基于LTspice的射极跟随器仿真实验
- 格式:doc
- 大小:146.00 KB
- 文档页数:4
实验四 共集电极放大电路——射极跟随器一、实验目的1.研究射极跟随器的性能。
2.进一步掌握放大器性能指标的测量方法。
3.了解“自举”电路在提高射极输出器输入电阻中的作用。
二、实验电路及使用仪表1.实验电路2.实验仪表 (1)直流稳压电源 (2)函数信号发生器 (3)双路示波器 (4)双路毫伏表 (5)万用表 三、实验内容及步骤1.按图4.3.1搭好电路。
调整和测量静态工作点(调w R ,使EQ I =2mA ),并将测量结果填入表4-10。
表 4-102.测量放大倍数u A ,观察输入电压和输出电压的相位关系。
条件:CC U =9V ,EQ I =2mA ,输入正弦频率调在中频段,i u =30mV 。
(1)输入电阻(i R )的测量由于射极跟随器输入阻抗高,在电压表的内阻不是很高时,电压表的分流作用不可忽视,它将使实际测量结果减小。
为了减小测量误差,提高测量精度,测量方法如图4.3.2。
在信号源和被测放大器之间串入一个已知电阻S R =24 k Ω。
A .先把开关K 合上(即S R 不接入时),调节信号源频率f 为中频段,输入信号幅度s u 为300mV ,测量此时的输出电压o1u 。
B .保持s u 不变,打开K (即接入S R ),测量此时的输出电压o2u ,然后根据公式求出输入电阻。
S R u u u R o2o1o1i -=(2)输出电阻(o R )的测量测量方法同一般放大器,如图4.3.3所示。
调节信号源使s u =300mV ,输入正弦频率调在中频段。
(10M 以上)在放大器无外接负载时输出电压o u ,然后接上负载时测出输出电压为ou ',根据下式求出输出电阻:L ooo )1(R u u R -'= 3.验证自举电路对提高射极跟随器输入电阻的作用,按图4.3.4接好电路测量。
(1)有自举时的射极跟随器的输入电阻i R =?(附:接入2C 是有自举的射随器,测量方法与测量输入电阻i R 相同。
射极跟随器实验报告班级:姓名:学号:一、实验目的(1)掌握射极跟随器的特性及测试方法。
(2)进一步学习放大器各项参数的测试方法。
二、实验原理射极跟随器的原理图如图(1)所示。
它是一个电压串联负反馈放大电路,具有输入电阻高、输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。
由于射极跟随器的输出取自发射极,故也称其为射极输出器。
1、输入电阻i R根据图(1)电路所示,有R rR E bei)1(β++=如考虑偏置电阻B R 和负载L R 的影响,则]//)(1(//[R R r RR L E be Biβ++=图 (1) 射极跟随器由上式可知,射极跟随器的输入电阻 i R 比共射极单管放大器的输入电阻be B i r R R //=的阻值要高的多。
但由于偏置电阻B R 的分流作用,输入电阻的阻值难以进一步提高。
输入电阻的测试方法与单管放大器的相同,试验线路如图(2)所示。
R UU UIU R isiii i -==即只要测得A 、B 两点的对地电位即可计算出i R 。
2、输出电阻O R根据图(1)电路所示,有ββrR rRbeE beO≈=//如考虑信号源内阻S R ,则ββ)//(//)//(R R rR R R rR B S beE B S beO +≈+=由上式可知,射极跟随器的输出电阻O R 比共射极单管放大器的输出电阻C O R R ≈低得多。
三极管的β值愈高。
输出电阻O R 的测试方法亦与单管放大器的相同,即先测出空载输出电压O U ,再测接入负载L R 后的输出电压L U ,根据U R R RUOLO LL+=即可求出R UU RL LO O)1(-= 3、电压放大倍数 根据图(1)电路所示,有1)//)(1()//)(1(≤+++=R R r R R AL E be L E Uββ上式说明射极跟随器的电压放大倍数10≤≤U A ,这是深度电压负反馈的结果。
