先进信息存储材料与器件-华中科技大学光学与电子信息学院
- 格式:docx
- 大小:13.84 KB
- 文档页数:7
华中科技大学光学与电子信息学院考试试卷(A 卷)2015~2016学年度第 2 学期一、(20分,每小题5分)1计算:2(sin()ln())xe y z ∇。
2设r 为某位矢,ˆe为某固定方向的单位矢量,证明:()ˆˆr e 2e ∇⨯⨯=-。
3设电荷密度为()x ρ',x '为源点,x 为场点,r x x '=-,证明()()0x x dV 4Vrρϕπε''=⎰满足Possion 方程。
4 证明:()()()VVSB A dV A B dV A B dS ⋅∇⨯=⋅∇⨯+⨯⋅⎰⎰⎰,其中S 为体积为V 的闭合区域的外表面。
二、(15分)自由空间的磁场强度为()x m ˆH eH cos t kz ω=-,式中的ω、k 、H m 为常数。
试求位移电流密度和电场强度。
三、(15分)对于半径为a 电容率为ε的球形介质,球内外均无自由电荷分布,球面电势分布0()cos r a V ϕθ==,其中V 0为常数。
根据对称性,可以取球心处电势为0,试求球内外的电势和电场分布。
(已知01(cos )cos P θθ=)四、(20分)设入射电磁波的电场强度为()()6ˆ2cos 6.2810y V E e x z t m ω⎡⎤=⨯--⎣⎦,入射到z =0处的折射率为1.5的玻璃表面,其中x 、z 的单位为米。
1)该电磁波的波长是多少?频率是多少?入射角是多少? 2)请写出反射波的电场强度表示式; 3)请写出折射波的电场强度表示式; 4)请写出反射波的磁场强度表示式。
五、(15分)(1)写出边长为a 和b 的矩形波导中TE 11模电场量的瞬时表达式;(2)求其截止频率;(3)写出波导中磁场量的瞬时表达式。
六、(15分)一电量为q 的点电荷在z 轴方向进行振幅为a ,角频率为ω的简谐振动,请计算其在远处产生的辐射场。
并讨论说明为何在远离辐射源时该辐射场可以近似为平面电磁波。
学术学位招生目录(011数学与统计学院)
学术学位招生目录(012物理学院)
学术学位招生目录(210计算机科学与技术学院)
专业学位招生目录(210计算机科学与技术学院)
学术学位招生目录(220建筑与城市规划学院)
学术学位招生目录(271水电与数字化工程学院)
学术学位招生目录(401中国语言文学系)
学术学位招生目录(403法学院)
学术学位招生目录(407公共管理学院)
学术学位招生目录(408马克思主义学院)
学术学位招生目录(409历史研究所)
学术学位招生目录(411外国语学院)
学术学位招生目录(450新闻与信息传播学院)。
电子与信息工程系电子与信息工程系始建于1960年,目前拥有二个博士学位授予权一级学科(信息与通信工程、电子科学与技术)及相同名称的博士后科研流动站,涵盖通信与信息系统、信号与信息处理、电磁场与微波技术、电路与系统4个二级学科(博士点),2003年4月又获准自主设置空间信息科学与技术、生物信息技术2个博士学位授予权二级学科。
通信与信息系统二级学科自1995年以来为湖北省重点学科,2007年又获得国家重点(培育)学科。
目前,全系下设电路与系统、通信软件与交换技术、宽带无线与多媒体系统、互联网技术与工程、微波与信息网络、空间信息科学与技术等6个研究中心及实验中心。
与新、澳、美、德、港等国(境)外多所大学有稳定的合作关系。
经过40多年的努力,从创办初期以无线电技术专业为主体,发展为科研与教学特色显著的信息与通信工程学科基地。
70年代承担电子部重大科研项目“散射通信系统”,获第一次全国科学大会奖。
90年代,“EIM-601大型局用程控交换机”荣获电子部科技进步特等奖,“某导弹指挥仪维护与诊断系统”获国家科技进步三等奖。
近年来,获省部级奖励十余项,其中AVS视频编码技术被列入2007年中国信息产业10项重大技术之一,获2007年信息产业重大技术发明奖、中国标准创新贡献一等奖。
完成国家自然科学基金、国家863计划课题、国家重点科技攻关项目四十余项。
包括国家863计划重大项目、国家自然科学基金重大项目子项目和国家“十五”科技攻关项目等国家级重大项目。
承担国防科工委、总参、总装、航天科技集团、航天科工集团、中船重工集团等单位的国防预研和国防重点项目三十余项。
现拥有武汉光电国家实验室(筹)光通信与智能网络研究部、下一代互联网接入系统国家工程实验室无线接入与融合接入研究室、多谱信息处理技术国家级重点实验室精细波谱与目标探测研究部、国家防伪工程技术研究中心、国家电工电子实验教学示范中心(电子)、智能互联网技术湖北省重点实验室等多个国家级、省部级研究基地和教学实验中心。
光电信息材料与器件专业解读1500字光电信息材料与器件专业,是近年来兴起的一门新兴学科,它主要研究光电信息的传输、存储、处理以及应用等方面的相关材料和器件。
它涉及到光学、电子、材料科学等多个领域的知识,是一个综合性强、前景广阔的学科。
光电信息材料与器件专业的研究内容主要包括光电材料的制备与性能研究、光电器件的设计与制造、光电系统的模拟与优化等方面。
其中,光电材料的制备与性能研究是这个学科的核心内容之一。
通过研究材料的制备技术,可以制备出具有特殊功能和性能的光电材料,如光电导材料、光电存储材料等。
同时,对材料的性能进行研究,可以揭示材料的光电特性和机理,为光电器件的设计和制造提供理论支持。
光电器件的设计与制造是光电信息材料与器件专业的另一个核心内容。
光电器件是利用光电材料的特性,将光信号转换成电信号或者电信号转换成光信号的设备。
常见的光电器件包括光电二极管、光电导、光电存储器等。
通过优化光电器件的结构和制造工艺,可以提高其性能,从而实现更高的光电转换效率和更低的能耗。
光电系统的模拟与优化是光电信息材料与器件专业的另一个重要方向。
光电系统是利用光电材料和光电器件构建的系统,用于实现光信号的传输、处理和应用。
通过对光电系统的模拟,可以预测系统的性能和性能指标,并优化系统的设计和布局,以达到更好的光电效果。
光电信息材料与器件专业的学术前景非常广阔。
随着信息技术的飞速发展和应用领域的不断拓展,对光电信息材料和器件的需求越来越大。
尤其是在电子信息技术、通信技术、光学工程等领域,对光电信息材料和器件的需求更是迫切。
因此,学习光电信息材料与器件专业的人才,将具有广阔的就业前景和发展空间。
总之,光电信息材料与器件专业是一个前景广阔、应用领域广泛的学科,它涉及到光学、电子、材料科学等多个领域的知识,具有很高的学术和实际应用价值。
对于那些对光电技术和材料感兴趣的人来说,选择学习光电信息材料与器件专业,将是一个不错的选择。
光学大类学硕(全日制)序号考试编号姓名初试成绩复试成绩总成绩复试专业代码备注1104879000101003刘莹42988.1286.73080300待录取2104879000101004冀慧茹40790.0884.87080300待录取3104879000100994杨航41587.6884.87080300待录取4104879000134972张泽旭41387.9684.74080300待录取5104879000101048李燊41088.0484.420803Z1待录取6104879000101035王忠忠41385.9683.940803Z1待录取7104879000101050曹子偲40388.683.800803Z1待录取8104879000100992方星40986.7683.78080300待录取9104879000141000肖汉平38892.1283.41080300待录取10104879000132193王紫薇39489.9683.260803Z1待录取11104879000131927程杰38991.3283.21080300待录取12104879000100979唐浩刚38890.6882.83080300待录取13104879000100988钱壮林39587.1682.26080300待录取14104879000101042王曜斌38988.6482.140803Z1待录取15104879000101010李征远38788.881.96080300待录取16104879000131709周绮丽39184.6880.79080300待录取17104879000101046谭红宇38386.5680.580803Z1待录取18104879000101016袁哲37788.2480.540803Z1待录取19104879000100999黄泽华38585.0880.23080300待录取20104879000134152肖永汭37986.6480.14080300待录取21104879000101020肖帆3948280.080803Z1待录取22104879000135822吴蓓40478.3279.81080300待录取23104879000101049何月37287.8879.790803Z1待录取24104879000101036张敦港38384.0479.580803Z1待录取25104879000100995高子晨39979.0479.50080300待录取26104879000140382昌钟璨36588.4479.180803Z1待录取电子大类学硕(全日制)序号考试编号姓名初试成绩复试成绩总成绩复试专业代码备注1104879000101281皮归航42088.6085.84080903待录取2104879000134163黄静怡40888.0484.180809Z2待录取3104879000101246李泽宇40687.1683.58080903待录取4104879000101241倪润40288.2483.54080903待录取5104879000131726赵家乐40985.1283.13080903待录取6104879000100781吴绮雯39988.0483.10080903待录取7104879000101302李茂彬40984.6082.920809Z2待录取8104879000101266单晓煜39887.4082.72080903待录取9104879000101271蒙顺良39188.6082.36080903待录取10104879000101278王伦38689.5282.13080903待录取11104879000101257李睿涵40384.1282.01080903待录取12104879000101267胡胜旺38389.9681.94080903待录取13104879000101274王位国39685.8081.84080903待录取14104879000101275许家瑞37990.5281.69080903待录取15104879000139522洪光有39882.8480.90080903待录取16104879000138058覃维38685.2880.430809Z2待录取17104879000101249程浩38883.4479.94080903待录取18104879000101240董博儒37885.8079.68080903待录取19104879000100777丁宁37885.5279.57080903待录取20104879000142169王宛