人教版2022--2023学年度第一学期七年级数学上册期中测试卷及答案
- 格式:doc
- 大小:841.93 KB
- 文档页数:9
2022-2023学年度上期期中学情监测七年级数学试题(含答案)2022 年 11 月本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分 150 分.考试时间 120 分钟.考试结束后,将本试题卷和答题卡一并交回.考生作答时,不能使用任何型号的计算器.第Ⅰ卷(选择题共 36 分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上.2.本卷共 12 小题,每小题 3 分,共 36 分.一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个选项符合题目要求)1.下列四个数中,是正整数的是()1( A) -3 (B) 0 (C) 8 (D)22.-6 的相反数是()1 1( A) 6 (B) -6 (C) (D)6 63.数-10 不属于下列数集中的()(A)) 负数集(B) 有理数集(C) 整数集(D) 非负数集4.比﹣1 小2 的数是()( A) 3 (B) 1 (C) -2 (D) -35.下列各式正确的是()(A)-3+6=-3 (B)-|-4|=4(C)(-1)11×11=-11(D)1-32=86.下列说法正确的是()(A)最小的整数是0 (B)互为相反数的两个数的绝对值相等(C)如果两个数的绝对值相等,那么这两个数相等(D)有理数分为正数和负数第 1 4页共页第 2 4 页 共 页2 7.如图,5的倒数在数轴上表示的点位于下列哪两个点之间( )(A )点 E 和点 F(B )点 F 和点 G (C )点 G 和点 H (D )点 H 和点 I8.下列各式中不是整式的是( )(A )3a (B )1 a(D )0(C )a 2119. 下列式子中 ax 2,2x-y 元,- 1 2x 2,x+2y ÷z , 5(x+y),符合代数式书写要求的有( ) (A )1 个(B )2 个(C )3 个(D )4 个1 |a| 210. 若多项式- x5 +x +(b -2)x +1 是关于 x 的三次三项式,则 a +b 的值是( )(A )5(B )-1(C )-5 或 1(D )5 或-111.下列关于近似数的说法:(1)3.0 万精确到十分位;(2)6.00×105精确到千位;(3)0.010精确到千分位.其中正确的有( )(A ) 1 个(B ) 2 个 (C ) 3 个 (D ) 都不对12.已知有理数a ≠1,我们把 1 称为a 的差倒数.如:2 的差倒数是 1=-1,-1 的差倒数是 11-a 11-2 = 1-(-1) .如果a 1=-2,a 2 是a 1 的差倒数,a 3 是a 2 的差倒数,a 4 是a 32的差倒数……以此类推,那么a 1+a 2+…+a 100 的值是( ) (A )-7.5(B )7.5 (C )5.5 (D )-5.5注意事项:第Ⅱ卷(非选择题 共 114 分)1. 考生使用0.5mm 黑色墨汁签字笔在答题卡上题目所指示的答题区域内作答,答在试题卷上无效.2. 作图时,可先用铅笔画线,确认后再用 0.5mm 黑色墨汁签字笔描清楚.3. 本卷共 18 小题,共 114 分.二、填空题(本大题共 8 个小题,每小题 3 分,共 24 分)13.用“ > ”或“ < ”号填空:-1_-2.214. - 的倒数是.315. 单项式-3x y 2z 3的系数是_,次数是.16.在数轴上与表示-1 的点相距 2 个单位长度的点表示的数是_.17.据资料显示,地球上海洋面积约为360000000平方千米,请用科学记数法表示地球上海洋面积约为_平方千米.18.把多项式- 3x2y2+ 2x4y3- 4xy +x5y2-y4按x 的降幂排列为.19.在下列各数- 3 , 3.2 , -1,0,75 4•, - 0.3,- 8.4 中,负分数有_个.20.按照如图所示的计算程序,若x=2,则输出的结果是.三、(本大题共 3 个小题,每小题 8 分,共 24 分)21.计算:-3⨯1÷ (-1) ⨯ 33 322.将下列各数在数轴上表示出来,并按从小到大的顺序排列.(用“<”号连接起来) 2.5,-22,-(-1),0,|-4|23.在-6、-5、-1、3、4、7 中任取三个数相乘.(1)怎样取才能使所得数的乘积最大?乘积的最大值是多少?(2)怎样取才能使所得的数先乘后除的结果最大?最大值是多少?四、(本大题共 3 个小题,每小题 9 分,共 27 分)24.已知x +1 + ( y -1)2= 0 ,求代数式x2 y +xy2 +xy 的值. 225.计算:(-1)5 -[-3⨯ (-2)2+11÷ (-2)2 ] --2 3 326.已知 a、b 互为相反数,c、d 互为倒数,x 的绝对值是 2,y 是最大的负整数.试求代数式(a +b +cd )x2+ (a +b)2022+ (-cd )2023-y 的值.第 3 4页共页五、(本大题共 2 个小题,每小题 9 分,共 18 分)27.面对新冠疫情的突然来袭,马边人民团结一心抗击疫情.爱心人士小李在一条南北方向的公路上免费为志愿者送餐.某天早晨他从 A 地出发,中午时分到达 B 地.若规定向北为正,向南为负,这天上午他的行程如下(单位:千米):+14,-5,+16,-11,-13,+2,-10,-8(1)试问 B 地在 A 地的什么方向?距离 A 地多少千米?(2)若汽车耗油量为 0.3 升/千米,这天上午汽车共耗油多少升?28.“囧”像一个人脸郁闷的神情.如图是边长为 a的正方形纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分),设剪去的两个小直角三角形的两直角边长分别为 x,y,剪去的小长方形的长和宽也分别为 x,y.(1)用含 a,x,y 的式子表示阴影部分的面积 S;(2)当 a=20,x=5,y=4 时,求 S 的值.六、(本大题共 2 个小题,第 29 题 10 分,第 30 题 11 分,共 21 分)29.若“⊗”表示一种新运算,规定a ⊗b=a b+a+b,请计算下列各式的值.(1)-6⊗2;1(2)[(-4)⊗(-2)]⊗.230.如图.在一条不完整的数轴上一动点A 向左移动4 个单位长度到达点B,再向右移动7 个单位长度到达点C.(1)若点A 表示的数为0,求点B、点C 表示的数;(2)若点C 表示的数为5,求点B、点A 表示的数;(3)如果点A、C表示的数互为相反数,求点B 表示的数.第 4 页共4 页2022--2023七年级数学参考答案13. > 14. 23-15. 3-, 6 16. 13或- 17. 8106.3⨯ 18.4223425432y xy y x y x y x ---+ 19. 3 20. 26-三、本大题共3个小题,每小题8分,共24分21.解:原式33313⨯-⨯⨯-=)( ……3分)(91-⨯-= ……6分 9= ……8分22. 画数轴 ……5分排序45.2)1(022-<<--<<- ……8分23. 解:(1)三个数的乘积最大时,应是210756=⨯-⨯-)()(; ……4分(2)三个数先乘后除的结果最大时,应是.42176=-÷⨯-)()( ……8分四、本大题共3个小题,每小题9分,共27分24. 解:0)21(10)21(0122=-++≥-≥+y x y x ,且,02101=-=+∴y x 且 ……2分 解得 21,1=-=y x ……3分当时,21,1=-=y x ……4分原式21121121122⨯-+⨯-+⨯-=)()()()( ……6分)()(21411211-+⨯-+⨯= ……7分 )()(214121-+-+= ……8分 41-= ………9分25. 解:原式24349431-÷+⨯---=)()( ……4分24134341-⨯+---=)()( ……6分 231341-+---=)()( ……7分 2)11----=()( ……8分 2 926. 1210 4 2 42 520232022211041020232022 61104+-++=)( ……8分 4= ……9分五、本大题共2个小题,每小题9分,共18分 27. 解:(1))()()()()(8102131116514-+-++-+-++-+ ……2分 [])()()()()()(8101311521614-+-+-+-+-+++=)(4732-+= 15-= ……4分答:B 地在A 地的南方,距离A 地15千米. ……5分 (2)0.3)8+10+2+13+11+16+5+14(⨯ ……7分 3.079⨯=(升)7.23= ……8分答:这天上午汽车共耗油23.7升. ……9分 28. 解:(1)xy xy a s -⋅⨯-=2122 ……3分 xy xy a --=2xy a 22-= ……5分(3)当时,,,4520===y x a ……6分452202⨯⨯-=s ……7分 40400-=360= ……9分六、本大题共2个小题,第29题10分,第30题11分,共21分 29. 解:(1)262626+-+⨯-=⊗-)( ……2分 2612+-+-=)(16-= ……4分(2)[]2124⊗-⊗-)()( []212424⊗-+-+-⨯-=)()()()( ……6分 []2168⊗-+=)( 212⊗= ……8分 212212++⨯=213= ……10分30. 解:(1)若点A 表示的数为0 440-=-4-∴表示的数为点B ……1分 374=+-3表示的数为点C ∴ ……3分 (3)若点C 表示的数为5 275-=-2-∴表示的数为点B ……5分 2422 74 347 851 9 55451点B……11分∴表示的数为-5.5。
e期中综合测试卷时间:120分钟 满分:120分题 号 二三 总 分得 分一、选择题(本大题共10小题,每小题3分,共30分)1.古人都讲“四十不惑”,如果以40岁为基准,张明50岁,记为+10岁,那么王横25岁记为( )A.25岁B.-25 岁C.-15 岁D.+15岁 2.下列说法中,正确的是 ( )A.3x²y与- 2xy²是同类项B.多项式x²+4x-3 是二次三项式C.多项式x²+4x-3 的常数项是3D.单项的系数 ,次数是23.(海淀区校级模拟)已知0<a<1,则a,-a,,中最小的数是 ( )A.aB.-aC.口4 . 数a,b,c 在数轴上对应的点如图所示,化简la-bl+Ic+al-1b+cl 的结果是 ( )A.2a+cB.-2a-2cC.-a-bD.-2a 5.下列计算正确的是 ( ) A.(-3)×(-5)=-15C.-2-3=-5D.-2-(-3)=-16.当温度每上升1℃时,某种金属丝伸长0.002 mm; 反之,当温度下降1℃时,金属丝就缩短 0.002 mm.把15 ℃的这种金属丝加热到60℃,再使它冷却降温到5 ℃.金属丝最后的长 度比原来的长度伸长 ( )A.0.02 mmB.-0.02 mmC.0.09 mmD.-0.11 mm7.若a 为最大的负整数,b 的倒数是-0.5,则代数式2b³+(3ab²-a²b)-2(ab²+b³) 的值为( )A.-6B.-2C.0D.0.58.如图是计算机程序的一个流程图,现定义:“x -x+2”表示用x+2 的值作为x 的值输人程 序再次计算.比如:当输入x=2 时,依次计算作为第一次“传输”,可得2×2=4,4-1=3, 3²=9,9不大于2024,所以2+2=4,把x=4 输入程序,再次计算作为第二次“传输”,可得 4×2=8.8-1=7.7²=49.49不大于2024.….若输入x=1, 那么经过 次“传输”后可以输出结果,结束程序. ( )A.11B.12C.21D.239.如图,长为y cm,宽为x cm 的大长方形被分割为7小块,除阴影A,B 外,其余5块是形状、 大小完全相同的小长方形,其较短的边长为4 c m ,下列说法中正确的有 ( ) ①小长方形的较长边为(y-12)cm;②阴影A 的较短边和阴影B 的较短边之和为(x-y+4)cm; ③若x 为定值,则阴影 A 和阴影B 的周长和为定值; ④当x=20 时,阴影A 和阴影B 的面积和为定值.A.1个B.2个C.3个D.4个10.定义新运算型题定义一种对正整数n 的“F”运算:①当n 为奇数时,F(n)=3n+1;②当 n 为偶数时(其中k 是使F(n)为奇数的正整数),两种运算交替进行,例如,取n=12, 则,按此规律继续计算,第2024次“F”运算的结果是 ( )B.37C.1D.4二、填空题(本大题共8小题,每小题3分,共24分) 11.在+7,-9,4.5,0 ,998这些数中,正数有 个,负数有 个,既不是正数也不是负数.12.(烟台中考)“北斗系统”是我国自主建设运行的全球卫星导航系统,国内多个导航地图采 用北斗优先定位.目前,北斗定位服务日均使用量已超过3600亿次.3600亿用科学记数 法表示为13.(长春一模)某学校计划购买甲、乙两种品牌的电子白板共20台.甲、乙两种品牌电子白 板的单价分别为3万元/台和2万元/台.若购买甲品牌电子白板费用为3(10+x) 万元, 则购买乙品牌电子白板费用为 万元(用含x 的代数式表示)平方 大于2024 输 出 结束否-x+2开始 输入 ×2 -1匹 级匪 名学号14.已知[x]表示不超过x 的最大整数.例如:[3.2]=3,[-0.7]=-1.现定义:|x|=[x]-x,例如:|1.5|=[1.5]-1.5=-0.5,则|3.15.如图,点A,B表示的数分别是-3,5,点C在数轴上且到点A,B的距离之和为10,则点C表示的数为16.已知A=b²-5ab,B=2ab-3b²,且有理数a,b满足12a+11+(b-1)²=0, 则2A-B的值为17.跨化学学科。
