六年级上册数学
- 格式:docx
- 大小:162.38 KB
- 文档页数:12
六年级上册人教版数学知识点(通用7篇)六年级上册人教版数学知识点第1篇一、分数乘法(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1、找单位“1”:在分率句中分率的前面; 或“占”、“是”、“比”的后面2、求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数×。
3、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“ = ”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量三、倒数1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。
六年级上册的数学知识点六年级上册的数学内容丰富多样,涵盖了多个重要的数学知识点。
本文将为您详细介绍六年级上册涉及的数学知识点,帮助您全面了解和掌握这些内容。
一、整数运算在六年级上册的数学学习中,整数运算是一个重要的基础知识点。
学生需要学会整数的加减乘除运算,并且能够应用到实际问题中解决相关计算题目。
二、有理数的认识与比较有理数是六年级上册的一个重要内容,学生需要学会有理数的认识与比较,包括正数、负数、零等概念的理解以及大小关系的判断。
三、数的倍数与约数数的倍数与约数是六年级上册数学中的一个重要知识点。
学生需要学会判断一个数是否是另一个数的倍数或约数,并能够应用到实际问题中解决相关题目。
四、分数的认识和比较分数的认识和比较也是六年级上册的数学内容之一。
学生需要学会分数的基本概念,如分子、分母等,并能够进行分数的大小比较。
五、小数的认识与运算小数的认识与运算是六年级上册数学知识点中的一个重点。
学生需要学会小数的读法、写法和四则运算,并且能够应用到实际问题中解决计算题目。
六、平面图形在六年级上册数学学习中,平面图形也是一个重要的知识点。
学生需要学会平面图形的分类与命名,如:三角形、四边形等,并能够计算图形的面积和周长。
七、数据的处理数据的处理是六年级上册数学的另一个重要内容。
学生需要学会数据的收集、整理和处理,如:制作表格、读取图表等,并能够在实际问题中应用这些技巧。
八、概率与统计概率与统计也是六年级上册数学中的一个知识点。
学生需要学会概率的计算和统计的方法,如:柱状图、折线图等,并能够根据图表进行数据的分析和判断。
总结:六年级上册的数学知识点涉及整数运算、有理数的认识与比较、数的倍数与约数、分数的认识和比较、小数的认识与运算、平面图形、数据的处理以及概率与统计等多个方面。
通过学习这些知识,学生将能够提高自己的数学素养,更好地解决实际问题。
希望本文的介绍能够对您有所帮助!。
六年级数学上册知识点总结(优秀11篇)六年级数学上册知识点总结篇一1.分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零。
3.分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1.单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
六年级上册全部重点知识数学
六年级上册数学的重点知识包括以下几个方面:
1. 分数乘法:分数与整数相乘的计算法则,以及规律(乘法中比较大小时)等。
2. 分数混合运算:运算顺序和整数的运算顺序相同,整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
3. 分数乘法的解决问题:找单位“1”,以及如何求一个数的几倍和几分之几。
4. 长方体和正方体的体积计算公式:长方体体积公式=长×宽×高,正方体体积公式=棱长×棱长×棱长,长方体和正方体的体积=底面积×高。
这些知识点都是数学中的重点,需要学生深入理解和掌握。
如果需要更多关于这些知识点的学习资料,可以查阅教辅书或请教老师。
六年级上册数学的公式六年级上册数学涉及到以下公式:1. 周长公式:长方形的周长 = (长 + 宽)× 2正方形的周长 = 边长× 4圆的周长 = 圆周率× 直径 = 圆周率× 半径× 22. 面积公式:长方形的面积 = 长× 宽正方形的面积 = 边长× 边长平行四边形的面积 = 底× 高三角形的面积 = 底× 高÷ 2梯形的面积 = (上底 + 下底)× 高÷ 2圆的面积 = 圆周率× 半径^23. 表面积公式:长方体的表面积 = (长× 宽 + 长× 高 + 宽× 高)× 2正方体的表面积 = 棱长× 棱长× 6圆柱体的侧面积 = 圆周率× 底面直径× 高圆柱体的表面积 = 侧面积 + 圆周率× 底面半径^2 × 2 4. 体积公式:长方体的体积 = 长× 宽× 高正方体的体积 = 棱长× 棱长× 棱长圆柱的体积 = 圆周率× 底面半径^2 × 高圆锥的体积= (1/3) × 圆周率× 底面半径^2 × 高5. 内角和公式:三角形的内角和 = 180度。
6. 其他公式:正方体的体积=棱长×棱长×棱长公式:V=aaa长方体(或正方体)的体积=底面积×高公式:V=abh。
如需更多六年级上册数学公式,可以查阅相关教辅练习,或者咨询数学老师。
六年级上册数学知识点六年级上册的数学学习内容丰富多样,主要包括整数运算、分数运算、小数运算、图形的认识和性质、平面图形的变换等方面的知识点。
以下将对这些知识点进行详细的介绍。
一、整数运算1.1 整数的加法和减法在六年级上册,我们学习了整数的加法和减法。
加法运算的规则是,同号相加取符号,异号相加取绝对值大的数的符号。
减法运算的规则是,在减法中,我们可以将减法转化为加法运算,即加上相反数。