阳38084.8079.520809Z2待录取21104879000137458赵俊朗38084.6079.44080903待录取22104879000100811崔劲松38184.0479.34080903待录取23104879000101283康纪阳35291.8878.990809Z1待录取24104879000101272陈家宝37284.8878.59080903待录取25104879000139302李翔羽35589.6878.470809Z2待录取26104879000101243杜意翔37683.0078.32080903待录取27104879000101289董建雄36386.8478.300809Z1放弃28104879000101273和凯丰37882.1278.21080903待录取29104879000100769高雨龙38280.4078.00080903待录取30104879000135858袁俊茹36086.0477.62080903待录取31104879000133240张胡广37481.8077.600809Z2待录取32104879000131847汪康36285.2877.55080903待录取33104879000101282孙侨东35786.5677.460809Z1待录取34104879000139472陈旭36484.0077.28080903待录取35104879000101254谭彭伟34688.8077.04080903待录取36104879000100808汪志林35486.2076.96080902待录取37104879000101265卢思航36882.0076.96080903待录取38104879000100778张建佳39573.8876.95080903待录取39104879000140978崔铭格38078.3276.93080903待录取40104879000101252黄龙36283.4476.82080903待录取41104879000101247包熠36881.5676.78080903待录取42104879000136724周宇飞35685.1276.77080903放弃43104879000101260蔡亦东34887.0076.56080903放弃44104879000139776唐恺34787.2476.54080903放弃45104879000100812钱旭东34488.0476.50080903放弃46104879000101250阳帆35484.8076.40080903放弃47104879000133307刘香君35883.2476.26080903放弃48104879000100780张悦38475.3276.21080903待录取光学大类专硕(全日制)序号考试编号姓名初试成绩复试成绩总成绩复试专业代码备注1104879000104605王思聪43692.6889.39085202待录取2104879000104621田彬42292.4487.62085202待录取3104879000104650王景川42885.9285.73085202待录取4104879000104669林瑞春41489.3285.41085202待录取5104879000104631伍瑞钦42784.284.92085202待录取6104879000104619丁珂楠40689.8484.66085202待录取7104879000104684姚傲寒40987.9684.26085202待录取8104879000104604钱刘熠辉40788.4884.23085202待录取9104879000133146周宏伟40289.9684.22085202待录取10104879000104652张琦40688.4884.11085202待录取11104879000133803蔡梓栋41484.9683.66085202待录取12104879000131088付旭东40388.1683.62085202待录取13104879000104647李鑫42780.7683.54085202待录取14104879000104342李龙瑞39889.4483.54085208待录取15104879000104635万俨彬39889.3683.50085202待录取16104879000133980洪伟韬40088.1683.26085202待录取17104879000104641张义威40984.7682.98085202待录取18104879000104670黄瀚林39089.3682.54085202待录取19104879000132549何广鑫40185.6882.39085202待录取20104879000104668范成鹏40783.7282.33085202待录取21104879000139453刘嵩林40384.6882.23085202待录取22104879000104663刁洋洋41381.2882.07085202待录取23104879000104632万浩威39088.0882.03085202待录取24104879000104649王雪晴39785.9682.02085202待录取25104879000130517蔡巧巧40982.2881.99085208待录取26104879000134759项辉40084.681.84085202待录取27104879000104614吴奇光36394.0481.18085202待录取28104879000131645付昊宇39683.9281.09085202待录取29104879000104620钱润38387.7681.06085202待录取30104879000104634徐子健37689.7681.02085202待录取31104879000135063宋江38586.3280.73085202待录取32104879000104610习邓林37788.480.60085202待录取33104879000104673郑岩37389.4480.54085202待录取34104879000104616张俊杰37887.2480.26085202待录取35104879000104661张世雄39382.6480.22085202待录取36104879000104609李长啸37287.9279.81085202待录取37104879000104667周士翔37885.8479.70085202待录取38104879000133220储昭敏37686.479.68085202待录取39104879000104637曹琦38184.2479.42085202待录取集成电路工程专硕(全日制)序号考试编号姓名初试成绩复试成绩总成绩复试专业代码备注1104879000141463强祖信42879.5283.17085209待录取2104879000141833詹翊39190.2883.03085209待录取3104879000104564王牧晨39090.2882.91085209待录取4104879000130816王婧雅40484.8482.42085209待录取5104879000134091胡晓宇39885.1281.81085209待录取6104879000104574蒋诗陶38189.1681.38085209待录取7104879000104567赵娅岐37487.1679.74085209待录取8104879000104570刘伟波37984.8479.42085209待录取9104879000132324吴文轩37585.7679.30085209待录取10104879000104560刘井生39379.4478.94085209待录取11104879000141287肖怡35588.878.12085209待录取12104879000104571陈星宇36684.3677.66085209待录取13104879000104566岑梦锴37780.6477.50085209待录取14104879000104558张旭鹏36883.1677.42085209待录取15104879000104562胡谨峰37081.9677.18085209待录取16104879000131438陈治国37081.677.04085209待录取17104879000134090高小云36183.8476.86085209待录取18104879000104546王子豪36183.676.76085209待录取19104879000139021焦新杭33886.475.12085209待录取20104879000104573方灿35381.8875.11085209待录取21104879000133745郑爱琴35079.2873.71085209待录取22104879000104557周云鹤34779.5273.45085209待录取23104879000132121杨金秋36773.4873.43085209待录取专项计划104879000137691屈炜35981.675.72085209待录取软件工程专硕(全日制)序号考试编号姓名初试成绩复试成绩总成绩复试专业代码备注1104879000139545黄治涵38989.0482.30085212待录取2104879000140524龙文博38287.6880.91085212待录取3104879000134612杨光37587.2879.91085212待录取4104879000132714戴仁俊39579.8879.35085212待录取5104879000132326陈勇37881.3277.89085212待录取6104879000142068沈愉捷36882.8477.30085212待录取7104879000131061李佩36480.3675.82085212待录取8104879000137694鲍聪35084.1675.66085212待录取9104879000104578刘东升35880.6075.20085212待录取10104879000137097宁姗34582.1274.25085212待录取11104879000104585隆宇34480.0073.28085212待录取12104879000139850于闰35775.8873.19085212待录取13104879000104586夏杭33779.7272.33085212待录取14104879000131804邱一帆33379.6471.82085212待录取15104879000141875谷卓郅32580.8071.32085212待录取16104879000131281李韵33673.0069.52085212待录取17104879000139984夏吕32275.7268.93085212待录取18104879000104589柯愉33170.9668.10085212待录取19104879000104583丁悦恒34266.8867.79085212待录取20104879000138744喻红辉32566.8065.72085212待录取21104879000139026喻程鹏32167.6065.56085212