2022-2023学年度第一学期期中学业水平监测七年级数学注意事项:1. 全卷共4页,共23小题,满分为120分,考试用时为90分钟。
2. 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的考号、姓名、考场号、 座位号,并用2B 铅笔把对应号码的标题涂黑。
3. 在答题卡上完成作答,答案写在试卷上无效。
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.6的相反数是 A .6 B . 6-C .61D .61-2.3-的倒数是 A .3±B .3-C .3D .31-3.中国古代著作《九章算术》在世界数学史上首次正式引入负数,如果盈利90元记作90+ 元,那么亏本50元记作 A .50+元B .90-元C .50-元D .90元4.如图1,数轴上的两个点分别表示数a 和2-,则a 可以是 A .3-B .1-C .1D .25.下列式子:22+x ,41+a ,732ab ,cab ,x 5-,0中,整式的个数是A .6B .5C .4D .36.下列说法正确的是 A .23x -的系数是3 B .25xy π的系数是5 C .32y x 的次数是5 D .xy π21的次数是3秘密★启用前7.小明写作业时不慎将墨水滴在数轴上,根据图2中的数值,判定墨迹盖住部分的整数的和是A .0B .4-C .3-D .1-8.据报道,2022年某省人民在济困方面捐款达到94.2亿元.数据“94.2亿”用科学记数 法表示为n1094.2⨯.则n 的值为 A .11B .10C .9D .89.已知5,4==y x 且y x >,则y x -2的值为 A .13- B .3-或13C .13D .3或13-10. 一列有规律的数1-,4-,7,10,13-,16-,19,22……则这列数的第54个数为 A .160B .160-C .157-D .163二、填空题:本大题共5小题,每小题3分,共15分.11. 数≈4567.3 (精确到01.0).12. 一个多项式减去22-+-x x 得12-x ,则此多项式应为 . 13. 已知单项式67252n m x +和y mn 321-是同类项,则代数式y x 的值是 . 14. 已知4-=-b a ,2=+d c ,则)()(d a c b --+的值为 .15. 某商店在甲批发市场以每包m 元的价格进了40包茶叶,又在乙批发市场以每包n 元)(n m >的价格进了同样的60包茶叶,如果商家以每包2nm +元的价格卖出这种茶叶,卖完后,这家商店 了(填“盈利”或“亏损”),该商店的总利润为 .三、解答题(一):本大题共3小题,每小题8分,共24分.16. 请你把下列各数填入表示它所在的数的集合内:3-,%10,43.0-,835-,0,8.2,27-, 3)2(--正有理数集合:{ …};整数集合:{ …}; 负分数集合:{ …};自然数集合:{ …}.17.计算(1))4()9(52-+-----; (2)4)2(5)2(32÷--⨯-.18. 先化简,再求值:b a a a b a 83)22(5322-++-+,其中2,1-==b a .四、解答题(二):本大题共3小题,每小题9分,共27分.19. 有理数c b a 、、在数轴上的位置如图3:(1)比较c b -与a b -的大小;(2)若30,10,40a b c +=-=-=,求c b a 32-+的值.20.某维修小组乘汽车从A 地出发,在东西走向的马路上维修线路,如果规定向东行驶的路程为正数,向西行驶的路程为负数,一天中每次行驶的路程记录如下(单位:km ):5+,3-,10+,8-,6-,12+,9-.(1)收工时汽车距A 地多远?(2)若汽车耗油量为5.0L/km ,则共耗油多少升?21.如图4是由边长分别为4和3的长方形与边长为)3(<x x 的正方形拼成的图形.(1)用含有x 的代数式表示图中阴影部分的面积并化简;; (2)当2=x 时,求这个阴影部分的面积.五、解答题(三):本大题共2小题,每小题12分,共24分.22.观察下列各式:223332419441921⨯⨯=⨯⨯==+; 2233343411694136321⨯⨯=⨯⨯==++;22333354412516411004321⨯⨯=⨯⨯==+++; …………(1)计算33333104321+++++ 的值; (2)试猜想333334321n +++++ 的值.23.某同学做一道数学题,已知两个多项式B A 、,2232++-=x xy y x B ,试求B A +.这位同学把B A +误看成B A -,结果求出的答案为12462--+x xy y x .(1)请你替这位同学求出B A +的正确答案;(2)当x 取任意数值,B A 3-的值是一个定值时,求y 的值.2022-2023学年度第一学期期中学业水平监测七年级数学参考答案一、选择题:本大题共10小题,每小题3分,共30分. 二、填空题:本大题共5小题,每小题3分,共15分.11.46.3 12. 3-x 13. 914. 615. 盈利;)(10n m -(第一个空1分,第二个空2分,共3分)三、解答题(一):本大题共3小题,每小题8分,共24分.16. 解:正有理数集合{ %10,8.2,3)2(-- ,…};整数集合{ 3-,0,27- , 3)2(-- ,…}; 负分数集合{ 43.0-,835-,…};自然数集合:{0,3)2(--,…}. 注:每个集合填写正确得2分,填写不完全得1分,多填或错填得0分..本小题共8分. 17.解:(1)原式24952-=-+--= ............................................................................. 4分 (2)原式222204)8(54=+=÷--⨯= ......................................................................... 8分 18. 解:(1)原式22322358a a a a b b=--++-23a a b =+- ............................. 4分将2,1-==b a 代入原式得8611=++ ............................................................................. 8分四、解答题(二):本大题共3小题,每小题9分,共27分.19. 解:(1)观察数轴可知:0a b c <<< ........................................................................... 1分 故0<-c b ,0>-a b .......................................................................................................... 2分 故a b c b -<- ........................................................................................................................ 3分(2)由题可知⎪⎩⎪⎨⎧=-=-=+040103c b a ........................................................................................................... 6分解得4,1,3==-=c b a .......................................................................................................... 8分 则1332-=-+c b a.............................................................................................................. 9分 20. 解:(1)1912681035=-+--+- .......................................................................... 4分 故收工时汽车距A 地1km 远 ................................................................................................... 5分 (2)53|9||12||6||8||10||3||5|=-++-+-++-+................................................. 8分题号 1 2 3 4 5 6 7 8 9 10 选项BDCACCBDBB故共耗油5.265.053=⨯(L) .................................................................................................... 9分 21. 解:(1)长方形的面积为1243=⨯,正方形的面积为2x .......................................... 2分 三个空白部分的三角形的面积之和为122121)4(3214)3(212122+-=+⨯⨯+⨯-+x x x x x .................................................... 5分 故阴影部分的面积为x x x x x 2121)122121(12222+=+--+ ........................................ 7分 (2)当2=x 时,3221221212122=⨯+⨯=+x x ........................................................... 9分 五、解答题(三):本大题共2小题,每小题12分,共24分.22. 解:(1)30251110411043212233333=⨯⨯=+++++.................................... 8分 (2)2233333)1(41104321+⨯⨯=+++++n n ....................................................... 12分 23. 解:(1)因为2232++-=x xy y x B ,12462--+=-x xy y x B A ................. 2分故B B A B A 2)(+-=+)223(2124622++-+--+=x xy y x x xy y x ................ 4分3122+=y x ............................................................................................................................. 8分(2)B B A B A 43-+=-)223(431222++--+=x xy y x y x 8481231222--+-+=x xy y x y x548--=x xy 5)48(--=x y .......................................................................................... 10分因为当x 取任意数值,B A 3-的值是一个定值, 所以048=-y ,21=y (12)。