1.2 整数的乘法和除法此外,在六年级上册,我们还学习了整数的乘法和除法。
乘法运算的规则是,同号相乘得正,异号相乘得负。
除法运算的规则是,同号相除得正,异号相除得负。
需要注意的是,除数不能为0。
二、分数运算2.1 分数的表示和比较在六年级上册,我们学习了分数的表示和比较。
分数由分子和分母组成,分子表示被分成的份数,分母表示总共的份数。
我们可以比较两个分数的大小,比较分数的大小时,可以通过找出两个分数的公共分母,将分子进行比较。
2.2 分数的加法和减法此外,六年级上册还学习了分数的加法和减法。
分数的加法需要先找到两个分数的公共分母,然后将其转化为相同分母后进行计算。
分数的减法与加法类似,也需要找到两个分数的公共分母。
2.3 分数的乘法和除法在六年级上册,我们还学习了分数的乘法和除法。
分数的乘法只需要将分子和分母分别相乘即可。
分数的除法可以通过取倒数和乘法的操作来进行。
三、小数运算3.1 小数的加法和减法六年级上册的数学还包括小数的加法和减法。
小数的加法和减法与整数和分数的加法和减法类似,将小数的相应部分对齐后进行计算。
3.2 小数的乘法和除法在小数的乘法中,我们首先将小数化为整数,然后进行乘法运算,最后再确定小数点的位置。
小数的除法可以通过移动小数点位置,将除法转化为乘法来进行计算。
四、图形的认识和性质4.1 平面图形的种类在六年级上册,我们学习了平面图形的种类,如三角形、矩形、正方形、五边形、六边形等。
通过学习,我们可以了解到不同的图形有不同的性质和特点。
六年级上册数学知识点大全1500字六年级上册数学知识点大全一、数的认识:1. 数的读法、写法;2. 形式相同的数与数相等。
二、数的比较:1. 掌握数的大小关系;2. 大于、小于的符号;3. 正整数的比较;4. 数排序。
三、数的组成:1. 两位数的由十位和个位组成;2. 分析两个数的关系;3. 比较两个数的大小。
四、数的运算:1. 了解数的加法和减法;2. 加法和减法的运算规则;3. 加法和减法的口算;4. 加法和减法的综合应用。
五、整数的认识:1. 正整数和零;2. 整数的概念;3. 整数的正负。
六、整数的大小比较:1. 整数的大小;2. 整数的绝对值。
七、整数的加法运算:1. 整数的加法运算规则;2. 整数的加法法则;3. 整数的加法口诀;4. 整数的加法计算方法;5. 整数的加法练习;6. 整数的加法的应用。
八、整数的减法运算:1. 整数的减法运算规则;2. 整数减法的性质;3. 整数减法运算的口诀;4. 整数减法计算方法;5. 整数减法的应用。
九、整数的乘法运算:1. 正整数的乘法运算;2. 整数的乘法运算规则;3. 整数的乘法口诀;4. 整数的乘法计算方法;5. 整数的乘法计算应用。
十、整数的除法运算:1. 正整数的除法运算;2. 整数的除法运算规则;3. 带余除法运算;4. 整数的除法运算应用。
十一、数的分数:1. 了解分数的定义;2. 看图分析分数;3. 转化分数为整数;4. 分数的大小比较;5. 分数的简便表示;6. 分数及其十分之一;7. 分数的意义。
十二、分数的加法运算:1. 分数的加法原则;2. 分子之和、分母保持不变;3. 分数的加法口诀;4. 分数的加法计算。
十三、分数字的减法运算:1. 分数的减法原则;2. 分子之差、分母保持不变;3. 分数的减法口诀;4. 分数的减法计算。
十四、分数的乘法运算:1. 分数和整数的乘法原则;2. 分数的乘法口诀;3. 分数乘法的计算方法;4. 分数和分数的乘法;5. 分数的乘法的简化。
六年级数学上册全册知识点一、内容概括六年级数学上册的内容涵盖了数与代数、空间与几何、统计与概率等多个数学领域的知识点。
主要包括整数、小数、分数的认识与计算,比例与百分数,空间图形的认识与计算,图形的变换,以及简单的统计与概率知识等。
全册知识点按照学生的认知规律进行编排,从基础知识出发,逐渐提高难度,形成完整的知识体系。
也注重数学知识的实际应用,引导学生将数学知识应用于日常生活实际问题中,提高学生的数学应用能力。
在这一部分的学习过程中,学生需要掌握数的概念与运算、几何图形的理解以及概率与统计的基本应用,为将来的数学学习奠定坚实的基础。
二、数的认识与运算自然数的概念:我们生活中的数往往来源于自然物体的数量,包括如水果的数量、物体的长度等。
数学中把这些数量简化为抽象的自然数。
自然数包括正整数和零。
六年级学生应熟练掌握自然数的概念,理解其在实际生活中的应用。
整数的认识:整数包括正整数、零和负整数。
学生应进一步理解正负数的概念,了解负数的应用场景,例如温度、海拔等。
他们还应能够比较和排序整数,理解整数的相对大小关系。
数的运算:六年级学生应熟练掌握基本的四则运算(加、减、乘、除),并能解决一些复杂的运算问题。
他们还应理解分数和小数的概念,掌握分数和小数的运算方法,并能解决相关的实际问题。
混合运算也是六年级学生需要掌握的重要技能之一。
运算定律和性质:六年级学生应了解并掌握基本的运算定律,如加法交换律、乘法分配律等。
他们还应理解运算性质,如分数的通分和约分等。
这些定律和性质在解决复杂问题时非常重要。
六年级学生还应注意避免在运算过程中的计算错误。
在进行运算时,要认真审题、规范步骤和验算结果。
避免出现看错数字、符号错误等问题,以免影响结果的准确性。
培养一定的估算能力也是非常重要的,可以帮助我们快速判断计算结果是否有可能出错。
同时也有助于我们在日常生活中快速做出决策和判断。
1. 整数、小数、分数的认识与性质性质:整数具有封闭性,即两个整数的和或差仍为整数。
六年级上册数学知识点总结六年级上册数学知识点总结1第一单元略第二单元长方体和正方体1、两个面相交的线叫做棱,三条棱相交的点叫做顶点。
2、长方体相交于同一顶点的三条棱的长度,分别叫做它的长、宽、高。