待录取22104879000104627魏青林36887.3279.09085202待录取23104879000104633张博凯37684.8479.06085202待录取24104879000137696高何云37784.4479.02085202待录取25104879000135362周津可36887.0478.98085208待录取26104879000104671何丹宸40276.878.96085202待录取27104879000140795刘志远39977.4878.87085202待录取28104879000137697余馨37584.3278.73085202待录取29104879000104350陈思38680.478.48085208待录取30104879000104608刘泽邦3878078.44085202待录取31104879000101008杜灏泽36187.6878.39080300待录取32104879000104691邓凡37583.3678.34085202待录取33104879000142064吴一航36586.3278.33085208待录取34104879000104648周明辉3967778.32085202待录取35104879000101289董建雄36386.8478.300809Z1待录取36104879000100998姚相杰37184.2878.23080300待录取37104879000101027吴蓉35987.878.200803Z1待录取38104879000101037邬文杰37782.2878.150803Z1待录取39104879000104543向璧钰36186.878.04085208待录取40104879000133979王温予36784.9278.01085202待录取41104879000104643梅颖颖38380.0877.99085202待录取42104879000101034刘豪35289.3677.980803Z1待录取43104879000100971张里京3738377.96080300待录取44104879000104602陈邵长37682.0877.95085202放弃45104879000100981赵希明36685.0877.95080300待录取46104879000130060朱利龙38878.1277.810803Z1待录取47104879000104341刘盈35986.3277.61085208待录取48104879000101001吴洋37681.1277.57080300待录取49104879000101022保昱得35886.4477.540803Z1待录取50104879000141451蔡侃哲39375.8477.500803Z1待录取51104879000104653李俊3658477.40085202待录取52104879000101009胡宇航37082.4877.39080300待录取53104879000100977毛绮文36683.677.36080901待录取54104879000104677杨博超37580.877.32085202待录取55104879000130167陈松38079.2877.31085202待录取56104879000104617徐家明36184.8877.27085202待录取57104879000104625刘泽一34688.8877.07085202待录取58104879000100991童立35187.0876.95080300待录取59104879000101051李莉3508776.800803Z1待录取60104879000136880仵祎36682.1676.78080300待录取61104879000104679朱豫36981.2476.78085202待录取62104879000136724周宇飞35685.1276.77080903待录取63104879000134424王雪放36682.0476.74085202待录取64104879000132315李承铸35784.676.68085208待录取65104879000135361郑昌敏34488.4876.67085208待录取66104879000101260蔡亦东34887.0076.56080903待录取67104879000104606熊考38575.8876.55085202待录取68104879000104646丑攀35684.5676.54085202待录取69104879000139776唐恺34787.2476.54080903待录取70104879000100812钱旭东34488.0476.50080903待录取71104879000101250阳帆35484.8076.40080903待录取72104879000138746李达37877.5676.38085202待录取73104879000104615丁亚涛33989.276.36085202待录取74104879000131826董晓东3538576.360803Z1待录取75104879000104656邱靖36681.0876.35085202待录取76104879000104343郭邦祁35584.3676.34085208待录取77104879000101023王炳霖38076.8476.340803Z1待录取78104879000133307刘香君35883.2476.26080903待录取79104879000137449谭伟34686.7676.22080300待录取80104879000104329林自航34886.0876.19085208待录取81104879000101279汪详鑫34785.5275.85080903待录取82104879000100776查龙辉35184.3275.85080903待录取83104879000104644李念达38075.5675.82085202待录取84104879000140977周厚继36380.5675.78080903待录取85104879000100813李万麟34984.6875.750809Z2待录取86104879000130367吴梦浩38075.275.68085202待录取87104879000132631汪小双38274.4875.63085202待录取88104879000130697胡少博34286.4475.62085202待录取89104879000141469高静34086.4875.390803Z1待录取90104879000104628李函坤34784.1275.29085202待录取91104879000100984管海杰35282.4475.22080300待录取92104879000139763陈艺天32490.6475.14080903待录取93104879000141785陈俞光34683.7675.02085202待录取94104879000142092陈锦杰35979.6874.95080300待录取。
第41卷㊀第10期2020年10月发㊀光㊀学㊀报CHINESEJOURNALOFLUMINESCENCEVol 41No 10Oct.ꎬ2020文章编号:1000 ̄7032(2020)10 ̄1269 ̄10基于荧光猝灭效应的光纤传感器研究进展陈㊀静ꎬ杨㊀曌ꎬ黄宇豪ꎬ周明辉ꎬ赵奔阳ꎬ夏㊀历∗ꎬ李㊀微(华中科技大学光学与电子信息学院ꎬ湖北武汉㊀430074)摘要:光纤荧光传感器结合了荧光检测灵敏度高㊁鉴别性强和光纤体积小㊁抗干扰能力强等优点ꎬ由于部分荧光检测物质对荧光强度有猝灭作用ꎬ所以基于猝灭效应的光纤荧光传感器具有重要的研究意义ꎮ本文对基于荧光猝灭效应光纤传感器的研究进展进行综述ꎬ简要描述了荧光猝灭效应的检测机理ꎬ并根据传感光纤结构的不同ꎬ对光纤与荧光检测的结合机理进行了分类总结ꎮ在此基础上阐述了基于荧光猝灭效应的光纤荧光传感器在重金属离子检测㊁爆炸物检测等领域的应用ꎬ分析了猝灭剂㊁荧光材料的相互作用和传感器的性能指标ꎬ最后对其发展方向进行了展望ꎮ关㊀键㊀词:光谱检测ꎻ光纤传感ꎻ发光机理ꎻ荧光猝灭中图分类号:O433㊀㊀㊀文献标识码:A㊀㊀㊀DOI:10.37188/CJL.20200206ResearchProgressofOpticalFiberSensorsBasedonFluorescenceQuenchingEffectCHENJingꎬYANGZhaoꎬHUANGYu ̄haoꎬZHOUMing ̄huiꎬZHAOBen ̄yangꎬXIALi∗ꎬLIWei(SchoolofOpticsandElectronicInformationꎬHuazhongUniversityofScienceandTechnologyꎬWuhan430074ꎬChina)∗CorrespondingAuthorꎬE ̄mail:xiali@hust.edu.cnAbstract:Opticalfiberfluorescencesensorcombinestheadvantagesofhighsensitivityꎬstrongdis ̄criminationofthefluorescencedetectionandsmallsizeꎬstronganti ̄interferenceabilityoffiber.Be ̄causesomeofthefluorescentdetectionsubstanceshaveaquenchingeffectonthefluorescenceinten ̄sityꎬtheopticalfiberfluorescencesensorbasedonthequenchingeffecthasimportantresearchsig ̄nificance.Inthispaperꎬtheresearchprogressoftheopticalfibersensorbasedonthefluorescencequenchingeffectisreviewed.Thedetectionmechanismofthefluorescencequenchingeffectisbrief ̄lydescribed.Thecombinationmechanismoftheopticalfiberandthefluorescencedetectionisclas ̄sifiedandsummarizedaccordingtothestructureofthesensingopticalfiber.Onthisbasisꎬtheap ̄plicationsoftheopticalfiberfluorescentsensorbasedonthefluorescencequenchingeffectinthefieldsofheavymetaliondetectionꎬexplosivedetectionandotherfieldsaredescribed.Theinterac ̄tionbetweenthequencherandfluorescentmaterialꎬandtheperformanceindexofthesensorarean ̄alyzed.Finallyꎬthedevelopmentdirectionoftheopticalfibersensorsbasedonfluorescencequench ̄ingeffectisprospected.Keywords:spectraldetectionꎻopticalfibersensingꎻluminescencemechanismꎻfluorescencequenching㊀㊀收稿日期:2020 ̄07 ̄14ꎻ修订日期:2020 ̄08 ̄04㊀㊀基金项目:国家自然科学基金(61775065)资助项目SupportedbyNationalNaturalScienceFoundationofChina(61775065)1270㊀发㊀㊀光㊀㊀学㊀㊀报第41卷1㊀引㊀㊀言荧光检测法具有极高的灵敏度㊁良好的鉴别性和实时监测性ꎬ可以很好地将化学问题物理化处理[1]ꎮ2020年1月ꎬ新型冠状病毒肺炎疫情(简称新冠肺炎)全面爆发ꎮ荧光聚合酶链式反应(PCR)检测仪在病毒确诊中起着关键作用[2]ꎻ但荧光PCR检测仪仍在一些缺点ꎬ例如对操作人员及操作技术要求高㊁检测时间长㊁仪器体积庞大不易携带等[3]ꎮ而光纤具有体积小㊁价格便宜等优势ꎬ如果将光纤与荧光检测技术相结合ꎬ可以避免上述缺点ꎮ荧光猝灭是指溶剂分子使荧光分子发生猝灭的现象[4]ꎮ1931年ꎬKautsky在叶绿素荧光诱导实验[5 ̄6]中发现氧分子可以猝灭荧光ꎬ于是提出荧光猝灭原理[7]ꎮ氧分子㊁重金属离子㊁温度等都可以作为 荧光猝灭剂 ꎬ对荧光强度产生猝灭作用ꎬ基于荧光猝灭效应的传感器有效地利用了这一特点ꎬ具有重大的研究意义和应用价值ꎮ本文以基于荧光猝灭效应的光纤传感器为主题ꎬ通过对传感光纤结构进行分类的方式ꎬ详细地阐述了光纤与荧光检测的有机结合ꎬ综述了基于荧光猝灭效应的光纤传感器的应用领域ꎬ最后对其未来发展进行了展望ꎮ2㊀荧光猝灭原理2.1㊀荧光检测机理当光照射到某物质上时ꎬ其原子核周围的电子吸收光能量ꎬ从基态跃迁到高能级激发态ꎮ由于单线态的不稳定性ꎬ电子会恢复到基态自发辐射产生荧光ꎬ该现象称为弛豫[8]ꎬ荧光光谱较吸收光谱波长的红移称为斯托克斯位移[9]ꎮ根据待测物的不同ꎬ可以通过解调发射光谱[10 ̄11]㊁荧光强度[12 ̄13]和荧光寿命[14 ̄15]等参数来定量分析待测物ꎮ荧光检测法主要是基于具有荧光效应的物质进行直接检测或利用荧光染料标记法进行间接检测ꎮ2.2㊀荧光猝灭效应荧光猝灭可以简单地描述为通过荧光分子和猝灭分子的相互作用来减少荧光分子的荧光强度[16]ꎮ荧光猝灭可以分为两个类别ꎬ分别是静态猝灭和动态猝灭ꎮ静态猝灭指两分子弱结合形成的复合物使荧光完全消失ꎻ动态猝灭则是一种电子转移或能量转移的过程ꎬ荧光的猝灭程度和猝灭剂有关[17 ̄18]ꎮ动态猝灭主要包括:浓度猝灭㊁杂质猝灭㊁温度猝灭等ꎬ其过程通常遵循Stern ̄Volmer方程:τ0τ=I0I=1+KSVCQꎬ(1)其中ꎬI0㊁τ0㊁I和τ分别是浓度为CQ的指示剂染料在不存在和存在猝灭剂时的荧光强度和荧光寿命ꎻKSV是Stern ̄Volmer猝灭常数ꎬ单位通常为浓度单位的倒数ꎬ与猝灭剂的猝灭效率有关ꎮ荧光信号取决于猝灭剂浓度ꎬ所以在包含或添加了荧光化合物的样品中ꎬ可以通过猝灭作用来确定其信息ꎮ3㊀传感光纤结构3.1㊀空间光耦合型光纤在荧光检测中最简单的应用是将其用于激发光和接收光的传输ꎬ荧光检测过程则在光纤外的空间中进行ꎮ由于激发光纤和接收光纤的分离式结构会导致大部分的荧光信号丢失ꎬ所以经典的结构是由1根激发光纤和6根接收光纤构成的组合光纤[19]ꎮ但是在该光纤模式中ꎬ大量的入射光会被耦合进入低阶模式ꎬ并且被噪声信号干扰的接收光纤存在阈值饱和问题ꎬ影响荧光信号的解调ꎮ为解决上述问题ꎬSandra等[20]将两根标准多模光纤组成一个直径约为150μm的光纤探针ꎬ如图1所示ꎮ该结构的传输功率损耗小于0.2dBꎬ由于波导纤芯不耦合ꎬ不会造成无关干扰ꎮMoradi等[21]则利用微流控芯片的高度集成化㊁低消耗等优势ꎬ提出如图2所示的蛇形通道微流控结构ꎬ同样可以有效地减少信号干扰ꎮ60滋m(a)PVC tube(2mm/1mm)Catheter21G(0.8mm/0.55mm)Dual fiber tip(b)(c)图1㊀双光纤探针的端面(a)㊁组成材料(b)㊁传感探头(c)ꎮFig.1㊀(a)Endfaceofthedual ̄fiberprobe.(b)Constitutesmaterial.(c)Sensingprobe.㊀第10期陈㊀静ꎬ等:基于荧光猝灭效应的光纤传感器研究进展1271㊀0.60i n c h2.40inchMixing channelsHPTS injection portSample injection portOutlet图2㊀蛇形结构微流控芯片Fig.2㊀Serpentinestructuremicrofluidicchip3.2㊀微结构光纤型光在纤芯中以驻波形式传输ꎬ传输过程中光波会部分透射进入光纤包层大约一个波长深度ꎬ而后反射回到纤芯ꎮ如图3所示ꎬ该透射光波的振幅随穿透深度的增加呈指数衰减ꎬ故称为倏逝波[22]ꎮ拉锥光纤㊁裸芯光纤等微结构光纤可以有效地使倏逝波泄露ꎬ光纤泄露的倏逝波则可以激发荧光物质产生荧光ꎮn 2n 1波传播方向x倏逝场区驻波场强度zn 1>n 2图3㊀光纤倏逝波原理图Fig.3㊀SchematicdiagramofopticalfiberevanescentwaveLi等利用拉锥光纤结构搭建了如图4(a)所示的荧光传感系统[23]ꎬ激光光源在光纤拉锥区泄露倏逝波ꎬ从而激发荧光染料罗丹明6G产生荧光ꎮ荧光信号在拉锥区域产生并且耦合进入光纤ꎬ图4(b)~(d)分别表示自然状态㊁激光入射时和激发荧光时锥形光纤的扫描电子显微镜图像ꎮ(a )(b )(c )FilterLaserSlot vial array Biconical taper Moving directionMicrochannel Capillary Syringe(d )Filter SpectrographH OS 3H OS 2S 1H OS l o t v i a l图4㊀拉锥光纤荧光传感系统的实验装置ꎮ(a)显微镜下的自然状态ꎻ(b)激光入射ꎻ(c)荧光激发ꎻ(d)图像ꎮFig.4㊀Experimentaldeviceoftaperedfiberfluorescencesensingsystem.(a)Naturalstateunderthemicro ̄scope.(b)Laserincidence.(c)Fluorescenceexci ̄tation.(d)Image.上述实验中需要将拉锥光纤嵌入检测皿中ꎬ无法实现方便快速地进行检测ꎬZhang等[24]提出裸芯结构的光纤探针ꎬ直接将制备好的光纤探针伸入大肠杆菌溶液中进行快速检测ꎮ图5(a)为FC connector Inlet Fiber probe OutletFC adaptorFC connectorFiber couplerLaserCollimator FilterPCR 1R 2n con cl 兹i兹i 1(z )茁1琢1(z )琢2(z )茁2n mL 1L 2Taper 2Taper 1(a )(b )Sample cellFluorescent signalExcitation light R 3n clzPMTClad section图5㊀裸芯光纤探针荧光传感系统的实验装置(a)与裸芯结构(b)Fig.5㊀Experimentaldeviceofbare ̄corefiberprobefluorescentsensingsystem(a)andbare ̄corestructure(b)活菌死菌碘化丙啶抗体激光荧光图6㊀功能化处理光纤探针原理图Fig.6㊀Schematicdiagramoffunctionalizedopticalfiberprobe光纤荧光传感系统ꎬ图5(b)为裸芯锥形光纤结构ꎬ利用管腐蚀法来去除光纤包层ꎮ而上述光纤探针不具有特异性检测能力ꎬZhang等[25]在原有结构的基础上用化学手段功能化处理光纤探针ꎬ使光纤探针表面交联抗体ꎬ抗体能够与大肠杆菌特异性结合ꎮ如图5所示ꎬ实验用荧光染料碘化丙啶标记了大肠杆菌死菌ꎬ倏逝波激发碘化丙啶1272㊀发㊀㊀光㊀㊀学㊀㊀报第41卷产生荧光ꎬ实现了对死菌的检测ꎮ3.3㊀空心光纤荧光检测过程都需要在暗室中进行ꎬ避免外界环境因素对检测结果产生较大影响ꎮ如果将荧光检测过程置于空心光子晶体光纤(HC ̄PCF)中进行ꎬ则可以有效地抵抗环境的干扰ꎮ并且HC ̄PCF通过纤芯空气孔导光提供基模传输ꎬ能够将99%的光都限制在纤芯内传输ꎬ实现低损耗传输[26]ꎮ为估算HC ̄PCF纤芯传播模式数ꎬCregan等[27]推导了近似估算公式如下:NPBG=(β2H-β2L)r2core4ꎬ(2)NPBG=(k2n21-β2L)r2core4ꎬ(3)其中ꎬNPBG为传播的导模数ꎬn1为纤芯折射率ꎬβH㊁βL分别为定波长下传播常数最大值和最小值ꎮ由公式可知ꎬHC ̄PCF纤芯半径必须适中ꎬ以接近理想传输模式ꎮ在该原理基础上ꎬChen等[28]提出如图7所示的HCPCF结构ꎬ空心孔尺寸为4.8μmꎮ包层孔用融合拼接技术密封ꎬ中心孔保持开放ꎬ并允许通过聚合诱导发射(AIE)分子溶液ꎮ在基于该结构的AIE分子检测中ꎬ仅需0.36nL样本就可以完成实验ꎮHC ̄PCF结构设计多样ꎬYu等[29]设计并制造了如图8所示的HC ̄PCF结构ꎬ将花青素Cy3㊁Cy5的混合溶液作为荧光染料注入到中空纤芯中ꎬ成功实现了激光的荧光共振能量转移ꎮAlE moleculeOutputFilled coreHollow core photonics crystal fiberCore 4.8滋mCladding 81滋m 图7㊀基于AIE诱导分子的HC ̄PCF传感原理图Fig.7㊀HC ̄PCFsensingprinciplediagrambasedonAIEin ̄ducingmolecule图8㊀基于花青素染料的HC ̄PCF结构Fig.8㊀HC ̄PCFstructurebasedonanthocyanindyes4㊀基于荧光猝灭效应的光纤传感器应用4.1㊀重金属离子检测工业排出的污水中还有大量的Cu2+㊁Fe3+㊁Hg2+等重金属离子ꎬ重金属离子对人体危害极大ꎬ痕量重金属离子的检测也是研究热点[30 ̄31]ꎮ利用重金属离子对荧光的猝灭效应ꎬ基于荧光猝灭效应的光纤传感器也广泛应用于重金属离子检测中ꎮZhou等[32]在裸芯光纤探针结构表面交联碲化镉(CdTe)量子点(QDs)ꎬ并掺杂水凝胶ꎮQDs是把激子在三维空间方向上束缚住的半导体纳米结构作为一种特殊的纳米材料ꎬ具有特殊的光学㊁电学性质[33 ̄34]ꎮ在该结构中ꎬQDs可以被扩散到水凝胶基质ꎬ待测液中的Fe3+对其进行选择性猝灭ꎬ可用于实时现场检测ꎮ传感器浓度响应在0~3.5μmol/L范围内呈线性ꎬ检测限为14nmol/LꎮLiu等[35]利用聚乙烯醇将AgInZnS ̄QDs沉积在光纤尖端制成光纤探针检测Cu2+含量ꎬ如图9所示为检测过程中的光谱图和其浓度响应ꎮ随着浓度的增加ꎬ荧光强度逐渐减小ꎬ在2.5~800nmol/L浓度范围传感器呈线性响应ꎮ5k 500800姿/nmI n t e n s i t y /a .u .6k 4k 3k 2k 1k0nmol/L07517535050060070080025100250425550650750800nmol/L600700(a )5k 0800[Cu 2+]/(nmol ·L -1)I n t e n s i t y /a .u .6k 4k 3k 2k 1k 0400600(b )I =5438.63-4.97×109[Q ]R 2=0.997200Measured data Fitting curve图9㊀用于Cu2+检测的AgInZnS ̄QDs光纤探针光谱(a)与浓度响应(b)Fig.9㊀(a)AgInZnS ̄QDsfiberprobespectraforCu2+detec ̄tion.