2020-2021学年度第一学期期中测试人教版七年级数学试题一、选择题:本大题共6个小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在3,1,1,3--这四个数中,比2-小的数是( )A. 3-B. 1-C. 1D. 32.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是( )A. 点A 和点CB. 点B 和点DC. 点A 和点DD. 点B 和点C3.据统计,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.数据8000000000000用科学记数法表示应为( )A. 130.810⨯B. 12810⨯C. 18810⨯D. 118010⨯4.下列计算正确的是( )A. 2a a a +=B. 3265x x x -=C. 623325x x x +=D. 22234-=-a b ba a b 5.老师让同学们写出单项式3x 2y 3的同类项,下面是四名同学写出的答案,正确的是( )A. 2x 5B. 3x 3y 2C. ﹣2312x y D. ﹣13y 3 6.火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a ,b ,c 的箱子,按如图所示的方式打包,则打包带的长(不计接头处的长)至少应为( )A. a+3b+2cB. 2a+4b+6cC. 4a+10b+4cD. 6a+6b+8c二、填空题(每题3分,满分24分,将答案填在答题纸上)7.比较大小:﹣45_____﹣1(填“>”或“<”). 8.用四舍五入法将有理数5.614精确到百分位,得到的近似数为_____.9.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元.(用含a ,b 的代数式表示)10.﹣2xy 的系数是a ,次数是b ,则a +b =_____. 11.若3x 3y m +1与6x n +1y 2是同类项,则m +n =_____.12.把多项式x 2﹣2﹣3x 3+5x 的升幂排列写成_____.13.已知代数式234x x -的值为9,则2686x x --的值为__________.14.在有理数的原有运算法则中,我们定义一个新运算“★”如下:x ≤y 时,x ★y =x 2;x >y 时,x ★y =y .则(﹣2★﹣4)★1的值为_____.三、解答题 (本大题共4小题,共20分.解答应写出文字说明、证明过程或演算步骤.)15.计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96). 16.计算()2213602210--÷⨯+-. 17.计算:()()232323243x y x y x y +---. 18.计算:()()223221a a a a ----. 四、解答题(每小题 7分,共28分)19.已知A =3x 2+4xy ,B =x 2+3xy ﹣y 2,求2B ﹣A .20.先化简,再求值:22532(23)7x x x x ⎡⎤---+⎣⎦,其中12x = 21.小明做了如下一道有理数混合运算的题目﹣34÷(﹣27)﹣[(﹣2)×(﹣43)+(﹣2)]3 =81÷(﹣27)﹣[83+(﹣8)]=… 思考:(1)请用圆圈圈出小明第一步计算中错误;(2)正确的解答这道题.22.老师设计了一个数学实验,给甲、乙、丙三名同学各一张写有已化为最简的代数式的卡片,规则是两位同学的代数式相减等于第三位同学的代数式,则实验成功.甲、乙、丙的卡片如图所示,丙的卡片有一部分看不清楚了.(1)计算出甲减乙的结果,并判断甲减乙能否使实验成功;(2)嘉淇发现丙减甲可以使实验成功,请求出丙的代数式.五、解答题(每小题8分,共16分)23.长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,2017年6月30日开通运营,标志着吉林省正式迈进“地铁时代”,15个站点如图所示.某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A 站下车时,本次志愿者服务活动结束,约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A 站是哪一站?(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米? 24.如图,长为50,cm 宽为xcm 的大长方形被分割为8小块,除阴影A B 、外,其余6块是形状、大小完全相同的小长方形,其较短一边长为acm .()1由图可知,每个小长方形较长的一边长是__ cm (用含a 的式子表示);()2当40x =时,求图中两块阴影,A B 周长和.六、解答题(每小题10分,共20分)25.如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动;同时另一动点Q从点A出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t(秒).()1当0.5t时,求点Q到原点O的距离;=()2当 2.5t=时,求点Q到原点O的距离;()3当点Q到原点O的距离为4时,求点P到原点O的距离.26.为丰富校园体育生活,某校增设网球兴趣小组,需要采购某品牌网球训练拍30支,网球x筒(x>30).经市场调查了解到该品牌网球拍定价100元/支,网球20元/筒.现有甲、乙两家体育用品商店有如下优惠方案:甲商店:买一支网球拍送一筒网球;乙商店:网球拍与网球均按则90%付款,(1)方案一:到甲商店购买,需要支付元;方案二:到乙商店购买,需要支付元(用含x 的代数式表示)(2)若x=100,请通过计算说明学校采用以上哪个方案较为优惠.(3)若x=100,如果到甲店购买30支球拍(送30筒球),剩余的网球到乙店购买,能更省钱吗?如果可以省钱,请直接写出比方案一省多少钱?答案与解析一、选择题:本大题共6个小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的.--这四个数中,比2-小的数是()1.在3,1,1,3A. 3-B. 1-C. 1D. 3【答案】A【解析】【分析】根据有理数的大小关系求解即可.【详解】在这四个数中-<-32故答案为:A.【点睛】本题考查了比较有理数大小的问题,掌握比较有理数大小的方法是解题的关键.2.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是()A. 点A和点CB. 点B和点DC. 点A和点DD. 点B和点C【答案】C【解析】【分析】根据相反数的定义进行解答即可.【详解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.故答案为C.【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.3.据统计,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.数据8000000000000用科学记数法表示应为()A. 13810⨯ C. 18⨯ B. 120.810⨯ D. 11810⨯8010【答案】B【解析】【分析】根据科学记数法的定义以及性质进行表示即可.【详解】128000000000000810=⨯故答案为:B .【点睛】本题考查了科学记数法的应用,掌握科学记数法的定义以及性质是解题的关键.4.下列计算正确的是( )A. 2a a a +=B. 3265x x x -=C. 623325x x x +=D. 22234-=-a b ba a b【答案】D【解析】【分析】根据同类项的定义及合并同类项的方法进行判断即可.【详解】解:A :2a a a +=,故A 错误;B :36x 与25x -不是同类型,故不能合并,故B 错误;C :23x 与32x 不是同类型,故不能合并,故C 错误;D :22234-=-a b ba a b ,故D 正确;故选择D . 【点睛】本题考查了同类项,合并同类项.解题的关键是掌握同类项的定义:所含字母相同,相同字母的指数相同;合并同类项的方法:字母和字母的指数不变,只把系数相加减.不是同类项的一定不能合并.5.老师让同学们写出单项式3x 2y 3同类项,下面是四名同学写出的答案,正确的是( )A. 2x 5B. 3x 3y 2C. ﹣2312x yD. ﹣13y 3 【答案】C【解析】【分析】根据同类项的定义进行判断即可.【详解】A.3x 2y 3与2x 5中,所含字母不尽相同,不是同类项,故本选项错误;B.3x 2y 3与3x 3y 2中,相同字母的指数不相同,不是同类项,故本选项错误;C.3x 2y 3与2312x y -中,x 、y 的指数均相同,是同类项,故本选项正确; D.3x 2y 3与313y -中,所含字母不尽相同,不是同类项,故本选项错误. 故选:C .【点睛】本题考查同类项,熟记同类项的定义是解题的关键.6.火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a ,b ,c 的箱子,按如图所示的方式打包,则打包带的长(不计接头处的长)至少应为( )A. a+3b+2cB. 2a+4b+6cC. 4a+10b+4cD. 6a+6b+8c【答案】B【解析】【分析】 根据图形,不难看出:打包带的长有长方体的两个长、四个宽、六个高.【详解】两个长为2a ,四个宽为4b ,六个高为6c.∴打包带的长是2a+4b+6c.故答案选B.【点睛】本题考查了列代数式,解题的关键是根据题中的等量关系列出代数式.二、填空题(每题3分,满分24分,将答案填在答题纸上)7.比较大小:﹣45_____﹣1(填“>”或“<”). 【答案】>【解析】【分析】根据有理数比较大小的法则进行比较即可.【详解】∵4|1|5-<-, ∴415->-. 故答案为:>.【点睛】本题考查有理数比较大小,掌握负数比较大小的法则:绝对值越大,这个数本身越小,是解题的关键.8.用四舍五入法将有理数5.614精确到百分位,得到的近似数为_____.【答案】5.61【解析】【分析】把千分位上的数字4 进行四舍五入即可.【详解】5.614精确到百分位,得到的近似数为5.61.故答案为5.61.【点睛】本题考查近似数,掌握“四舍五入”法是解题的关键.9.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元.(用含a ,b 的代数式表示)【答案】410a b +【解析】由题意得总价为410a b +.10.﹣2xy 的系数是a ,次数是b ,则a +b =_____. 【答案】32 【解析】【分析】根据单项式的系数与次数的定义得出a 、b 的值,再代入计算即可. 【详解】单项式-2xy 的系数为:-12,次数为:2, 则a +b =-12+2=32. 故答案为:32. 【点睛】本题考查单项式的系数和次数,熟记系数及次数的定义是解题的关键.11.若3x 3y m +1与6x n +1y 2是同类项,则m +n =_____.【答案】3【解析】【分析】根据同类项的定义列方程得出m 、n 的值,再代入计算即可.【详解】∵3x 3y m +1与6x n +1y 2是同类项,∴n +1=3,m +1=2,解得m =1,n =2.∴m +n =1+2=3.故答案为:3.