3、长方体的特征:面有六个面,都是长方形(特殊情况下有两个相对的面是正方形),相对的面完全相同;棱有12条棱,相对的棱长度相等;顶点有8个顶点。
4、正方体的特征:面有六个面,都是正方形,所有的面完全相同;棱有12条棱,所有的棱长度相等;顶点有8个顶点。
5、正方体也是一种特殊的长方体。
6、把一个长方体或正方体纸盒展开,至少要剪开7条棱。
7、长方体(或正方体)的六个面的总面积,叫做它的表面积。
8、长方体的表面积=(长×宽+宽×高+高×长)×2正方体的表面积=棱长×棱长×6。
9、物体所占空间的大小叫做物体的体积。
10、容器所能容纳物体的体积,叫做这个容器的容积。
11、常用的体积单位有立方厘米、立方分米、立方米。
1立方米=1000立方分米,1立方分米=1000立方厘米。
12、计量液体的体积,常用升和毫升作单位。
1立方分米=1升,1立方厘米=1毫升,1升=1000毫升。
13、长方体的体积=长×宽×高V=abh14、正方体的体积=棱长×棱长×棱长V=a×a×a15、长方体(或正方体)的体积=底面积×高=横截面×长V=Sh16、1=12=83=274=645=1256=27=3438=5129=72910=100017、每相邻两个长度单位(除千米外)的进率都是10,每相邻两个面积单位之间的进率都是100,每相邻两个体积单位之间的进率都是1000。
18、正方体的棱长扩大n倍,表面积会扩大n的平方倍,体积会扩大n的立方倍。
第三单元分数乘法1、分数乘整数的意义与整数乘法的意义相同,是求几个相同加数的和的简便运算。
六年级上册数学知识点六年级上册数学知识点15篇在日常过程学习中,说起知识点,应该没有人不熟悉吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。
还在为没有系统的知识点而发愁吗?以下是店铺帮大家整理的六年级上册数学知识点,希望对大家有所帮助。
六年级上册数学知识点1运算法则1.整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
2.整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
3.整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
4.整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。
如果哪一位上不够商1,要补“0”占位。
每次除得的余数要小于除数。
5.小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。
6.除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
7.除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
8.同分母分数加减法计算方法:同分母分数相加减,只把分子相加减,分母不变。
9.异分母分数加减法计算方法:先通分,然后按照同分母分数加减法的的法则进行计算。
10.带分数加减法的计算方法:整数部分和分数部分分别相加减,再把所得的数合并起来。
小数乘除法的意义及法则1.小数乘法意义:小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
第一单元 位置1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。
经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X 轴上的坐标表示列,y 轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
(2)数对(X ,5)的行号不变,表示一条横线,(5,Y )的列号不变,表示一条竖线。
(有一个数不确定,不能确定一个点)( 列 , 行 ) ↓ ↓ 竖排叫列 横排叫行 (从左往右看)(从下往上看)(从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
第二单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以) 例如:53×61表示: 求53的61是多少? 9 × 61表示: 求9的61是多少?A × 61表示: 求a 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
行号(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a ×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。
a ×b=c,当b <1时,c<a (b ≠0). 一个数(0除外)乘等于1的数,积等于这个数。
a ×b=c,当b =1时,c=a . 注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
附:形如)(1b a a +⨯的分数可折成(b a a +-11)×b1(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a ×b=b ×a乘法结合律:(a ×b)×c=a ×(b ×c) 乘法分配律:a ×(b ±c)=a ×b ±a ×c(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。
单独一个数不能称为倒数。
(必须说清谁是谁的倒数)2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。