(b)Concentrationresponse.㊀第10期陈㊀静ꎬ等:基于荧光猝灭效应的光纤传感器研究进展1273㊀Helena等[36]提出一种基于碳点纳米颗粒的Hg2+浓度传感系统ꎬ该纳米颗粒利用溶胶 ̄凝胶方法在光纤探针表面生成一层薄膜ꎮ实验可检测亚微米级浓度的Hg2+水溶液ꎬ在pH=6.8环境下ꎬ其Stern ̄Volmer常数KSV达到5.3ˑ105L/molꎮ为寻求更加便捷的实验装置ꎬLiu等[37]用智能手机取代光谱仪ꎬ利用硒化镉/硫化锌(CdSe/ZnS)QDs改性后的光纤探针进行Hg2+检测ꎮ如图10所示为QDs改性原理图ꎬQDs通过键合的方式与光纤探针表面交联ꎮ荧光信号由智能手机收集和处理ꎬ最终得到检测范围为1~1000nmol/Lꎬ检测限可以达到1nmol/LꎮOH OH OH OHOH OH OHAPTESSiOC2H5NH2OC2H5C2H5OOHOHOHOOOO SiSiSiSiOC2H5OOONH2NH2NH2NH2OC2H5COOHHOOCOHOHOHOOOO SiSiSiSiOC2H5OOOOC2H5EDC/NHSCOOHCOOHCOOHCOOHOOOOQDsQDsQDsQDsQDsQDsQDs QDsHOOC COOHNCNNHOOCCNNNHOOOOOCOOHCOONOONHNHNHNHNH图10㊀CdSe/ZnS ̄QDsQDs改性原理Fig.10㊀CdSe/ZnS ̄QDsmodificationprinciple4.2㊀爆炸物检测微量炸药的准确测量与国际安全和日常生活安全息息相关ꎬ光纤荧光传感技术因其方便㊁快捷㊁灵敏度高等优点成为炸药检测领域的关键技术之一ꎮ中国科学院上海微系统与信息技术研究所从2005年开始研制的SIM系列痕量爆炸物探测器[38]ꎬ采用了荧光聚合物猝灭传感技术ꎮ通过擦拭采样或吸气采样ꎬ可以快速检测三硝基甲苯(TNT)㊁二硝基甲苯(DNT)㊁硝化甘油(NG)㊁硝酸铵(AN)㊁黑火药(BP)㊁塑性炸药(C4)等爆炸物ꎮChu等[39]基于荧光猝灭原理对硝基芳香族炸药TNT进行检测ꎬ将光纤绕棒缠绕构成的螺旋结构作为传感部位ꎬ荧光猝灭剂为聚[2 ̄甲氧基 ̄5 ̄(2 ̄乙基己氧基) ̄1ꎬ4 ̄苯乙炔](MEH ̄PPV)ꎬ测定荧光强度和寿命来确定TNT浓度ꎬ传感器灵敏度达到了5ng/mLꎮ中国科学院软物质化学重点实验室Liu等[40]制作了锥形光纤探针ꎬ并交联荧光多孔聚合物膜结合在其表面ꎬ其存在的多面体低聚硅倍半氧烷(POSS)使膜呈现出有序的多孔结构ꎬ同时该膜存在具有聚集诱导发射特性的四苯基乙烯(TPE)以产生强烈的荧光ꎮ利用激光光源激发荧光对TNT和DNT浓度进行检测ꎬ图11为TNT检测的光谱和浓度响应ꎻTNT浓度在100ˑ10-9情况下ꎬ荧光猝灭在30s时达到25.2%ꎬ在120s时达到51.8%ꎬ在5min内达到了73.5%ꎮTPE及其衍生物具有聚集诱导发光特性ꎬ在光电材料领域应用前景广阔ꎮYang等[41]提出了基于荧光猝灭效应的HC ̄PCF挥发性痕量炸药传感器ꎬ该传感器是将烯丙基四苯乙烯(AL ̄TPE)荧光纳米薄膜涂覆在HC ̄PCF芯空气孔内ꎮ如图12所示为AL ̄TPE膜与TNT之间的电子转移过程ꎬ激发态AL ̄TPE分子与处于基态的爆炸分子之间发生电子转移ꎬ导致荧光强度降低ꎬ产生猝灭效应ꎮ当膜厚为155nm时ꎬ对TNT的检测灵敏度达到了0.309ˑ109ꎬ最小检测限0.340ˑ10-9ꎻ膜厚为110nm时ꎬDNT的响应时间达到120sꎮ1274㊀发㊀㊀光㊀㊀学㊀㊀报第41卷30000500700姿/nmF l i n t e n s i t y /a .u .40000(a )0s720s 6002000010000100700t /s(I 0-I )/I 00.8(b )400NO 3NO 3CH 3O 3N0.702003005006008000.60.50.40.30.20.10图11㊀用于TNT检测的光纤锥形探针光谱(a)与浓度响应(b)Fig.11㊀(a)FibertaperprobespectraforTNTdetection.(b)Concentrationresponse.Electron transferFluorescent bright stateQuenchers(TNT)Non 鄄fluorescent dark stateh 淄eee图12㊀AL ̄TPE膜和TNT之间的电子转移过程Fig.12㊀ElectrontransferprocessbetweenAL ̄TPEfilmandexplosive㊀4.3㊀溶解气体检测溶解气体的精准检测在环境㊁生物㊁工业领域都具有重要意义ꎬ例如一氧化氮(NO)溶液的浓度检测可以诊断高血压㊁心衰㊁糖尿病等疾病ꎬ氧溶液的检测可以应用于污水处理厂㊁自来水厂水质的诊断ꎮ许多气体分子对荧光存在猝灭效应ꎬ因此也开拓了基于荧光猝灭效应的光纤传感器在溶解气体检测领域的应用ꎮDing等[42]搭建了荧光探针结构传感系统ꎬ将CdSe ̄QDs和醋酸纤维素(CA)作为敏感膜来检测水溶液中的NOꎬ其中CdSe ̄QD通过简单的杂交方法嵌入CA中ꎮNO自由基可以很容易地与水中的溶解氧发生反应并与Cd2+发生配位ꎬ对敏感膜中CdSe ̄QDs的荧光有明显的猝灭作用ꎮ使用这种新型的光纤传感器ꎬ通过相位调制荧光法确定了NO浓度ꎮ如图13所示ꎬ在最佳条件下ꎬ1.0ˑ10-7~1.0ˑ10-6mol/L检测范围中的线性拟合系数为0.9908ꎬ最低检测限达到了1.0ˑ10-8mol/Lꎮ邓辉等[43]利用动态化学腐蚀法制备锥尖型光纤端面ꎬ以提拉法镀溶胶凝胶敏感膜组装了基于荧光猝灭的直径仅1.5μm的光纤氧溶液传感探头ꎮ探头锥面的长径比可通过调控腐蚀参数调控ꎬ构建相移测量系统ꎬ优化参数后进行0~21%范围内的氧含量测定ꎬ工作曲线呈现良好的线性特征ꎬ拟合系数为0.9996ꎬ偏差小于测量值的5%ꎮ此外ꎬ德国E+H公司研制的溶解氧传感器OxymaxCOS61D[44]ꎬ同样基于荧光猝灭原理进行传感ꎮ该传感器检测范围0~20mg/Lꎬ在<12mg/L范围内ꎬ最大测量误差为ʃ1%ꎻ在12~20mg/L范围内ꎬ最大测量误差为ʃ2%ꎮ-78.46004800t /sP h a s e s h i f t 准/a .u .1200-79.2180024003000[NO]:滋mol/L0.10.20.30.40.50.60.70.80.91.03600420054006000图13㊀不同浓度NO溶液的相位变化Fig.13㊀PhasechangeinNOsolutionwithdifferentconcen ̄tration4.4㊀温度检测温度会使荧光强度降低产生荧光猝灭现象ꎬ基于荧光猝灭效应的光纤传感技术也可以对温度进行检测ꎮ这种基于荧光猝灭效应的光纤传感技术不受传感器外部变形的影响ꎬ是一种能够消除周围环境和背景噪声干扰的温度选择性传感器ꎮZhao等[45]利用微结构双拉锥结构光纤作为探针进行温度的检测ꎬ将Mg6As2O11ʒMn4+作为荧光材料ꎮ通过对荧光强度的解调ꎬ得到该温度传感器的精度为2ħꎬ温度范围30~210ħꎬ该微传感器的响应时间比传统传感器快50~100倍ꎮ而日本安立(Anritsu)公司研制的荧光式光纤温度计[46 ̄47]已经完全商业化ꎬ达到了-195.0~450.0ħ的检测范围ꎬ精度为0.1ħꎮ其产品由FX系㊀第10期陈㊀静ꎬ等:基于荧光猝灭效应的光纤传感器研究进展1275㊀列发展到FL系列[48]ꎬ如图14所示为FL ̄2000型号产品探头结构ꎮ基于荧光猝灭原理ꎬ利用光纤前端表面存在的荧光物质进行温度检测ꎬ从接收激励光到衰减的寿命作为温度传感信息ꎮin sensorIndentation the connector of the instrument(×2)Protrusion of the sensor(×2)Key ring图14㊀FL ̄4000型号光纤探头Fig.14㊀FL ̄4000typefiberopticprobe4.5㊀其他领域应用除了上述参量的检测ꎬ基于荧光猝灭效应的光纤荧光传感器也在其他领域检测中得到了应用ꎮTon等[49]在光纤波导上涂覆含有荧光信号基团的MIPꎬMIP由萘基荧光单体组成ꎬ用于检测除草剂中的2ꎬ4 ̄二氯苯氧乙酸和桔霉素ꎮ萘基单体与分析物的羧酸基分子结合后荧光增强ꎬ从而降低了氮给电子的能力ꎬ阻止负责荧光猝灭的光诱导电子转移ꎬ使MIP的荧光强度增强具有浓度依赖性ꎮ中国科学院软物质化学重点实验室Zhu等[50]利用三烯丙基异氰脲酸酯㊁烷烃二硫醇和酸碱D ̄天冬氨酸复合(PBIM/D ̄Asp)在光纤探针末端形成MIP膜用于D ̄Asp含量检测ꎬ当pH值达到碱性条件时ꎬPBIM结构会发生变化从而导致荧光猝灭ꎮNguyen等[51]制备了光纤探针ꎬ选择吖啶作为荧光染料ꎬ利用Cl-的荧光猝灭效应对其进行检测ꎬ检测限达到0.1mol/Lꎮ美国国家基础科学研究中心Polley等[52]在光纤探头表面交联乙锭染料ꎬ实现对DNA的检测ꎮ5㊀未来发展2017年ꎬ清华大学杨昌喜研究团队提出一种由有机硅聚合物制成的可穿戴式光纤传感器[53]ꎬ该传感器能够承受和检测伸长率达100%的形变ꎬ可以实时㊁有效地感测人体运动ꎮ该有机硅聚合物为聚二甲基硅氧烷(PDMS)ꎬ制造出的PDMS光纤表现出很好的机械柔韧性ꎮ为了辅助传感ꎬ研究人员将荧光染料罗丹明B混入光纤中ꎬ当光通过光纤时ꎬ部分光被荧光染料吸收ꎻ光纤拉伸越大ꎬ染料吸收的光就越多ꎬ因此由分光镜检测投射光就可以测量光纤的拉伸和弯曲程度ꎮ相较于一般的电子传感器ꎬ光纤型传感器具有体积小㊁弹性强㊁不受电磁干扰的优点ꎮ基于荧光猝灭效应的光纤传感技术同样有望与可穿戴式传感相结合ꎬ光纤可作为类纤维嵌入衣物中ꎬ可以实时监测温度㊁湿度等环境情况ꎬ也可以监测呼吸㊁心跳等人类生理特征ꎮ这些特点都可以在医疗行业㊁特种部队㊁工业养殖等领域得到广泛应用ꎮ荧光材料选择的多样性决定了其应用领域的广泛性ꎬ基于荧光猝灭效应的光纤传感器结合了荧光和光纤的优点ꎬ应用前景可观ꎬ但是目前光纤荧光传感技术仍面临一些挑战ꎮ5.1㊀增强集光能力上述提及的空间光耦合型㊁微结构光纤型等多样的光纤结构ꎬ目的都是为了使光纤能够最大程度地收集产生的荧光ꎬ提高传感器灵敏度的同时ꎬ减少杂散光的干扰ꎮ荧光猝灭材料中的共轭聚合物消光系数可达106L mol-1 cm-1ꎬ具有较强的集光能力[54]ꎻ在HC ̄PCF空气孔内进行荧光反应ꎬ能够极大地接收荧光ꎬ但是其实验要求高难以实用化ꎮ用多种方式增强光纤收集荧光的能力ꎬ仍然是目前的研究热点ꎮ5.2㊀提高荧光产率荧光产率是指发射荧光的光子数n2与被激活物质从泵浦源吸收的光子数n1之比ꎬ是评价荧光材料性能最直观的参考数据ꎮ目前的研究除了寻求和制备高荧光产率的荧光分子外ꎬ也会通过在原有荧光材料基础上掺入杂质物质来提高ꎮ例如ꎬ钇掺杂的碳量子点荧光产率达到41%[55]ꎬ相较于未掺杂情况提升了17.3%ꎮ但目前荧光材料的荧光产率仍有待提高ꎮ而且通过从材料入手来提高荧光产率的方式ꎬ可以避免改变传感系统性能来提高灵敏度ꎬ可靠性更强ꎮ5.3㊀便携实时原位检测原位检测是不破坏待测物自身结构㊁状态而进行的无损伤检测方式ꎬ对于荧光猝灭光纤传感来说至关重要ꎮ荧光检测环境不能够仅仅局限于在实验室进行ꎬ最终目标仍然是实现便捷实时原位的现场检测ꎮ目前荧光猝灭光纤传感器产品已涉及爆炸物㊁水质等领域ꎬ但是设计紧凑便捷传感系统结构㊁开拓更多应用领域㊁实时地实地快速检1276㊀发㊀㊀光㊀㊀学㊀㊀报第41卷测ꎬ仍然是研发工作人员的研究目标ꎮ6㊀结㊀㊀论基于荧光猝灭效应的光纤传感技术能够有效地利用光纤体积小㊁抗干扰能力强等优点ꎬ实现快速㊁便捷地特异性检测ꎮ本文以荧光猝灭原理为基础ꎬ从传感光纤结构㊁基于荧光猝灭效应的光纤传感器应用两个方面简要叙述了光纤与荧光检测的结合机理及传感器相关应用ꎮ基于荧光猝灭的光纤传感器有望作为类纤维嵌入衣物中ꎬ从而实现实时的智能传感ꎮ而基于荧光猝灭效应的光纤传感技术也面临挑战ꎬ未来将朝着集光能力更强㊁荧光产率更高㊁便携实时原位检测方向发展ꎮ参㊀考㊀文㊀献:[1]史慧超.