【点睛】本题考查了同类项,掌握同类项的定义:所含字母相同,相同字母的指数也相同,是解题的关键. 12.把多项式x 2﹣2﹣3x 3+5x 的升幂排列写成_____.【答案】﹣2+5x +x 2﹣3x 3【解析】【分析】先分清多项式的各项,然后按多项式升幂排列的定义排列.【详解】多项式x 2﹣2﹣3x 3+5x 的各项是x 2,﹣2,﹣3x 3,5x ,按x 升幂排列为﹣2+5x+x 2﹣3x 3.故答案为﹣2+5x+x 2﹣3x 3.【点睛】本题主要考查了多项式的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号. 13.已知代数式234x x -的值为9,则2686x x --的值为__________.【答案】12【解析】【分析】根据已知得出3x2-4x=9,再将原式变形得出答案.【详解】∵2349x x -=,∴26818x x -=,∴268618612x x --=-=.故答案为12.14.在有理数的原有运算法则中,我们定义一个新运算“★”如下:x ≤y 时,x ★y =x 2;x >y 时,x ★y =y .则(﹣2★﹣4)★1的值为_____.【答案】16【解析】【分析】根据题目规定的新运算进行列式计算即可.【详解】∵x ≤y 时,x ★y =x 2;x >y 时,x ★y =y ,∴(-2★-4)★1=-4★1=(-4)2=16,故答案为:16.【点睛】本题考查有理数的运算,明确题目给出的新运算是解题的关键.三、解答题 (本大题共4小题,共20分.解答应写出文字说明、证明过程或演算步骤.)15.计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96). 【答案】﹣4【解析】【分析】先凑成整数,再相加即可求解.【详解】解:(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96)=(﹣3.14+2.14)+(4.96﹣7.96)=﹣1﹣3=﹣4.【点睛】考查了有理数的加法,解题的关键是灵活运用运算律简便计算.16.计算()2213602210--÷⨯+-. 【答案】9.5.【解析】分析】根据运算顺序,先计算乘方运算,(﹣3)2表示两个﹣3的乘积,22表示两个2的乘积,然后利用除以运算法则将除法运算化为乘法运算,约分后合并即可得到结果.【详解】解:原式=9﹣60÷4×110+2=9﹣60×14×110+2=9﹣1.5+2=9.5. 【点睛】考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算.17.计算:()()232323243x y x yx y +---. 【答案】23x y【解析】【分析】先去括号,再合并同类项即可.【详解】()()232323243x y x y x y +--- 232323243x y x y x y =-+23x y =.【点睛】本题考查了整式的混合运算问题,掌握整式的混合运算法则和合并同类项的方法是解题的关键. 18.计算:()()223221a a a a ----.【答案】22+a【解析】【分析】先去括号,再合并同类项即可. 【详解】解:原式222322222a a a a a =--++=+【点睛】本题考查了整式的混合运算问题,掌握整式的混合运算法则和合并同类项的方法是解题的关键.四、解答题(每小题 7分,共28分)19.已知A =3x 2+4xy ,B =x 2+3xy ﹣y 2,求2B ﹣A .【答案】﹣x 2+2xy ﹣2y 2【解析】【分析】先把A 、B 代入,再去括号合并即可【详解】解:∵A =3x 2+4xy ,B =x 2+3xy -y 2,∴2B -A =2(x 2+3xy -y 2)-(3x 2+4xy )=2x 2+6xy -2y 2-3x 2-4xy=-x 2+2xy -2y 2.【点睛】本题考查整式加减的应用,注意代入时要加括号,掌握去括号、合并同类项法则是解题的关键.20.先化简,再求值:22532(23)7x x x x ⎡⎤---+⎣⎦,其中12x = 【答案】226x x -+-,-6.【解析】【详解】解:22532(23)7x x x x ⎡⎤---+⎣⎦22532(23)7x x x x =-+--2253467x x x x =-+--226x x =-+-当12x =时,原式=2112622⎛⎫-⨯+- ⎪⎝⎭ =11622-+- =-621.小明做了如下一道有理数混合运算的题目﹣34÷(﹣27)﹣[(﹣2)×(﹣43)+(﹣2)]3 =81÷(﹣27)﹣[83+(﹣8)]=… 思考:(1)请用圆圈圈出小明第一步计算中的错误;(2)正确的解答这道题.【答案】(1)见解析;(2) 19227,过程见解析. 【解析】【分析】根据有理数混合运算的运算顺序及运算法则进行判断计算即可.【详解】解:(1)-34÷(-27)-[(-2)×(-43)+(-2)]3(2)正确的解法如下所示:-34÷(-27)-[(-2)×(-43)+(-2)]3 =-81÷(-27)-(83-2)3 =81×127-(23)3 =3-827=19227. 【点睛】本题考查有理数的混合运算,熟练掌握运算顺序及运算法则是解题关键.22.老师设计了一个数学实验,给甲、乙、丙三名同学各一张写有已化为最简的代数式的卡片,规则是两位同学的代数式相减等于第三位同学的代数式,则实验成功.甲、乙、丙的卡片如图所示,丙的卡片有一部分看不清楚了.(1)计算出甲减乙的结果,并判断甲减乙能否使实验成功;(2)嘉淇发现丙减甲可以使实验成功,请求出丙的代数式.【答案】(1)甲减乙不能使实验成功;(2)丙的代数式为2352x x -+.【解析】【分析】(1)根据整式减法,计算甲减乙即可,然后与丙比较即可判定;(2)根据题意,让甲加乙即可得出丙的代数式.【详解】(1)由题意,得()2222223123231234x x x x x x x x x x ----+=---+-=--则甲减乙不能使实验成功;(2)由题意,得()22223123352x x x x x x --+-+=-+∴丙的代数式为:2352x x -+.【点睛】此题主要考查整式的加减,解题关键是弄清题意,进行计算即可.五、解答题(每小题8分,共16分)23.长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,2017年6月30日开通运营,标志着吉林省正式迈进“地铁时代”,15个站点如图所示.某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A站是哪一站?(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?【答案】(1)A站是繁荣路站;(2)这次王红志愿服务期间乘坐地铁行进的路程是58.5千米.【解析】【分析】(1)根据有理数的加法,可得答案;(2)根据绝对值的意义和有理数的加法可得一共的站数,再乘以1.3可得答案.【详解】解:(1)+5﹣2﹣6+8+3﹣4﹣9+8=3.答:A站是繁荣路站;(2)(5+2+6+8+3+4+9+8)×1.3 =45×1.3 =58.5(千米).答:这次王红志愿服务期间乘坐地铁行进的路程是58.5千米.【点睛】考查了正数和负数,根据题意列出算式是解题的关键.24.如图,长为50,cm宽为xcm的大长方形被分割为8小块,除阴影A B、外,其余6块是形状、大小完全相同的小长方形,其较短一边长为acm.()1由图可知,每个小长方形较长的一边长是__ cm(用含a的式子表示);()2当40x =时,求图中两块阴影,A B 的周长和.【答案】(1)()503a -;(2)160cm .【解析】【分析】(1)根据图形写出代数式即可;(2)根据图形列出代数式可得阴影部分的周长和为4x ,再代入求值即可.【详解】(1)由图形得,每个小长方形较长的一边长是()503a -;(2)阴影部分的周长和为:()()5022325034x a x a x ⨯+-+-⎤⎣⎦=⎡-. 当40x =时,周长和为160cm .【点睛】本题考查了图形与代数式的问题,掌握长方形周长公式是解题的关键.六、解答题(每小题10分,共20分)25.如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动;同时另一动点Q 从点A 出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t (秒).()1当0.5=t 时,求点Q 到原点O 的距离;()2当 2.5t =时,求点Q 到原点O 的距离;()3当点Q 到原点O 的距离为4时,求点P 到原点O 的距离.【答案】(1)6;(2)2;(3)点P 到原点的距离为2或6.【解析】【分析】(1)求出AQ 的长度,再根据OQ OA AQ =-求解即可;(2)求出点Q 运动的距离,再根据OQ=点Q 运动的距离-OA 求解即可;(3)分两种情况:①Q 向左运动时;②Q 向右运动时,分别求出运动时间t ,即可求出OP 的长度.【详解】(1)由题意得440.52AQ t ==⨯=∵8OA =∴826OQ OA AQ =-=-=;(2)由题意得,点Q 运动的距离是44 2.510t =⨯=∵8OA =∴102OQ OA =-=;(3)①Q 向左运动时,∵8OA =,4OQ =,∴4AQ OA OQ =-=,∴441t =÷=,∴212OP =⨯=;②Q 向右运动时,∵8OA =,4OQ =,∴Q 的运动距离是8412+=,∴运动时间是1243t =÷=,∴236OP =⨯=.综上,点P 到原点的距离为2或6.【点睛】本题考查了数轴上的动点问题,掌握数轴的特点是解题的关键.26.为丰富校园体育生活,某校增设网球兴趣小组,需要采购某品牌网球训练拍30支,网球x 筒(x >30).经市场调查了解到该品牌网球拍定价100元/支,网球20元/筒.现有甲、乙两家体育用品商店有如下优惠方案:甲商店:买一支网球拍送一筒网球;乙商店:网球拍与网球均按则90%付款,(1)方案一:到甲商店购买,需要支付 元;方案二:到乙商店购买,需要支付 元(用含x 的代数式表示)(2)若x =100,请通过计算说明学校采用以上哪个方案较为优惠.(3)若x =100,如果到甲店购买30支球拍(送30筒球),剩余的网球到乙店购买,能更省钱吗?如果可以省钱,请直接写出比方案一省多少钱?【答案】(1)(20x+2400),(18x+2700);(2)甲商店购买合算,理由见解析;(3)能,能省140元【解析】【分析】(1)按照对应的方案的计算方法分别列出代数式即可;(2)把x=100代入求得的代数式求得数值,进一步比较得出答案即可;(3)根据两种方案的优惠方式,可得出先在甲商店购买30支球拍,送30筒球,另外70筒球在乙商店购买即可.【详解】解:(1)甲商店购买需付款30×100+(x-30)×20=3000+20x-600=(20x+2400)元;乙商店购买需付款100×90%×30+20×90%×x=(18x+2700)元.故答案为:(20x+2400),(18x+2700);(2)当x=100时,甲商店需20×100+2400=4400(元);乙商店需18×100+2700=4500(元);∵4400<4500,∴甲商店购买合算;(3)先在甲商店购买30支球拍,送30筒球需:100×30=3000(元),差70筒球在乙商店购买需:20×90%×70=1260(元),共需3000+1260=4260(元),∵4260<4400,且4400-4260=140(元).∴比方案一省钱,省140元钱.【点睛】本题考查列代数式及代数式求值,正确理解题意是解题的关键.。