例如:a ×b=1则a 、b 互为倒数。
3、求倒数的方法:①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=10没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、任意数a(a ≠0),它的倒数为a 1;非零整数a 的倒数为a 1;分数ab 的倒数是ba 。
6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。
带分数的倒数小于1。
(六)分数乘法应用题 ——用分数乘法解决问题 1是多少?(用乘法)a例如:求25的53是多少? 列式:25×53=15甲数的53等于乙数,已知甲数是25,求乙数是多少? 列式:25×53=15 注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、( 什么)是(什么 )的)()(几几。
( )= ( “1” ) ×)()(几几 例1: 已知甲数是乙数的53,乙数是25,求甲数是多少? 甲数=乙数×53 即25×53=15注:(1)“是”“的”字中间的量“乙数”是53的单位“1”的量,即53是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份。
(2)“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”。
(3)单位“1”的量×分率=分率对应的量例2:甲数比乙数多(少)53,乙数是25,求甲数是多少?甲数=乙数 ± 乙数×53 即25±25×53=25×(1±53)=40(或10) 3、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
4、什么是速度?——速度是单位时间内行驶的路程。
速度=路程÷时间 时间=路程÷速度 路程=速度×时间——单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。
5、求甲比乙多(少)几分之几? 多:(甲-乙)÷乙少:(乙-甲)÷乙 第三单元 分数除法一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
例53÷3=53×31=51 3÷53=3×35=52、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a ÷b=c 当b>1时,c<a (a ≠0)②除以小于1的数,商大于被除数:a ÷b=c 当b<1时,c>a (a ≠0 b ≠0) ③除以等于1的数,商等于被除数:a ÷b=c 当b=1时,c=a比字后面的量乙)—甲(=比后差三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序: ①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。
加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
注:(a ±b )÷c=a ÷c ±b ÷c四、比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
1220=2012=12÷20=53=0.6 12∶20读作:12比20注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变3、化简比:化简之后结果还是一个比,不是一个数。
(1)、 用比的前项和后项同时除以它们的最大公约数。
(2)、 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
也可以求出比值再写成比的形式。
(3)、 两个小数的比,向右移动小数点的位置,也是先化成整数比。
4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
五、分数除法和比的应用1、已知单位“1”的量用乘法。
例:甲是乙的53,乙是25,求甲是多少?即:甲=乙×53(15×53=9) 2、未知单位“1”的量用除法。
例: 甲是乙的53,甲是15,求乙是多少?即:甲=乙×53(15÷53=25)(建议列方程答) 后项 前项 前项 后项比号 比值3、分数应用题基本数量关系(把分数看成比) (1)甲是乙的几分之几?甲=乙×几分之几 (例:甲是15的53,求甲是多少?15×53=9)乙=甲÷几分之几 (例:9是乙的53,求乙是多少?9÷53=15)几分之几=甲÷乙 (例:9是15的几分之几?9÷15=53)(“是”字相当“÷”号,乙是单位“1”)(2)甲比乙多(少)几分之几?A 差÷乙=乙差(“比”字后面的量是单位“1”的量)(例:9比15少几分之几?(15-9)÷15=15915 =156=52)B 多几分之几是:乙甲–1 (例: 15比9少几分之几?15÷9=915-1=35–1=32)C 少几分之几是:1–乙甲 (例:9比15少几分之几?1-9÷15=1–159=1–53=52)D 甲=乙±差=乙±乙×乙差=乙±乙×几几=乙(1±几几) (例:甲比15少52,求甲是多少?15–15×52=15×(1–52)=9(多是“+”少是“–”)E 乙=甲÷(1±几几 )(例:9比乙少52,求乙是多少?9÷(1-52)=9 ÷53=15)(多是“+”少是“–”)(例:15比乙多32,求乙是多少?15÷(1+32)=15 ÷35=9)(多是“+”少是“–”)4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。