基于神经网络的光纤荧光海藻测量理论及应用研究[D].秦皇岛:燕山大学ꎬ2010:10 ̄17.SHIHC.StudyonTheoryandApplicationofOpticalFiberFluorescenceMeasurementforAlgaeBasedonNerveNetwork[D].Qinhuangdao:YanshanUniversityofChinaꎬ2010:10 ̄17.(inChinese)[2]NÖRZDꎬFISCHERNꎬSCHULTZEAꎬetal..ClinicalevaluationofaSARS ̄CoV ̄2RT ̄PCRassayonafullyautomatedsystemforrapidon ̄demandtestinginthehospitalsetting[J].J.Clin.Virol.ꎬ2020ꎬ128:104390 ̄1 ̄3. [3]何关金.基于微流控技术的数字PCR检测仪设计与实现[J].天津科技ꎬ2020ꎬ47(1):35 ̄40.HEGJ.DesignandimplementationofdigitalPCRdetectorbasedonmicrofluidictechnology[J].TianjinSci.Technol.ꎬ2020ꎬ47(1):35 ̄40.(inChinese)[4]MCEVOYAKꎬMCDONAGHCMꎬMACCRAITHBD.Dissolvedoxygensensorbasedonfluorescencequenchingofoxy ̄gen ̄sensitiverutheniumcomplexesimmobilizedinsol ̄gel ̄derivedporoussilicacoatings[J].Analystꎬ1996ꎬ121(6):785 ̄788.[5]KAUTSKYHꎬDEBRUIJNH.DieAufklärungderPhotoluminescenztilgungfluorescierenderSystemedurchSauerstoff:dieBildungaktiverꎬdiffusionsfähigerSauerstoffmoleküledurchSensibilisierung[J].Naturwissenschaftenꎬ1931ꎬ19(52):1043 ̄1043.[6]KAUTSKYH.Energie ̄UmwandlunganGrenzflächenꎬVII.Mitteil.:H.KautskyꎬH.deBruijnꎬR.NeuwirthundW.Baumeister:photo ̄sensibilisierteoxydationalswirkungeinesaktivenꎬmetastabilenzustandesdessauerstoff ̄moleküls[J].Eur.J.Inorg.Chem.ꎬ1933ꎬ66(10):1588 ̄1600.[7]KAUTSKYH.Quenchingofluminescencebyoxygen[J].Trans.FaradaySoc.ꎬ1939ꎬ35:216 ̄219.[8]KUZMINAVꎬPLEKHANOVМSꎬLESNICHYOVAAS.Influenceofimpuritiesonthebulkandgrain ̄boundaryconduc ̄tivityofCaZrO3 ̄basedproton ̄conductingelectrolyte:adistributionofrelaxationtimestudy[J].Electrochim.Actaꎬ2020ꎬ348:136327.[9]HONGJXꎬXIAQFꎬZHOUEBꎬetal..NIRfluorescentprobebasedonamodifiedrhodol ̄dyewithgoodwatersolubilityandlargeStokesshiftformonitoringCOinlivingsystems[J].Talantaꎬ2020ꎬ215:120914.[10]PIERCEMEꎬGRANTSA.DevelopmentofaFRETbasedfiber ̄opticbiosensorforearlydetectionofmyocardialinfarction[C].ProceedingsofThe26thAnnualInternationalConferenceofTheIEEEEngineeringinMedicineandBiologySocietyꎬSanFranciscoꎬ2004:2098 ̄2101.[11]ZHAOJWꎬZHENGYYꎬPANGYYꎬetal..Graphenequantumdotsasfull ̄colorandstimulusresponsivefluorescenceinkforinformationencryption[J].J.ColloidInterfaceSci.ꎬ2020ꎬ579:307 ̄314.[12]LIAOKCꎬHOGEN ̄ESCHTꎬRICHMONDFJꎬetal..Percutaneousfiber ̄opticsensorforchronicglucosemonitoringinvi ̄vo[J].Biosens.Bioelectron.ꎬ2008ꎬ23(10):1458 ̄1465.[13]HEWYꎬLIURQꎬLIAOYHꎬetal..Anew1ꎬ2ꎬ3 ̄triazoleanditsrhodamineBderivativesasafluorescenceprobeformercuryions[J].Anal.Biochem.ꎬ2020ꎬ598:113690.[14]JINCZꎬLIANGFYꎬWANGJQꎬetal..Rationaldesignofcyclometalatediridium(Ⅲ)complexesforthree ̄photonphos ̄phorescencebioimaging[J].Angew.Chem.ꎬ2020ꎬ132(37):16121 ̄16125[15]PENJWEINIRꎬROARKEBꎬALSPAUGHGꎬetal..Singlecell ̄basedfluorescencelifetimeimagingofintracellularoxygen ̄ationandmetabolism[J].RedoxBiol.ꎬ2020ꎬ34:101549 ̄1 ̄25.㊀第10期陈㊀静ꎬ等:基于荧光猝灭效应的光纤传感器研究进展1277㊀[16]BENITO ̄PEÑAEꎬVALDÉSMGꎬGLAHN ̄MARTÍNEZBꎬetal..Fluorescencebasedfiberopticandplanarwaveguidebio ̄sensors.Areview[J].Anal.Chim.Actaꎬ2016ꎬ943:17 ̄40.[17]STENKENJA.Introductiontofluorescencesensing[J].J.Am.Chem.Soc.ꎬ2009ꎬ131(30):10791.[18]VALEURBꎬBERBERAN ̄SANTOSMN.MolecularFluorescence:PrinciplesandApplications[M].2nded.Weinheim:Wiley ̄VCHꎬ2012.[19]UTZINGERUꎬRICHARDS ̄KORTUMRR.Fiberopticprobesforbiomedicalopticalspectroscopy[J].J.Biomed.Opt.ꎬ2003ꎬ8(1):121 ̄147.[20]SÁNCHEZ ̄ESCOBARSꎬHERNÁNDEZ ̄CORDEROJ.Fiberopticfluorescencetemperaturesensorsusingup ̄conversionfromrare ̄earthpolymercomposites[J].Opt.Lett.ꎬ2019ꎬ44(5):1194 ̄1197.[21]MORADIVꎬAKBARIMꎬWILDP.Afluorescence ̄basedpHsensorwithmicrofluidicmixingandfiberopticdetectionforwiderangepHmeasurements[J].Sens.ActuatorsA:Phys.ꎬ2019ꎬ297:111507.[22]帅彬彬.光子晶体光纤表面等离子体共振传感机理及其技术研究[D].武汉:华中科技大学ꎬ2013.SHUAIBB.ResearchonThePhotonicCrystalFiberBasedPlasmonicSensingMechanismandItsTechnique[D].Wuhan:HuazhongUniversityofScienceandTechnologyꎬ2013.(inChinese)[23]LIZYꎬXUYXꎬFANGWꎬetal..Ultra ̄sensitivenanofiberfluorescencedetectioninamicrofluidicchip[J].Sensorsꎬ2015ꎬ15(3):4890 ̄4898.[24]ZHANGZHꎬHUAFꎬLIUTꎬetal..Adouble ̄taperopticalfiber ̄basedradiationwaveotherthanevanescentwaveinall ̄fi ̄berimmunofluorescencebiosensorforquantitativedetectionofEscherichiacoliO157:H7[J].PLoSOneꎬ2014ꎬ9(5):e95429.