哈尔滨市第六十九中学校2022-2023学年度上学期七年级期中数学检测一、选择题(每小题3分,共计30分)1.下列方程是一元一次方程的是( ) A.243x x -=B.217x -=C.23x y +=D.11x x-=2.下列变形符合等式性质的是( ) A.如果ax ay =,那么x y = B.如果a b =,那么55a b -=- C.如果11a b +=+,那么a b = D.如果a b =,那么23a b =3.把x 的系数化为1,正确的是( )A.由135x =得35x = B.由31x =得3x = C.由0.23x =得32x =D.由443x =得3x =4.在1.410π-,0.2,23中,无理数的个数是( ) A.1个B.2个C.3个D.4个5.如图,已知直线a b ∥,150∠=︒,则2∠的度数为( )A.40°B.50°C.130°D.150° 6.如图,已知直线AB 、CD 相交于点O ,OA 平分EOC ∠,70EOC ∠=︒,则BO D ∠的度数等于( ) A.30°B.35°C.20°D.40°7.如图,点E 在AC 的延长线上,下列条件中能判断AB CD ∥的是( )A.34∠∠=;B.12∠∠=;C.D DCE ∠∠=;D.180D ACD ∠+∠=︒. 8.若关于x 的方程3240x k +-=的解是2x =-,则k 的值是( )A.5B.2C.2-D.5- 9.如图,已知直线AB CD ∥,GEB ∠的角平分线EF 交CD 于点F ,140∠=︒,则2∠等于( )A.130°B.140°C.150°D.160°10.如图,AB CD EF ∥∥,则下列各式中正确的是( )A.123180∠+∠+∠=︒B.121803∠+∠=︒+∠C.131802∠+∠=︒+∠D.231801∠+∠=︒+∠第II 卷 非选择题(共90分)二、填空题(每小题3分,共计18分)______.12.设n 为正整数,且1n n <<+,则n 的值为______.13.已知1∠与2∠是对顶角,2∠与3∠互为邻补角,则13∠∠+=______度. 14.如图,12l l ∥,1AB l ⊥,130ABC ∠=︒,则∠α=______度.15.若417a +的算术平方根是7,则a 的立方根是______.16.如图所示,数轴上A ,B 两点表示的数分别为1-,点B 关于点A 的对称点为C ,则点C 所表示的实数是______.三、解答题(共计72分)17.(本题9分)计算(1)(2))131++(3解方程(1)()()371323x x x --=-+(2)12226y y y -+-=-19.(本题6分)如果A 的两个平方根分别是21x -与34x -,求A 的值.20.(本题6分)一个两位数,个位数字与十位数字的和是9,若将它的个位数字与十位数字对调,则所得的新数比原两位数大9,求原来的两位数是多少?21.(本题6分)如图,直线AB 、CD 相交于点O ,OD 平分AOF ∠,EO OD ⊥,55EOA ∠=︒,求BOF ∠的度数.22.(本题6分)如图,已知AC DE ∥,12∠∠=.求证:AB CD ∥.完成下面推理过程.在括号内、横线上填空或填上推理依据。
2022-2023学年七年级上学期期中考试数学试卷(含答案)时间:120分钟 满分:100分 一、选择题(每题3分,共36分) 1.-2的倒数是( )A.2B.-2C.12D.12-2.在中百超市,某品牌的食品包装袋上“质量”标注:500g ±10g ;下列待检查的各袋食品中质量合格的是( ) A .530gB .515gC .480gD .495g3.在0,23-,32-,0.05这四个数中,最小的数是( ).A .0B .23-C .32- D .0.054.下列判断中正确的是( )A. 9x 2 - y + 5xy 2是四次三项式B. a 是一次单项式C.单项式232y x π的系数是21D.2233y x -是五次单项式5.下列合并同类项正确的是A . 336235x x x +=B .2232xy xy -=C . 22440x y xy -=D .22223xy y x xy -=-6.减去2m -等于232m m ++的多项式是A. 2232m m ++B. 32m +C. 232m m -++D. 232m m -- 7.下列去括号正确的是( )A.()5252+-=--x xB.()222421+-=+-x x C.()n m n m +=-323231D. x m x m 232232--=⎪⎭⎫⎝⎛--8.按括号内的要求用四舍五入法对1022.0099的近似值,其中错误..的是( ).A、1022.01(精确到0.01)B、1.0×103(保留2个有效数字)C、1020(精确到十位)D、1022.010(精确到千分位)9.如图所示,数轴上的点P,O,Q,R,S表示某城市一条大街上的5个公交车站点,现在有一辆公交车距P站点3 km,距Q站点0.7 km,则这辆公交车的位置在()A.R站点与S站点之间B.P站点与O站点之间C.O站点与Q站点之间D.Q站点与R站点之间10.当t =1时,多项式xt3-yt+1的值为2,则当t =-1时,多项式xt3-yt-2的值为()A.0 B.-3 C.-1 D.111.按图示的程序计算,若开始输入的x为正整数,最后输出的结果为67,则x的值是( ).A.2或7B. 2或22C. 2或22或7D.2或12或2212.如果|a|=-a, 下列各式一定成立的是 ( )A. a>0B. a>0或a=0C. a<0或a=0D. 无法确定二、填空题(每题3分,共18分)13.若飞机上升300m记作+300m,则飞机下降80m记作______。
2022-2023学年七年级(上)期中数学试卷及答案解析一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑. 1.(3分)在0,−12021,1,﹣1四个数中,最小的数是( ) A .0B .−12021C .1D .﹣12.(3分)如图,数轴上的整数a 被星星遮挡住了,则﹣a 的值是( )A .1B .2C .﹣2D .﹣13.(3分)下列运算正确的是( ) A .3a 2b ﹣2ba 2=a 2b B .5a ﹣4b =ab C .a 2+a 2=a 4D .2(a ﹣1)=2a ﹣14.(3分)下列说法正确的是( ) A .a+b 2是单项式 B .x 2+2x ﹣1的常数项为1C .2mn3的系数是2D .xy 的次数是2次5.(3分)已知a =﹣8,|a |=|b |,则b 的值为( ) A .﹣8B .+8C .±8D .06.(3分)如图,注射器中的新型冠状病毒疫苗的含量约为0.5ml ,则关于近似数0.5的精确度说法正确的是( )A .精确到个位B .精确到十分位C .精确到百分位D .精确到千分位7.(3分)某工厂2020年七月份生产口罩500万个,由于另有任务,工人每月调整工作量,下半年各月与七月份的生产量比较如表(增加为正,减少为负).则下半年七月至十二月每月的平均产量为( )月份 八月 九月 十月 十一月 十二月 增减(万个) ﹣50 ﹣90﹣130 +80 ﹣110A .450万个B .460万个C .550万个D .560万个8.(3分)如图是由两个正方形和一个半径为a 的半圆组合而成的,已知两个正方形的边长分别为a 、b (a >b ),则图中阴影部分面积为( )A .a 2+b 2−πa 22 B .a 2﹣b 2+πa 22 C .a 2﹣b 2−πa 22 D .a 2﹣b 29.(3分)下列说法:①整数和分数统称为有理数;②绝对值是它本身的数只有0;③两数之和一定大于每个加数;④如果两个数积为0,那么至少有一个因数为0;⑤0是最小的有理数;⑥数轴上表示互为相反数的点位于原点的两侧;⑦几个有理数相乘,如果负因数的个数是奇数,那么积为负数;其中正确的个数是( ) A .2个B .3个C .4个D .5个10.(3分)若当x =9时,代数式ax 7+bx 3﹣5的值为13;则当x =﹣9时,代数式a 2x 7+b2x 3+8的值为( ) A .0B .﹣1C .1D .12二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上.11.(3分)据猫眼实时数据显示,截止2021年10月17日,电影《长津湖》的累计票房正式突破50.2亿元,数据50.2亿用科学记数法表示为 . 12.(3分)若单项式5x m +1y 2与14x 3y |n﹣2|是同类项,则m ﹣n = .13.(3分)若关于x 的多项式x 3﹣5x 2+12与2x 3+2mx 2﹣3的和不含二次项,则m = . 14.(3分)数a ,b ,c 在数轴上的对应点如图所示,化简|a +b |﹣2|c ﹣b |﹣|﹣2b |= .15.(3分)定义:[x ]表示不超过x 的最大整数.例如:[2.3]=2,[﹣1.5]=﹣2.则下列结论:①[﹣2.1]+[1]=﹣2;②[2.5]+[﹣2.5]=﹣1;③[x ]+[﹣x ]=0;④[x +1]+[﹣x +1]=2;⑤若[x +1]=3,则x 的值可以是2.5.其中正确的结论有 .(填序号)16.(3分)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现这样的一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的边长,依次构造一组正方形,再分别从左到右取2个,3个,4个,5个正方形拼成如图所示的长方形,并记为①,②,③,④.相应长方形的周长如表所示.若按此规律继续作长方形,则序号为⑪的长方形周长是 .序号 ① ② ③ ④ 周长6101626三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程. 17.(8分)计算:(1)2×(﹣3)3﹣4×(﹣3)+15;(2)﹣22÷4+3×(﹣1)2021﹣(﹣12)×(13−34).18.(8分)化简:(1)4x 2+3y 2+2xy ﹣4x 2﹣4y 2;(2)﹣3(12x +y )﹣2[x ﹣(2x +13y 2)]+(−32x +13y 2).19.(8分)银行的储蓄员小张在办理业务时,约定存入为正,取出为负,某天上午8点他领取备用金40000元开始工作,接下来的两个小时,他先后办理了七笔存取业务:+25000元,﹣8100元,+4000元,﹣6732元,+14000元,﹣16000元,+1888元. (1)上午10点时,小张手中的现金有 元.(2)请判断在这七笔业务中,小张在第 笔业务办理后,手中的现金最多,第 笔业务办理后,手中的现金最少.(3)若每办一笔业务,银行发给业务员存取业务金额的0.1%作为奖励,则办理这笔业务小张应得奖金多少元?20.(8分)试卷上有一道数学题目:“已知两个多项式A 、B ,其中B =x 2+5x ﹣6,计算2A +B ”.小亮误将“2A +B ”看成“2A ﹣B ”,求得的结果为4x 2+3x +7.请你帮助他计算出正确答案. 21.(8分)已知:A =2a 2+3ab ﹣2a ﹣2b ,B =﹣a 2+12ab +53. (1)化简5A ﹣(B ﹣3A ),结果用含a 、b 的式子表示;(2)若代数式5A ﹣(B ﹣3A )的值与字母b 的取值无关,求﹣(﹣a )2的值.22.(10分)某销售办公用品的商店每个书包定价为50元,每个本子定价为8元,现推出两种优惠方案,方案一:买1个书包,赠送1个本子;方案二:书包和本子一律九折优惠.(1)同学们需买10个书包和x个本子(本子不少于10本),若用含x的式子表示付款数,则按方案一需要付款元;按方案二需要付款元.(2)当x=30时,采用哪种方案更划算?并说明理由.(3)当x=45时,采用哪种方案更划算?并说明理由.23.(10分)已知abc≠0,且满足|a|=﹣a,|ac|=ac,a+b>0,|a|<|c|.(1)请将a、b、c填入下列括号内;(2)若x=|a﹣b|﹣|c﹣b|+|a﹣c|+3,试求2x2﹣3x+5的值.24.(12分)已知数轴上A、B两点对应的数分别为a、b,且|a+1|+|b﹣3|=0.(1)求点A、B两点对应的有理数是、;A、B两点之间的距离是.(2)若点C到点A的距离刚好是6,求点C所表示的数应该是多少?(3)若点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,经过多少秒时,P到A的距离刚好等于P到B的距离的2倍?(4)若点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向右运动,若运动的时间为t秒,2P A﹣mPB的值不随时间t的变化而改变,求m的值.2022-2023学年七年级(上)期中数学试卷及答案解析参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.(3分)在0,−12021,1,﹣1四个数中,最小的数是()A.0B.−12021C.1D.﹣1【解答】解:∵12021<1,∴−12021>−1,∴1>0>−12021>−1,故选:D.2.(3分)如图,数轴上的整数a被星星遮挡住了,则﹣a的值是()A.1B.2C.﹣2D.