱变育种:对出发菌株进⾏诱变,然后运⽤合理的程序与⽅法筛选符合要求的优良菌株。
3、代谢调控育种:利⽤现有的代谢调控知识,筛选特定突变型,改变代谢流量或流向,从⽽提⾼⽬的产物产量的⼀种育种技术。
4、重组育种;利⽤微⽣物间的遗传重组来改变其遗传物质组成及结构的⼯业微⽣物育种技术。
5、原⽣质体融合育种;通过⼈为⽅法,使遗传性状不同的两细胞的原⽣质体发⽣融合,从⽽实现遗传重组的⼯业微⽣物育种技术。
6、基因⼯程育种技术:在体外构建重组DNA分⼦并导⼊宿主内⾼效表达,从⽽获得重组微⽣物的育种技术。
7、突变:遗传物质核酸中的核苷酸序列发⽣了稳定的可遗传的变化。
8、突变体:带有突变基因的细胞或个体9、突变型:突变体的基因型或表型称为突变型,和其相对的原存在状态称为野⽣型。
10、⾃发突变(spontaneous mutagenesis):未经任何⼈为处理⽽⾃然发⽣的突变;11、诱发突变(induced mutagenesis):由⼈们有意识地利⽤物理或化学⼿段对⽣物体进⾏处理⽽引起的突变。
12、整倍体:含有完整的染⾊体组。
13、⾮整倍体:含有不完整状态的染⾊体组,⼀般是指⼆倍体中成对染⾊体成员的增加或减少。
14、部分⼆倍体:原核⽣物中由⼀整条染⾊体和外来染⾊体⽚段所构成的不完整⼆倍体。
增变基因(mutator gene):其基因突变会导致整个基因组的突变频率明显上升的⼀些基因。
15、前突变:诱变剂所造成的DNA分⼦某⼀位置的损伤16、光复活:指细菌在紫外线照射后⽴即⽤可见光照射,可以显著地增加细菌的存活率,降低突变率。
17、表型延迟phenotype lag:突变体表型改变落后于其基因型改变的现象。
18、分离性延迟segregational lag :突变基因由杂合状态到纯合状态所造成的表型迟延19、⽣理性延迟physiological lag :由于基因产物的“稀释”过程所造成的表型迟延野⽣型(wild type):从⾃然界分离到的任何微⽣物在其发⽣营养缺陷突变前的原始菌株;基因重组:由于不同DNA链的断裂和连接⽽产⽣DNA⽚段的交换和重新组合,形成新的DNA分⼦,进⽽形成新遗传个体的⽅式称为基因重组。
微生物遗传育种答案第一章微生物的遗传物质一、名词1 转化: 指一种生物由于接受了另一种生物的遗传物质而发生遗传性状的改变2 cccDNA——共价、闭合、环状DNA3 复制子:指能独立进行复制的DNA部分, 一个复制子包括复制起点及其复制区4 启动子(promoter)——是位于结构基因5’端,启始结构基因转录的DNA顺序。
它决定转录的准确启始,并与转录效率有关。
5 Pribnow框(Pribnow box): 又称-10区或Rc区,与核心酶结合的位置,一致顺序:TATPuA二、问题1证明核酸是遗传物质有哪些实验证据答:肺炎双球菌的转化实验和噬菌体的侵染实验证明DNA为遗传物质。
烟草花叶病毒的遗传物质的发现及重组实验证明RNA也是遗传物质。
2 1928年, F Griffith 发现转化现象的过程答:肺炎双球菌野生型,有毒力菌落光滑产荚膜为S型;突变型无毒力菌落粗糙无荚膜为R 型,然而讲加热杀死的S型细菌与R型细菌混合培养,能分离得到S型细菌,说明加热杀死的S型菌中存在能将R型菌转化为S型菌的因子。
3 1944年,Avery证明DNA是遗传物质的过程答:Avery他们从S型细菌细胞物质中抽提并纯化出转化因子,将它用多种蛋白水解酶处理后,并不影响转化效果,如果用脱氧核糖核酸酶去处理则转化消失,从而直接证明了转化因子是DNA.四、选择题:1 E.coli含有一个cccDNA,约编码2000个基因。
2 E.coli的基因组测序1997年完成,E.coli cccDNA 有基因4.6×106 bp,含4288个基因第二章基因突变和损伤DNA的修复一、名词1基因突变(gene mutation) : 是指基因的分子结构(核苷酸顺序)的改变1.形态突变——可见突变2.生化突变:指没有形态效应的突变(去年考题)3.致死突变:指引起个体死亡或生活力下降的突变4.条件致死突变:指在某些条件下能成活, 而在另一些条件下是致死的突变二、问题1根据突变对表型的效应,基因突变分为哪些类型?(去年考题)答:1形态突变:肉眼可见,即有关形状、大小、生育状态、颜色、颜色分布等表型变化的突变;2:生化突变:没有形态:指没有形态效应的突变;3致死突变:引起个体死亡或活力下降的突变4:条件致死突变:指在某些条件下能成活而在另一些条件下是致死的突变。
《微生物遗传育种学》复习题一、填空题1、微生物遗传育种学是研究微生物规律,阐述微生物的原理和技术的一门科学,在微生物学和整个生物科学中发挥着重要的作用。