[25]刘婷.基于荧光与表面增强拉曼光谱的光纤生化传感器[D].北京:清华大学ꎬ2014:26 ̄27.LIUT.OpticalFiberBiochemicalSensorBasedonFluorescenceandsurfaceenhancedRamanSpectra[D].Beijing:Tsing ̄huaUniversityꎬ2014:26 ̄27.(inChinese)[26]邸志刚ꎬ贾春荣ꎬ姚建铨ꎬ等.基于银纳米颗粒的HCPCFSERS传感系统优化设计[J].红外与激光工程ꎬ2015ꎬ44(4):1317 ̄1322.DIZGꎬJIACRꎬYAOJQꎬetal..OptimizationonHCPCFSERSsensorbasedonsilvernanoparticles[J].InfraredLaserEng.ꎬ2015ꎬ44(4):1317 ̄1322.(inChinese)[27]CREGANRFꎬMANGANBJꎬKNIGHTJCꎬetal..Single ̄modephotonicbandgapguidanceoflightinair[J].Scienceꎬ1999ꎬ285(5433):1537 ̄1539.[28]CHENHFꎬJIANGQJꎬQIUYQꎬetal..Hollow ̄core ̄photonic ̄crystal ̄fiber ̄basedminiaturizedsensorforthedetectionofaggregation ̄induced ̄emissionmolecules[J].Anal.Chem.ꎬ2019ꎬ91(1):780 ̄784.[29]YUJꎬZHAOXMꎬLIUBHꎬetal..Reductioninlasingthresholdofhollow ̄coremicrostructuredopticalfiberoptofluidiclaserbasedonfluorescenceresonantenergytransfer[J].Opt.FiberTechnol.ꎬ2020ꎬ58:102281.[30]BODOMꎬBALLONISꎬLUMAREEꎬetal..Effectsofsub ̄toxiccadmiumconcentrationsonbonegeneexpressionprogram:resultsofaninvitrostudy[J].Toxicol.Vitroꎬ2010ꎬ24(6):1670 ̄1680.[31]FATTA ̄KASSINOSDꎬKALAVROUZIOTISIKꎬKOUKOULAKISPHꎬetal..Therisksassociatedwithwastewaterreuseandxenobioticsintheagroecologicalenvironment[J].Sci.TotalEnviron.ꎬ2011ꎬ409(19):3555 ̄3563.[32]ZHOUMJꎬGUOJJꎬYANGCX.RatiometricfluorescencesensorforFe3+ionsdetectionbasedonquantumdot ̄dopedhy ̄drogelopticalfiber[J].Sens.ActuatorsB:Chem.ꎬ2018ꎬ264:52 ̄58.[33]ZHAOLXꎬDIFꎬWANGDBꎬetal..Chemiluminescenceofcarbondotsunderstrongalkalinesolutions:anovelinsightin ̄tocarbondotopticalproperties[J].Nanoscaleꎬ2013ꎬ5(7):2655 ̄2658.[34]MURRAYCBꎬNORRISDJꎬBAWENDIMG.SynthesisandcharacterizationofnearlymonodisperseCdE(E=sulfurꎬse ̄leniumꎬtellurium)semiconductornanocrystallites[J].J.Am.Chem.Soc.ꎬ1993ꎬ115(19):8706 ̄8715.[35]LIUYFꎬTANGXSꎬHUANGWꎬetal..Afluorometricopticalfibernanoprobeforcopper(Ⅱ)byusingAgInZnSquantumdots[J].Microchim.Actaꎬ2020ꎬ187(2):146.[36]GONÇALVESHMRꎬDUARTEAJꎬESTEVESDASILVAJCG.OpticalfibersensorforHg(Ⅱ)basedoncarbondots[J].Biosens.Bioelectron.ꎬ2010ꎬ26(4):1302 ̄1306.[37]LIUTꎬWANGWQꎬJIANDꎬetal..Quantitativeremoteandon ̄siteHg2+detectionusingthehandheldsmartphonebased1278㊀发㊀㊀光㊀㊀学㊀㊀报第41卷opticalfiberfluorescencesensor(SOFFS)[J].Sens.ActuatorsB:Chem.ꎬ2019ꎬ301:127168.[38]创新.SIM系列痕量爆炸物探测器[J].军民两用技术与产品ꎬ2007(12):31.CHUANGX.SIMseriestraceexplosivedetector[J].Univers.Technol.Prod.ꎬ2007(12):31.(inChinese)[39]CHUFHꎬYANGJJ.Coil ̄shapedplasticopticalfibersensorheadsforfluorescencequenchingbasedTNTsensing[J].Sens.ActuatorsA:Phys.ꎬ2012ꎬ175:43 ̄46.[40]LIUFKꎬCUIMXꎬMAJJꎬetal..Anopticalfibertaperfluorescentprobefordetectionofnitro ̄explosivesbasedontetra ̄phenylethylenewithaggregation ̄inducedemission[J].Opt.FiberTechnol.ꎬ2017ꎬ36:98 ̄104.[41]YANGJCꎬSHENRꎬYANPXꎬetal..Fluorescencesensorforvolatiletraceexplosivesbasedonahollowcorephotoniccrystalfiber[J].Sens.ActuatorsB:Chem.ꎬ2020ꎬ306:127585.[42]DINGLYꎬFANCꎬZHONGYMꎬetal..AsensitiveopticfibersensorbasedonCdSeQDsfluorophorefornitricoxidede ̄tection[J].Sens.ActuatorsB:Chem.ꎬ2013ꎬ185:70 ̄76.[43]邓辉ꎬ王晓英ꎬ肖吉群ꎬ等.基于荧光猝灭的锥尖型光纤氧传感探头[J].仪表技术与传感器ꎬ2015(7):14 ̄17.DENGHꎬWANGXYꎬXIAOJQꎬetal..Conicaltaperedtipfiberopticaloxygensensorprobebasedonfluorescencequenching[J].Instrum.Tech.Sens.ꎬ2015(7):14 ̄17.(inChinese)[44]ENDRESS+HAUSER.TechnicalinformationoxymaxCOS61D/COS61[EB/OL].(2018 ̄07 ̄17)[2020 ̄05 ̄29].ht ̄tps://portal.endress.com/wa001/dla/5000543/5894/000/04/TI00387CEN_1312.pdf.[45]ZHAOYTꎬPANGCLꎬWENZꎬetal..Amicrofibertemperaturesensorbasedonfluorescencelifetime[J].Opt.Com ̄mun.ꎬ2018ꎬ426:231 ̄236.[46]ANRITSUMETERCO.ꎬLTD.FiberOpticthermometerFL ̄2000user smanual[EB/OL].(2019 ̄01 ̄21)[2020 ̄05 ̄29].http://www.anritsu ̄meter.com.cn.[47]ANRITSUMETERCO.ꎬLTD.4 ̄channelFiberOpticthermometer AMOTH FL ̄2400user smanual[EB/OL].(2019 ̄01 ̄21)[2020 ̄05 ̄29].http://www.anritsu ̄meter.com.cn.[48]萩原康二ꎬ郝文杰.荧光式光纤温度计[J].传感器技术ꎬ1993(6):56 ̄58.KOJIHꎬHAOWJ.Fluorescentfiberopticthermometer[J].J.Trans.Technol.ꎬ1993(6):56 ̄58.(inChinese)[49]TONXAꎬACHAVꎬBONOMIPꎬetal..Adisposableevanescentwavefiberopticsensorcoatedwithamolecularlyimprin ̄tedpolymerasaselectivefluorescenceprobe[J].Biosens.Bioelectron.ꎬ2015ꎬ64:359 ̄366.[50]ZHUYYꎬCUIMXꎬMAJJꎬetal..Fluorescencedetectionofd ̄asparticacidbasedonthiol ̄enecross ̄linkedmolecularlyimprintedopticalfiberprobe[J].Sens.ActuatorsB:Chem.ꎬ2020ꎬ305:127323.[51]NGUYENTHꎬLINYCꎬCHENCTꎬetal..Fibreopticchloridesensorbasedonfluorescencequenchingofanacridiniumdye[C].ProceedingsofThe20thInternationalConferenceonOpticalFibreSensorsꎬEdinburghꎬ2009:750314 ̄1 ̄5.[52]POLLEYNꎬSINGHSꎬGIRIAꎬetal..UltrafastFRETatfibertips:potentialapplicationsinsensitiveremotesensingofmo ̄lecularinteraction[J].Sens.ActuatorsB:Chem.ꎬ2015ꎬ210:381 ̄388.[53]GUOJJꎬNIUMXꎬYANGCX.Highlyflexibleandstretchableopticalstrainsensingforhumanmotiondetection[J].Op ̄ticaꎬ2017ꎬ4(10):1285 ̄1288.[54]崔红.胆甾修饰OPE衍生物薄膜的创制及其荧光传感性能研究[D].西安:陕西师范大学ꎬ2013:31 ̄37.CUIH.CreationofCholestericModifiedOPEDerivativeFilmandItsFluorescenceSensingPerformance[D].Xi an:ShaanxiNormalUniversityꎬ2013:26 ̄27.(inChinese)[55]李晓峰.稀土掺杂碳量子点的制备及其荧光性能的研究[D].济南:济南大学ꎬ2019:17 ̄20.LIXF.PreparationandFluorescencePropertiesofRareEarthDopedCarbonQuantumDots[D].Jinan:UniversityofJi ̄nanꎬ2014:17 ̄20.(inChinese)陈静(1997-)ꎬ女ꎬ重庆人ꎬ硕士研究生ꎬ2015年于重庆邮电大学获得学士学位ꎬ主要从事光纤荧光传感的研究ꎮE ̄mail:m201972458@hust.edu.cn夏历(1976-)ꎬ男ꎬ湖北武汉人ꎬ博士ꎬ教授ꎬ博士研究生导师ꎬ2004年于清华大学获得博士学位ꎬ主要从事光纤通信与光纤传感的研究ꎮE ̄mail:xiali@hust.edu.cn。