﹣1【解答】解:由题意可得:1<a<3,又∵a为整数,∴a的值为2,即﹣a的值为﹣2,故选:C.3.(3分)下列运算正确的是()A.3a2b﹣2ba2=a2b B.5a﹣4b=abC.a2+a2=a4D.2(a﹣1)=2a﹣1【解答】解:A、3a2b﹣2ba2=a2b,故原题计算正确;B、5a和4b不是同类项,不能合并,故原题计算错误;C、a2+a2=2a2,故原题计算错误;D、2(a﹣1)=2a﹣2,故原题计算错误;故选:A.4.(3分)下列说法正确的是()A .a+b 2是单项式B .x 2+2x ﹣1的常数项为1C .2mn3的系数是2D .xy 的次数是2次【解答】解:A 、a+b 2是多项式,故此选项错误;B 、x 2+2x ﹣1的常数项为﹣1,故此选项错误;C 、2mn 3的系数是23,故此选项错误;D 、xy 的次数是2次,正确. 故选:D .5.(3分)已知a =﹣8,|a |=|b |,则b 的值为( ) A .﹣8B .+8C .±8D .0【解答】解:由题意可知:|b |=|﹣8|=8, ∴b =±8, 故选:C .6.(3分)如图,注射器中的新型冠状病毒疫苗的含量约为0.5ml ,则关于近似数0.5的精确度说法正确的是( )A .精确到个位B .精确到十分位C .精确到百分位D .精确到千分位【解答】解:近似数0.5的精确到十分位, 故选:B .7.(3分)某工厂2020年七月份生产口罩500万个,由于另有任务,工人每月调整工作量,下半年各月与七月份的生产量比较如表(增加为正,减少为负).则下半年七月至十二月每月的平均产量为( )月份 八月 九月 十月 十一月 十二月 增减(万个) ﹣50 ﹣90﹣130 +80 ﹣110A .450万个B .460万个C .550万个D .560万个【解答】解:由题意得:下半年七月至十二月每月的平均产量为500+−50−90−130+80−1106=450(万个). 故选:A .8.(3分)如图是由两个正方形和一个半径为a 的半圆组合而成的,已知两个正方形的边长分别为a 、b (a >b ),则图中阴影部分面积为( )A .a 2+b 2−πa 22 B .a 2﹣b 2+πa 22 C .a 2﹣b 2−πa 22 D .a 2﹣b 2【解答】解:如图,S 阴影=(S 正方形−14S 圆)+(14S 圆﹣S 小正方形)=S 正方形﹣S 小正方形 =a 2﹣b 2. 故选:D .9.(3分)下列说法:①整数和分数统称为有理数;②绝对值是它本身的数只有0;③两数之和一定大于每个加数;④如果两个数积为0,那么至少有一个因数为0;⑤0是最小的有理数;⑥数轴上表示互为相反数的点位于原点的两侧;⑦几个有理数相乘,如果负因数的个数是奇数,那么积为负数;其中正确的个数是( ) A .2个B .3个C .4个D .5个【解答】解:①整数和分数统称为有理数是正确的; ②绝对值是它本身的数有正数和0,原来的说法是错误的; ③两数之和可能小于每个加数,原来的说法是错误的; ④如果两个数积为0,那么至少有一个因数为0是正确的; ⑤没有最小的有理数,原来的说法是错误的;⑥数轴上表示互为相反数的点位于原点的两侧(0除外),原来的说法是错误的;⑦几个有理数(非0)相乘,如果负因数的个数是奇数,那么积为负数,原来的说法是错误的. 故选:A .10.(3分)若当x =9时,代数式ax 7+bx 3﹣5的值为13;则当x =﹣9时,代数式a2x 7+b2x 3+8的值为( )A .0B .﹣1C .1D .12【解答】解:∵当x =9时, ax 7+bx 3﹣5=97a +93b ﹣5=13, ∴97a +93b =18, ∴当x =﹣9时,a 2x 7+b 2x 3+8=−972a −932b +8=−12×(97a +93b )+8 =−12×18+8 =﹣9+8 =﹣1, 故选:B .二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上.11.(3分)据猫眼实时数据显示,截止2021年10月17日,电影《长津湖》的累计票房正式突破50.2亿元,数据50.2亿用科学记数法表示为 5.02×109 . 【解答】解:50.2亿=5020000000=5.02×109. 故答案为:5.02×109.12.(3分)若单项式5x m +1y 2与14x 3y |n﹣2|是同类项,则m ﹣n = 2或﹣2 .【解答】解:由题意得,m +1=3,|n ﹣2|=2, 解得,m =2,n =0或4,则m ﹣n =2﹣0=2或m ﹣n =2﹣4=﹣2, 故答案为:2或﹣2.13.(3分)若关于x 的多项式x 3﹣5x 2+12与2x 3+2mx 2﹣3的和不含二次项,则m = 52.【解答】解:∵关于x 的多项式x 3﹣5x 2+12与2x 3+2mx 2﹣3的和不含二次项, ∴x 3﹣5x 2+12+2x 3+2mx 2﹣3 =3x 3+(﹣5+2m )x 2+9, 则﹣5+2m =0, 解得:m =52.故答案为:52.14.(3分)数a ,b ,c 在数轴上的对应点如图所示,化简|a +b |﹣2|c ﹣b |﹣|﹣2b |= a +b +2c .【解答】解:由题意可得:c <b <0<a ,|c |>|a |>|b |, ∴a +b >0,c ﹣b <0,﹣2b >0, ∴原式=a +b ﹣2(b ﹣c )﹣(﹣2b ) =a +b ﹣2b +2c +2b =a +b +2c , 故答案为:a +b +2c .15.(3分)定义:[x ]表示不超过x 的最大整数.例如:[2.3]=2,[﹣1.5]=﹣2.则下列结论:①[﹣2.1]+[1]=﹣2;②[2.5]+[﹣2.5]=﹣1;③[x ]+[﹣x ]=0;④[x +1]+[﹣x +1]=2;⑤若[x +1]=3,则x 的值可以是2.5.其中正确的结论有 ①②⑤ .(填序号) 【解答】解:①[﹣2.1]+[1]=﹣3+1=﹣2,正确; ②[2.5]+[﹣2.5]=2﹣3=﹣1,正确; ③[x ]+[﹣x ]=0,错误,例如:[2.5]=2,[﹣2.5]=﹣3,2+(﹣3)≠0; ④[x +1]+[﹣x +1]的值为2,错误,例如当x =2.5时,[x +1]=3,[﹣x +1]=﹣2, 所以[x +1]+[﹣x +1]的值为1;⑤若[x +1]=3,则x 的取值范围是2≤x <3,正确. 故答案为:①②⑤.16.(3分)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现这样的一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的边长,依次构造一组正方形,再分别从左到右取2个,3个,4个,5个正方形拼成如图所示的长方形,并记为①,②,③,④.相应长方形的周长如表所示.若按此规律继续作长方形,则序号为⑪的长方形周长是 754 .序号 ① ② ③ ④ 周长6101626【解答】解:第1个长方形的周长为:(1+2)×2=6; 第2个长方形的周长为:(2+3)×2=10; 第3个长方形的周长为:(3+5)×2=16; 第4个长方形的周长为:(5+8)×2=26; 第5个长方形的周长为:(8+13)×2=42; 第6个长方形的周长为:(13+21)×2=68; 第7个长方形的周长为:(21+34)×2=110; 第8个长方形的周长为:(34+55)×2=178; 第9个长方形的周长为:(55+89)×2=288; 第10个长方形的周长为:(89+144)×2=466; 第11个长方形的周长为:(144+233)×2=754. 故答案为:754.三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程. 17.(8分)计算:(1)2×(﹣3)3﹣4×(﹣3)+15;(2)﹣22÷4+3×(﹣1)2021﹣(﹣12)×(13−34).【解答】解:(1)2×(﹣3)3﹣4×(﹣3)+15 =2×(﹣27)+12+15 =(﹣54)+12+15 =﹣27;(2)﹣22÷4+3×(﹣1)2021﹣(﹣12)×(13−34)=﹣4×14+3×(﹣1)+12×13−12×34=﹣1+(﹣3)+4﹣9=﹣9.18.(8分)化简:(1)4x 2+3y 2+2xy ﹣4x 2﹣4y 2;(2)﹣3(12x +y )﹣2[x ﹣(2x +13y 2)]+(−32x +13y 2). 【解答】解:(1)原式=(4x 2﹣4x 2)+(3y 2﹣4y 2)+2xy=﹣y 2+2xy ;(2)原式=−32x ﹣3y ﹣2x +2(2x +13y 2)−32x +13y 2=−32x ﹣3y ﹣2x +4x +23y 2−32x +13y 2=﹣x ﹣3y +y 2.19.(8分)银行的储蓄员小张在办理业务时,约定存入为正,取出为负,某天上午8点他领取备用金40000元开始工作,接下来的两个小时,他先后办理了七笔存取业务:+25000元,﹣8100元,+4000元,﹣6732元,+14000元,﹣16000元,+1888元.(1)上午10点时,小张手中的现金有 54056 元.(2)请判断在这七笔业务中,小张在第 五 笔业务办理后,手中的现金最多,第 六 笔业务办理后,手中的现金最少.(3)若每办一笔业务,银行发给业务员存取业务金额的0.1%作为奖励,则办理这笔业务小张应得奖金多少元?【解答】解:(1)+25000﹣8100+4000﹣6732+14000﹣16000+1888+40000=54056(元),即上午10点时,小张手中的现金有54056元,故答案为:54056;(2)第一次业务后:40000+25000=65000(元),第二次业务后:65000﹣8100=56900(元),第三次业务后:56900+4000=60900(元),第四次业务后:60900﹣6732=54168(元),第五次业务后:54168+14000=68168(元),第六次业务后:68168﹣16000=52168(元),第七次业务后:52168+1888=54056(元),小张在第五次办理业务后,手中的现金最多;第六次办理业务后,手中的现金最少,故答案为:五;六;(3)|+25000|+|﹣8100|+|+4000|+|﹣6732|+|+14000|+|﹣16000|+|+1888|=75720,办理这七笔业务小张应得奖金为75720×0.1%=75.72(元).答:则办理这七笔业务小张应得奖金为75.72元.20.(8分)试卷上有一道数学题目:“已知两个多项式A、B,其中B=x2+5x﹣6,计算2A+B”.小亮误将“2A+B”看成“2A﹣B”,求得的结果为4x2+3x+7.请你帮助他计算出正确答案.【解答】解:由题意可得:2A﹣(x2+5x﹣6)=4x2+3x+7,故2A=4x2+3x+7+x2+5x﹣6=5x2+8x+1,故2A+B=5x2+8x+1+x2+5x﹣6=6x2+13x﹣5.21.(8分)已知:A=2a2+3ab﹣2a﹣2b,B=﹣a2+12ab+5 3.(1)化简5A﹣(B﹣3A),结果用含a、b的式子表示;(2)若代数式5A﹣(B﹣3A)的值与字母b的取值无关,求﹣(﹣a)2的值.【解答】解:(1)5A﹣(B﹣3A)=5A﹣B+3A=8A﹣B,∵A=2a2+3ab﹣2a﹣2b,B=﹣a2+12ab+5 3,∴原式=8(2a2+3ab﹣2a﹣2b)﹣(﹣a2+12ab+5 3)=16a2+24ab﹣16a﹣16b+a2﹣12ab−5 3=17a2+12ab﹣16a﹣16b−5 3.(2)∵代数式5A﹣(B﹣3A)的值与字母b的取值无关,∴字母b的系数为0,即12a﹣16=0,∴a=4 3,∴﹣(﹣a)2=﹣a2=﹣(43)2=−169.22.(10分)某销售办公用品的商店每个书包定价为50元,每个本子定价为8元,现推出两种优惠方案,方案一:买1个书包,赠送1个本子;方案二:书包和本子一律九折优惠.(1)同学们需买10个书包和x个本子(本子不少于10本),若用含x的式子表示付款数,则按方案一需要付款(8x+420)元;按方案二需要付款(7.2x+450)元.(2)当x=30时,采用哪种方案更划算?并说明理由.(3)当x=45时,采用哪种方案更划算?并说明理由.