2、紫外线诱变最有效的波长为nm左右,一般诱变时用15W功率的紫外灯在距离30 cm左右对进行处理。
3、空间诱变育种是利用空间环境的特征包括:、、和超净环境等引起生物体的染色体畸变,进而导致生物体遗传变异来进行菌种选育的。
4、常用的基因工程宿主有、、和动物细胞。
5、复制型转座涉及到两种酶:一是,作用在原来转座子的末端;二是,它作用在重复的拷贝上。
6、基因组序列的功能分析以及代谢途径的构建改造等都需要克隆目的 DNA,目前,获得大片段 DNA 序列的方法主要有:构建和筛选基因文库、PCR 扩增、、体外大片段 DNA 合成和组装,以及等方法。
7、反转录病毒RNA基因组是,因此反转录病毒具有二倍体基因组。
8、微生物遗传育种学是研究微生物规律,阐述微生物的原理和技术的一门科学,在微生物学和整个生物科学中发挥着重要的作用。
9、工业微生物菌种的五大基本特征为:非致病性;;;相对稳定的遗传性能和生产性状;。
10、常用的基因工程宿主有、、和动物细胞。
11、细菌中可转座的遗传因子可分为四类:、、和。
12、T4噬菌体是一种侵染大肠杆菌的烈性噬菌体。
其基因组是双链线性DNA,含碱基A、T、G和,其DNA分子的特征是和。
二、判断题1、序列5'-CGAACATATGGAGT-3'中含有一个6bp的II类限制性内切核酸酶的识别序列,该位点的序列可能是5’-CATATG-3。
2、1928年英国科学家Griffith进行肺炎链球菌时发现了转导。
3、GAT→GAC属于同义突变。
4、能够诱导大肠杆菌感受态出现的是 Mn2+。
5、含有螺旋-转角-螺旋结构的蛋白通常可以与DNA结合行使其功能。
6、已知 DNA 的碱基序列为 CATCATCAT,颠换可产生如下碱基序列的改变:CACCATCAT 。
微生物遗传育种知识点汇总1.微生物基因组学:微生物基因组学是研究微生物基因组结构、功能和表达的学科。
通过对微生物基因组的测序、比较分析和功能注释,可以了解微生物的遗传特性和功能。
2.微生物突变:微生物突变是指微生物在自然环境或实验室中发生的基因突变。
突变可以是基因变异、插入突变、缺失突变等,这些突变可能会导致微生物表型的变化。
3.微生物选择:微生物选择是通过对微生物的生长条件进行调控,选择出具有其中一种特定性状的菌株。
例如,可以通过对耐盐性的选择培养基进行培养,选择出具有耐盐性的微生物菌株。
5.基因工程微生物:基因工程微生物是指经过人工改造的微生物,具有特定基因表达或基因功能改变的能力。
基因工程微生物可用于生产重要医药、酶类、化学品等。
6.自然变异与人工选择:微生物在自然环境中会发生一定程度的自然变异,这些变异可以通过人工选择进行进一步改良。
例如,选择耐药性菌株进行生产抗生素。
7.反向遗传学:反向遗传学是指通过与传统遗传学相反的方式研究生物体的遗传特性。
利用反向遗传学可以探索微生物基因的功能和作用。
9.高通量筛选技术:高通量筛选技术是指通过自动化设备对大量微生物进行快速筛选和分析的技术。
这些技术可以大大提高筛选效率和准确性,用于微生物遗传育种中。
10.代谢工程:代谢工程是指通过改造微生物的代谢路径和基因表达调控来提高目标产物的产量和选择性。
代谢工程可通过基因工程、突变、选择和培养条件优化等手段实现。
11.微生物系统发育学:微生物系统发育学是研究微生物演化和亲缘关系的学科。
通过比较分析微生物基因组,确定其进化关系和分类地位。
以上是微生物遗传育种的一些基本知识点汇总。
微生物遗传育种是一个综合性学科,涉及到多个学科的知识和技术,对于改良微生物品种和开发新的微生物应用具有重要意义。
微生物遗传育种学
微生物遗传育种学是研究微生物的遗传变异、遗传改良及育种技术的学科。
微生物指的是细菌、真菌、病毒等单细胞生物。
微生物遗传育种学主要关注微生物在遗传水平上的变异、变异的调控机制以及如何通过遗传改良来获得具有特定性状的微生物株系。
微生物遗传育种学的研究内容包括:
1. 遗传变异的检测与分析:通过分子生物学、基因组学等技术手段,研究微生物中存在的遗传变异,探究变异的产生机制和变异位点的定位。
2. 遗传改良的策略和方法:通过基因工程、突变育种、自然选择等手段,改良微生物的遗传性状,如产量、耐受性、代谢能力等,以提高微生物在工业生产、环境修复、药物开发等方面的应用性能。
3. 突变育种的应用:通过诱变剂或辐射等方法,诱发微生物的突变,筛选出具有特定性状的突变株系,进一步进行遗传改良。
4. 基因工程的应用:通过外源基因的引入、基因的删除或修改等手段,改变微生物的基因组,使其具有特定的功能或产物。
通过微生物遗传育种学的研究与应用,可以获得具有工业、农业、医疗等方面应用潜力的微生物种类,为人类社会的发展和生活带来诸多好处。