关键二维半导体晶圆级制备及新原理信息器件基础研究”获自然科学奖一等奖“关键二维半导体晶圆级制备及新原理信息器件基础研究”获自然科学奖一等奖
该研究聚焦于新型二维半导体材料的晶圆级制备和新原理信息器件的应用,取得了一系列原创性成果。
该研究团队开发了多种关键二维半导体材料的晶圆级制备方法,实现了高质量、大面积、层数可控的薄膜生长。
他们还发明了基于二维半导体的新原理信息器件,如高性能晶体管、光电探测器和存储器等,这些器件具有高速、低功耗、高灵敏度等优点。
该研究成果为二维半导体材料的产业化应用奠定了基础,推动了信息技术的发展。
该研究团队的工作得到了国内外同行的广泛关注和认可,他们的成果发表在一系列高水平学术期刊上,并获得了多项国际和国内奖项。
此次获得自然科学奖一等奖是对该研究团队工作的高度肯定,也为他们未来的研究提供了更大的动力和支持。
相信在他们的努力下,二维半导体材料的研究和应用将会取得更加辉煌的成就。
光学与电子信息学院集成电路工程领域、软件工程领域学位硕士研究生课程简介
席或联合主席、IEEE Na notech nology Magazi ne杂志的技术编委。
近几年来先后主持承担了国家“ 863”计划、国家科技国际合作项目、国家自然科学基金、国家外专局重点项目、国防预研、湖北省重大科技攻关、武汉市科技攻关等科研项目。
具有较高的学术水平和丰富的科研工作经验,主持联合共建了华中科技大学-武汉新芯微电子技术中心平台(建设经费:3000万元)。
在Scientific Reports、Advaneed Materials> Applied Physics Letters 等国际权威期刊上发表SCI 收录论文一百余篇,获得2004年度新加坡国家技术奖(年度唯一)、中国国家科技进步三等奖等成果。
课程教学目标:
进一步强调现有的不同存储技术(磁存储、光存储、半导体存储与下一代随机存储)的核心原理,更进一步介绍了各种先进信息存储材料的特性及信息存储器件的结构设计原理与方法,重点探讨新型下一代信息存储器件的工作原理、核心技术及其最新研究进展。
课程大纲:(章节目录)
第一章课程概述(Introduction)
第二章光存储技术(Optical storage technology
§ 2.1 光存储基本知识
§ 2.2 只读式光盘
§ 2.3 可写式光盘
§ 2.4 可擦写光盘
§ 2.5 下一代光盘存储器技术
三早磁存储技术(Mag netic storage tech no
logy
§ 3.1 磁存储基本知识
§ 3.2 磁带存储
§ 3.3 硬盘存储器
第四章半导体存储器(Semic on ductor memory)
§ 4.1 半导体存储基本知识
§ 4.2 易失性存储器
§ 4.3 非易失性存储器
第五章下一代随机存储器技术(Simulation Method of IE)
§ 5.1 相变随机存储器
§ 5.2 铁电随机存储器
§ 5.3 磁阻随机存储器
§ 5.4 电阻随机存储器
§ 5.5 自旋力矩转移随机存储器
教材:
《信息存储器技术》缪向水主编(编写中)
主要参考书:
1. Semiconductor-device electronics R.M. Warner,Jr. B.L. Grung, 2002
2. Semic on ductor and metal nano crystals syn thesis and electro nic and optical
properties, Victor I. Klimov ,2004
3. Semiconductor device fundamentals Robert F. Pierret著;黄如等译,2004
4. Semic on ductor devices : basic prin ciples Jasprit Sin gh, 2001
5. 数字光盘存储技术,干福熹,1998
6. 铁电存储器,F.Scott,朱劲松,吕笑梅译,2004
7. Magn etic record ing tech no logy, C. Denis Mee, Eric D. Dan iel,1996
8. The foundation of magnetic recording,Second Edition,John C Mallinson,
1999
9. Adva need semic on ductor memories Architectures, Desig ns, and Applicati ons
Ashok K.Sharma,2005.1
Academic Qualification:
Pro. Miao mainly en gages in the research work such as phase-cha nge ran dom accessmemory, Memristor and cognitive storage. He employed as the Ministry of Education "Changjiang Scholar" Chair Professor in March 2007 and served five intern ati onal conferen ces/Chapter Orga nizi ng Committee Chair or Co-Chair, tech nical editor of IEEE Nano tech no logy .In rece nt years, he has presided over several n ati onal commitme nt "863" programs, Natio nal Science and Tech no logy Intern ati onal Cooperati on Project, the Nati onal Natural Scie nee Foun dati on of Chi na, key projects of State Administration of Foreign Experts Affairs, national defense pre-research, major scie ntific and tech no logical projects in Hubei Provin ce, Wuha n Scie nce and
Tech no logy research and other research projects. He has high academic sta ndards and a wealth of experience in research work, presided over jointly building a Huazhong Uni versity-Wuha n Xi nxin microelectro nics cen ter platform (con structi on fun ds: about
30 million yuan). He has published more than one hundred SCI papers in Scientific Reports, Advaneed Materials, Applied Physics Letters and other international authoritative journals, also won Nati onal Tech no logy Award from Sin gapore Government in 2004 (only one year), the third-class Award of National Science & Tech no logy Developme nt from Chin ese Gover nmenand other achieveme nts.
Course Objective
This course further emphasizes the core principles of different existing storage tech no logy, further in troduces the properties of adva need in formatio n storage materials and the prin ciples and methods of structural desig n for in formati on storage devices, focuses on explori ng the work ing prin ciples and core tech no logy of the n ext gen erati on in formatio n storage device and its latest research progress.
Course Outline
Chapter 1 In troducti on
Refere nee Books
1. Semiconductor-device electronics, RM Warner, Jr. BL Grung, 2002
2. Semic on ductor and metal nano crystals: syn thesis and electr onic and optical
properties, Victor I. Klimov, 2004
3. Semic on ductor device fun dame ntals, Robert F. Pierret forward; Huang Ru, G.,
2004。