【解答】解:(1)方案一:50×10+8(x﹣10)=500+8x﹣80=(8x+420)元;方案二:(50×10+8x)×90%=(500+8x)×0.9=(7.2x+450)元;故答案为:(8x+420);(7.2x+450);(2)方案一更划算,理由如下:当x=30时,8x+420=8×30+420=240+420=660(元),7.2x+450=7.2×30+450=216+450=666(元),∵660<666,∴方案一更划算;(3)方案二更划算,理由如下:当x=45时,8x+420=8×45+420=360+420=780(元),7.2x+450=7.2×45+450=324+450=774(元),∵780>774,∴方案二更划算.23.(10分)解:(1)∵|a|=﹣a,|a|<|c|,∴a<0,∵|ac|=ac,∴c<0,∵a+b>0,∴b>0,|a|<|b|,如图:(2)∵x=|a﹣b|﹣|c﹣b|+|a﹣c|+3=b﹣a﹣(b﹣c)+a﹣c+3=3,把x=3代入2x2﹣3x+5得,2×32﹣3×3+5=14.24.(12分)解:(1)∵|a +1|+|b ﹣3|=0,∴a +1=0,b ﹣3=0,解得:a =﹣1,b =3,∴A 对应的有理数为﹣1,B 对应的有理数为3,∴A 、B 两点的距离为:3﹣(﹣1)=4,故答案为:﹣1,3,4;(2)令点C 所表示的数为x ,依题意得:|x ﹣(﹣1)|=6,解得:x =5或x =﹣7,则点C 所表示的数应该是5或﹣7;(3)设经过x 秒时,P 到A 的距离刚好等于P 到B 的距离的2倍,依题意得: |8﹣2x ﹣(﹣1)|=2|8﹣2x ﹣3|,整理得:|9﹣2x |=2|5﹣2x |,当点P 在B 的右侧时,则0<t ≤52,有9﹣2x =2(5﹣2x ),解得:x =0.5, 当点P 在A 、B 之间时,则52<t ≤92,有9﹣2x =2(2x ﹣5),解得:x =196; 当点P 在A 的左侧时,则t >92,有2x ﹣9=2(2x ﹣5),解得:x =0.5(不符合题意舍去), 综上所述:经过0.5秒或196秒时,P 到A 的距离刚好等于P 到B 的距离的2倍;(4)由题意得:P A =8+2t ﹣(﹣1)=9+2t ,PB =8+2t ﹣3=5+2t ,∴2P A ﹣mPB=2(9+2t )﹣m (5+2t )=18+4t ﹣5m ﹣2mt=18﹣5m +(4﹣2m )t ,∵2P A ﹣mPB 的值不随时间t 的变化而改变,∴4﹣2m =0,解得:m =2.。
2022-2023学年河南省郑州七中七年级(上)期中数学试卷一、选择题(每题3分,共30分)1.(3分)﹣2022的相反数是()A.﹣B.C.﹣2022D.20222.(3分)我国第七次全国人口普查时,统计全国总人口约为1440000000人.请用科学记数法表示数据1440000000为()A.144×107B.0.144×1010C.14.4×108D.1.44×1093.(3分)北京冬奥会的吉祥物是一只叫冰墩墩的熊猫,这次冰墩墩的3D设计,就是将熊猫拟人化,含义就是告诉全世界的人,中国是一个社会和谐,人们生活富裕的国家.如图是正方体的展开图,每个面内都写有汉字,折叠成立体图形后“冬”的对面是()A.奥B.会C.吉D.祥4.(3分)下列计算正确的是()A.﹣5+3=2B.﹣5﹣3=﹣8C.(﹣5)×(﹣3)=﹣15D.(﹣5)÷(﹣3)=﹣5.(3分)下列方程变形中,正确的是()A.方程=1,去分母得5(x﹣1)﹣2x=10B.方程3﹣x=2﹣5(x﹣1),去括号得3﹣x=2﹣5x﹣1C.方程t=,系数化为1得t=1D.方程3x﹣2=2x+1,移项得3x﹣2x=﹣1+26.(3分)下列说法正确的有()个.①单项式x的系数和次数都是0;②3x4﹣5x2y2﹣6y3+2的次数是11;③多项式1﹣2x+x2是由1,﹣2x,x2三项组成;④在a2,,0中整式有2个.A.1B.2C.3D.47.(3分)下列计算错误的是()A.3(x+8)=3x+24B.19a2b﹣9a2b=10a2bC.2x+2y=4xy D.6x﹣5=6(x﹣)8.(3分)多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的和不含二次项,则m为()A.2B.﹣2C.4D.﹣49.(3分)我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗,今持粟三斛,得酒五斗,问清,醑酒各几何?”大意是:现有一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒,醑酒各几斗?如果设清酒x斗,那么可列方程为()A.10x+3(5﹣x)=30B.3x+10(5﹣x)=30C.D.10.(3分)已知数a,b,c在数轴上的位置如图,下列说法:①b+c>0;②a+b−c>0;③=1;④|a−b|−2|c+b|+|a−c|=−3b+c.其中正确结论的个数是()个.A.1B.2C.3D.4二、填空题(每题3分,共15分)11.(3分)请写出一个只含有字母a,b,且系数为﹣1,次数为5的单项式.12.(3分)如图,乐乐将−3,−2,−1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,若a,b,c分别表示其中的一个数,则a+b−c 的值为.13.(3分)按下面的程序计算,若开始输入x的值为﹣4,则输出的值为.14.(3分)当x=1时,ax2+bx﹣1的值为6,当x=﹣1时,这个多项式ax3+bx﹣1的值是.15.(3分)如图所示,在一个电子青蛙游戏程序中,电子青蛙只能在标有五个数字点的圆周上跳动.游戏规则:若电子青蛙,停在奇数点上,则它下次沿顺时针方向跳两个点;若电子青蛙停在偶数点上,则它下次沿逆时针方向跳一个点.现在电子青蛙若从4这点开始跳,则经过2050次后它停的点对应的数为.三、解答题(共7题,共55分)16.(8分)计算:(1)12−(−8)+(−2)3−15;(2).17.(7分)化简并求值:2(x2﹣2xy)﹣3(﹣6xy+y2)﹣x2+2y2,其中x、y取值的位置如图所示.18.(8分)如图是由7个完全相同的小立方块搭成的几何体,已知每个小立方块的棱长为3cm.(1)请分别画出从正面、上面、左面三个方向看到的图形;(2)该几何体的表面积为cm2.(包括底部)19.(8分)情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需元,购买12根跳绳需元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.20.(8分)郑州地铁1号线是河南省郑州市第一条建成运营的地铁线路,起于河南工业大学站,途经中原区、二七区、管城区、郑东新区,止于河南大学新区站,其中的15个站点如图所示.小亮从郑州火车站开始乘坐地铁,在图中15个地铁站点做值勤志愿服务,到A站下车时,本次志愿者活动结束,约定向文苑北路站方向为正,当天的乘车记录如下(单位:站):+6,+2,﹣3,+9,﹣3,﹣4,+2,﹣5.(1)请你通过计算说明A站是哪一站?(2)已知相邻两站之间的平均距离为1.4千米,求小亮在志愿者服务期间乘坐地铁行进的路程是多少千米?21.(8分)国庆节期间,人民广场的一个公共区域用盆栽进行了美化,盆栽按如图的方式摆放,图中的盆栽被折线隔开分成若干层,第一层有1个盆栽,第二层有3个盆栽,第三层有5个盆栽,第四层有7个盆栽,…,以此类推.请观察图形规律,解答下列问题:(1)第10层有个盆栽,前5层共有个盆栽;(2)观察图计算1+3+5+…+17=;(3)拓展应用:求51+53+55+…+2023的值.22.(8分)对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K(n),例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以K(123)=6.(1)计算:K(536)和K(398);(2)若x是“梦幻数”,说明:K(x)等于x的各数位上的数字之和;(3)若x,y都是“梦幻数”,且x+y=1000,猜想:K(x)+K(y)=.2022-2023学年河南省郑州七中七年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)﹣2022的相反数是()A.﹣B.C.﹣2022D.2022【分析】根据相反数的定义直接求解.【解答】解:﹣2022的相反数是2022,故选:D.【点评】本题主要考查相反数的定义,熟练掌握相反数的定义是解答此题的关键.2.(3分)我国第七次全国人口普查时,统计全国总人口约为1440000000人.请用科学记数法表示数据1440000000为()A.144×107B.0.144×1010C.14.4×108D.1.44×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:1440000000=1.44×109.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)北京冬奥会的吉祥物是一只叫冰墩墩的熊猫,这次冰墩墩的3D设计,就是将熊猫拟人化,含义就是告诉全世界的人,中国是一个社会和谐,人们生活富裕的国家.如图是正方体的展开图,每个面内都写有汉字,折叠成立体图形后“冬”的对面是()A.奥B.会C.吉D.祥【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴折叠成立体图形后“冬”的对面是“祥”,故选:D.【点评】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.4.(3分)下列计算正确的是()A.﹣5+3=2B.﹣5﹣3=﹣8C.(﹣5)×(﹣3)=﹣15D.(﹣5)÷(﹣3)=﹣【分析】根据有理数的加、减、乘、除运算法则逐一判断即可.【解答】解:A.﹣5+3=﹣2,不符合题意;B.﹣5﹣3=﹣8,符合题意;C.(﹣5)×(﹣3)=15,不符合题意;D.(﹣5)÷(﹣3)=,不符合题意;故选:B.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.5.(3分)下列方程变形中,正确的是()A.方程=1,去分母得5(x﹣1)﹣2x=10B.方程3﹣x=2﹣5(x﹣1),去括号得3﹣x=2﹣5x﹣1C.方程t=,系数化为1得t=1D.方程3x﹣2=2x+1,移项得3x﹣2x=﹣1+2【分析】根据等式的性质,逐项判断即可.【解答】解:∵方程=1,去分母得5(x﹣1)﹣2x=10,∴选项A符合题意;∵方程3﹣x=2﹣5(x﹣1),去括号得3﹣x=2﹣5x+5,∴选项B不符合题意;∵方程t=,系数化为1得t=,∴选项C不符合题意;∵方程3x﹣2=2x+1,移项得3x﹣2x=1+2,∴选项D不符合题意.故选:A.【点评】此题主要考查了解一元一次方程的方法,要熟练掌握,注意等式的性质的应用.6.(3分)下列说法正确的有()个.①单项式x的系数和次数都是0;②3x4﹣5x2y2﹣6y3+2的次数是11;③多项式1﹣2x+x2是由1,﹣2x,x2三项组成;④在a2,,0中整式有2个.A.1B.2C.3D.4【分析】根据多项式、单项式、整式的相关概念解答即可.【解答】解:①单项式x的系数和次数都是1,原说法错误;②3x4﹣5x2y2﹣6y3+2的次数是4,原说法错误;③多项式1﹣2x+x2是由1,﹣2x,x2三项组成,原说法正确;④在a2,,,0中整式有3个,原说法错误.说法正确的有1个.故选:A.【点评】本题主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.7.(3分)下列计算错误的是()A.3(x+8)=3x+24B.19a2b﹣9a2b=10a2bC.2x+2y=4xy D.6x﹣5=6(x﹣)【分析】根据去括号,添括号及合并同类项的法则逐项判断.【解答】解:3(x+8)=3x+24,故A正确,不符合题意;19a2b﹣9a2b=10a2b,故B正确,不符合题意;2x与2y不时同类项,不能合并,故C错误,符合题意;6x﹣5=6(x﹣),故D正确,不符合题意;故选:C.【点评】本题考查整式的加减,解题的关键是掌握去括号,添括号及合并同类项的法则.8.(3分)多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的和不含二次项,则m为()A.2B.﹣2C.4D.﹣4【分析】先把两多项式的二次项相加,令x的二次项为0即可求出m的值.【解答】解:∵多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3相加后不含x的二次项,∴﹣8x2+2mx2=(2m﹣8)x2,∴2m﹣8=0,解得m=4.故选:C.【点评】本题考查的是整式的加减,根据题意把两多项式的二次项相加得到关于m的方程是解答此题的关键.9.(3分)我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗,今持粟三斛,得酒五斗,问清,醑酒各几何?”大意是:现有一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒,醑酒各几斗?如果设清酒x斗,那么可列方程为()A.10x+3(5﹣x)=30B.3x+10(5﹣x)=30C.D.【分析】根据共换了5斗酒,其中清酒x斗,则可得到醑酒(5﹣x)斗,再根据拿30斗谷子,共换了5斗酒,即可列出相应的方程.【解答】解:设清酒x斗,则醑酒(5﹣x)斗,由题意可得:10x+3(5﹣x)=30,故选:A.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.10.(3分)已知数a,b,c在数轴上的位置如图,下列说法:①b+c>0;②a+b−c>0;③=1;④|a−b|−2|c+b|+|a−c|=−3b+c.其中正确结论的个数是()个.A.1B.2C.3D.4【分析】根据数轴上的位置关系.判断出a,b,c的大小关系以及各自绝对值得大小关系,在进行判断即可.【解答】解:∵|c|>|b|,b<0<c,∴b+c>0,正确,故①正确;∵b<0<a,|b|>|a|,c>0,∴a+b−c<0,故②错误;++=++=1﹣1+1=1,正确,故③正确;∵a﹣b>0,c+b>0,a﹣c<0∴|a−b|−2|c+b|+|a−c|,=a﹣b﹣2(b+c)+c﹣a,=a﹣b﹣2b﹣2c+c﹣a,=﹣3b﹣c,故④错误,∴正确的有两个.故选:B.【点评】本题主要考查数轴与绝对值的综合运用,解题的关键在于掌握绝对值化简的技巧.二、填空题(每题3分,共15分)11.(3分)请写出一个只含有字母a,b,且系数为﹣1,次数为5的单项式﹣a2b3(答案不唯一).【分析】根据单项式、单项式的系数和次数的概念解答即可.【解答】解:单项式﹣a2b3,是一个含有字母a、b,系数为﹣1,次数为5的单项式,故答案为:﹣a2b3(答案不唯一).【点评】本题考查的是单项式的概念,掌握单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.12.(3分)如图,乐乐将−3,−2,−1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,若a,b,c分别表示其中的一个数,则a+b−c 的值为﹣5.【分析】由每行、每列、每条对角线上的三个数之和相等,即可求出a,b,c的值.【解答】解:∵每行、每列、每条对角线上的三个数之和相等,∴a+5+0=0+b+4=c﹣3+4=5+1﹣3=3,∴a=﹣2,b=﹣1,c=2,∴a+b−c=﹣2﹣1﹣2=﹣5,故答案为:﹣5.【点评】本题考查有理数的加法,关键是应用条件:每行、每列、每条对角线上的三个数之和相等.13.(3分)按下面的程序计算,若开始输入x的值为﹣4,则输出的值为84.【分析】把x=﹣4代入程序计算,进行判断按题目要求输入下一级运算.【解答】解:(﹣4)2=16>15,(16+5)×4=84,故答案为:84.【点评】本题主要考查了有理数的混合运算、代数式求值,掌握有理数混合运算顺序是解题关键.14.(3分)当x=1时,ax2+bx﹣1的值为6,当x=﹣1时,这个多项式ax3+bx﹣1的值是﹣8.【分析】根据题意列等式,化简整理等式和代数式,整体代入求值.【解答】解:∵x=1时,ax2+bx﹣1的值为6,∴a+b﹣1=6,∴a+b=7,∴当x=﹣1时,ax3+bx﹣1=﹣a﹣b﹣1=﹣(a+b)﹣1=﹣7﹣1=﹣8.故答案为:﹣8.【点评】本题考查了代数式求值,解题的关键是掌握整体代入求值.15.(3分)如图所示,在一个电子青蛙游戏程序中,电子青蛙只能在标有五个数字点的圆周上跳动.游戏规则:若电子青蛙,停在奇数点上,则它下次沿顺时针方向跳两个点;若电子青蛙停在偶数点上,则它下次沿逆时针方向跳一个点.现在电子青蛙若从4这点开始跳,则经过2050次后它停的点对应的数为5.【分析】分别得到从4开始起跳后落在哪个点上,得到相应的规律,看2050次跳后应循环在哪个数上即可.【解答】解:第1次跳后落在3上;第2次跳后落在5上;第3次跳后落在2上;第4次跳后落在1上;第5次跳后落在3上…∴4次跳后一个循环,依次在3,5,2,1这4个数上循环,∵2050÷4=512……2,∴应落在5上.故答案为:5.【点评】此题主要考查了数的变化规律,得到青蛙落在数字上的循环规律是解决本题的关键.三、解答题(共7题,共55分)16.(8分)计算:(1)12−(−8)+(−2)3−15;(2).【分析】(1)先算乘方,再算加减;(2)先把除法转化为乘法,再利用乘法的分配律计算比较简便.【解答】解:(1)12−(−8)+(−2)3−15=12+8﹣8﹣15=﹣3;(2)=(﹣﹣)×(﹣60)=×(﹣60)﹣×(﹣60)﹣×(﹣60)=﹣40+5+4=﹣31.【点评】本题主要考查了有理数的混合运算,掌握有理数的运算法则、运算律、运算顺序是解决本题的关键.17.(7分)化简并求值:2(x2﹣2xy)﹣3(﹣6xy+y2)﹣x2+2y2,其中x、y取值的位置如图所示.【分析】化简代数式,再根据数轴给出的值,代入求值即可.【解答】解:由图可知,x=2,y=﹣1,∴2(x2﹣2xy)﹣3(﹣6xy+y2)﹣x2+2y2=2x2﹣4xy+18xy﹣3y2﹣x2+2y2=x2+14xy﹣y2=22+14×2×(﹣1)﹣(﹣1)2=4﹣28﹣1=﹣25.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的混合运算.18.(8分)如图是由7个完全相同的小立方块搭成的几何体,已知每个小立方块的棱长为3cm.(1)请分别画出从正面、上面、左面三个方向看到的图形;(2)该几何体的表面积为252cm2.(包括底部)【分析】(1)根据三视图的概念求解即可;(2)几何体的表面积就是利用主视图、左视图、俯视图所看到的面的个数乘以2再乘以每个小正方形的面积即可.【解答】解:(1)如图所示:(2)该几何体的表面积为(5+3+5)×2×3×3+2×3×3=252(cm2).答:该几何体的表面积是252cm2.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.19.(8分)情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需150元,购买12根跳绳需240元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.【分析】(1)根据总价=单价×数量,现价=原价×0.8,列式计算即可求解;(2)设小红购买跳绳x根,根据等量关系:小红比小明多买2跟,付款时小红反而比小明少5元;即可列出方程求解即可.【解答】解:(1)25×6=150(元),25×12×0.8=300×0.8=240(元).答:购买6根跳绳需150元,购买12根跳绳需240元.(2)有这种可能.设小红购买跳绳x根,则25×0.8x=25(x﹣2)﹣5,解得x=11.故小红购买跳绳11根.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.20.(8分)郑州地铁1号线是河南省郑州市第一条建成运营的地铁线路,起于河南工业大学站,途经中原区、二七区、管城区、郑东新区,止于河南大学新区站,其中的15个站点如图所示.小亮从郑州火车站开始乘坐地铁,在图中15个地铁站点做值勤志愿服务,到A站下车时,本次志愿者活动结束,约定向文苑北路站方向为正,当天的乘车记录如下(单位:站):+6,+2,﹣3,+9,﹣3,﹣4,+2,﹣5.(1)请你通过计算说明A站是哪一站?(2)已知相邻两站之间的平均距离为1.4千米,求小亮在志愿者服务期间乘坐地铁行进的路程是多少千米?【分析】(1)根据有理数的加法,可得答案;(2)根据绝对值的意义和有理数的加法可得一共的站数,再乘以1.4可得答案.【解答】解:(1)+6+2﹣3+9﹣3﹣4+2﹣5=4,答:A站是燕庄站;(2)(|+6|+|+2|+|﹣3|+|+9|+|﹣3|+|﹣4|+|+2|+|﹣5|)×1.4=47.6(千米),答:这次小亮志愿服务期间乘坐地铁行进的总路程是47.6千米.【点评】本题考查了正数和负数,根据题意列出算式是解题的关键.21.(8分)国庆节期间,人民广场的一个公共区域用盆栽进行了美化,盆栽按如图的方式摆放,图中的盆栽被折线隔开分成若干层,第一层有1个盆栽,第二层有3个盆栽,第三层有5个盆栽,第四层有7个盆栽,…,以此类推.请观察图形规律,解答下列问题:(1)第10层有19个盆栽,前5层共有25个盆栽;(2)观察图计算1+3+5+…+17=81;(3)拓展应用:求51+53+55+…+2023的值.【分析】(1)后面一层比前面一层多2个盆栽,结合图形,根据规律可求出其值;(2)图形刚好构成正方形的面积,求面积即可;(3)先算出1+3+5+…+49+51+…+2023的和,1+3+5+…+49的和,再求它们的差即可.【解答】解:(1)根据题意可得,2×(10﹣1)+1=19,∴第10层有19个盆栽,5×5=25,∴前5层共有25个盆栽,故答案为:19;25;(2)观察图形可得,第9层盆栽数量为:2×9﹣1=17,∴1+3+5+…+17=92=81,故答案为:81;(3)根据题意可得,第1012层盆栽数量为:2×1012﹣1=2024﹣1=2023,∴1+3+5+…+49+51+53+55+…+2023=10122,第25层盆栽数量为:2×25﹣1=50﹣1=49,∴1+3+5+…+49=252,∴51+53+55+…+2023=(1+3+5+…+49)+(51+53+55+…+2023)﹣(1+3+5…+49)=10122﹣252=1023519,∴51+53+55+…+2023的值为1023519.【点评】本题考查了图形的变化,根据图形的变化找出其规律并求值是解本题的关键,综合性较强,难度适中.22.(8分)对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K(n),例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以K(123)=6.(1)计算:K(536)和K(398);(2)若x是“梦幻数”,说明:K(x)等于x的各数位上的数字之和;(3)若x,y都是“梦幻数”,且x+y=1000,猜想:K(x)+K(y)=28.【分析】(1)根据K的定义,可以直接计算出问题;(2)设x=,根据K的定义,得到新的三位数分别是,,.它们的和是100(a+b+c)+10(a+b+c)+(a+b+c)=111(a+b+c),可以得到K=a+b+c;(3)猜想:K(x)+K(y)=28.设x=,y=.根据(2)的结论可以得到:K (x)+K(y)=(a+b+c)+(m+n+p).再根据x+y=1000,可得c+p=10,b+n=9,a+m =9,依此即可求解.【解答】解:(1)已知n=536,所以新的三个数分别是356,635,563.它们的和为1554,得到K(536)=14;同样n=398,所以新的三个数分别是938,893,389.它们的和为2220,得到K(398)=20;(2)设x=,得到新的三位数分别是,,.它们的和是100(a+b+c)+10(a+b+c)+(a+b+c)=111(a+b+c),可以得到K(x)=a+b+c,即K(x)等于x的各数位上的数字之和;(3)设x=,y=.根据(2)的结论可以得到:K(x)+K(y)=(a+b+c)+(m+n+p).∵x+y=1000,∴100(a+m)+10(b+n)+(c+p)=1000.根据三位数的数字特点,可以知道必然有:c+p=10,b+n=9,a+m=9.所以K(x)+K(y)=(a+b+c)+(m+n+p)=28.故答案为:28.【点评】此题考查了多位数的数字特点,每个数字是10以内的自然数,且不会为0.结合新的定义,可以计算出问题的解.注意把握每个数字都会出现一次的特点,区别数字与多位数的不同.。