肇庆教院之阳早格格创做真验二射极跟随器真验报告班别:教号:姓名:指挥教授:一、真验脚段1、掌握射极跟随器的个性及尝试要领2、进一步教习搁大器各项参数尝试要领二、真验仪器DZX-1型电子教概括真验拆置一个、TDS 1002 示波器一个、数字万用表一个、色环电阻一个、螺丝刀一把、导线若搞三、真验本理射极跟随器的本理图如图1所示. 它是一个电压串联背反馈搁大电路,它具备输进电阻下,输出电阻矮,电压搁大倍数靠近于1,输出电压不妨正在较大范畴内跟随输进电压做线性变更以及输进、输出旗号共相等个性.图1 射极跟随器射极跟随器的输出与自收射极,故称其为射极输出器.1、输进电阻Ri图1电路Ri=rbe+(1+β)RE如思量偏偏置电阻RB战背载RL的效率,则Ri=RB∥[rbe+(1+β)(RE∥RL)]由上式可知射极跟随器的输进电阻Ri 比共射极单管搁大器的输进电阻Ri =RB ∥rbe 要下得多,但是由于偏偏置电阻RB 的分流效率,输进电阻易以进一步普及.输进电阻的尝试要领共单管搁大器,真验线路如图2所示.图2 射极跟随器真验电路ΩK ΩK ΩK )即只消测得A 、B 二面的对于天电位即可估计出Ri.2、输出电阻RO 图1电路如思量旗号源内阻RS ,则由上式可知射极跟随器的输出电阻R0比共射极单管搁大器的输出电阻RO≈RC 矮得多.三极管的β愈下,输出电阻愈小.输出电阻RO 的尝试要领亦共单管搁大器,即先测出空载输出电压UO ,再测接进背载RL 后的输出电压UL ,根据 即可供出 RO3、电压搁大倍数图1电路)R ∥β)(R (1r )R ∥β)(R (1A L E be L E u +++=≤ 1上式证明射极跟随器的电压搁大倍数小于近于1,且为正值. 那是深度电压背反馈的截止.但是它的射极电流仍比基流大(1+β)倍,所以它具备一定的电流战功率搁大效率.4、电压跟随范畴电压跟随范畴是指射极跟随器输出电压uO跟随输进电压ui做线性变更的天区.当ui超出一定范畴时,uO便没有克没有及跟随ui做线性变更,即uO波形爆收了得真.为了使输出电压uO正、背半周对于称,并充分利用电压跟随范畴,固态处事面应选正在接流背载线中面,丈量时可间接用示波器读与uO的峰峰值,即电压跟随范畴;或者用接流毫伏表读与uO的灵验值,则电压跟随范畴U0P-P=22UO四、真验真质1、听课.动脚搞真验前,听指挥教授道课,了解真验历程的注意事项,掌握各丈量器材的使用要领.2、按图2组接电路;固态处事面的安排接通+12V曲流电源,正在B面加进f=1KHz正弦旗号ui,输出端用示波器监视输出波形,反复安排RW及旗号源的输出幅度,使正在示波器的屏幕上得到一个最大没有得真输出波形,而后置ui=0,用万用表曲流电压档丈量晶体管各电极对于天电位,将测得的本初数据记进表1.表1 晶体管各电极对于天电位UE、UE战UC以及流过RE电流IE(正在底下所有尝试历程中脆持RW值没有变(即脆持静处事面IE没有变))2、丈量电压搁大倍数Au接进背载,正在B面加f=1KHz正弦旗号ui,安排输进旗号幅度,用示波器瞅察输出波形uo,正在输出最大没有得真情况下,用示波器测Ui、UL值.将本初值记进表2.表2 Ui、UL的值战电压搁大倍数Au图3 示波器波形图截图3、丈量输出电阻R0接上背载RL=1K,正在B面加f=1KHz正弦旗号ui,用示波器监视输出波形,测空载输出电压UO,有背载时输出电压UL,将本初值记进表3.表3 空载输出电压UO、有背载时输出电压UL战输出电阻R04、丈量输进电阻Ri正在A面加f=1KHz的正弦旗号uS,用示波器监视输出波形,分别测出A、B面对于天的电位US、Ui,将本初值记进表4.表4 A、B面对于天的电位US战Ui以及输进电阻Ri5、尝试跟随个性接进背载RL=1KΩ,正在B面加进f=1KHz正弦旗号ui,渐渐删大旗号ui幅度,用示波器监视输出波形曲至输出波形达最大没有得真,并丈量对于应的UL值,将本初值记进表5.表5 输出波形达最大没有得真时的Ui战UL值五、数据处理与分解1、数据处理将表1至表5的丈量本初数据按三位灵验数字对于应挖进表6至10.表6 晶体管各电极对于天电位UE、UE战UC以及流过RE电流IE表7 Ui、UL的值战电压搁大倍数Au表8 空载输出电压UO、有背载时输出电压UL战输出电阻R0表9 A 、B 面对于天的电位US 战Ui 以及输进电阻Ri表10 输出波形达最大没有得真时的Ui 战UL 值表8中, L LO O 1)R U U (R -=表9中, R U U U I U R is ii i i -==ΩK2、数据分解⑴ 由=O R 24.2KΩ, =i R ΩK 可知,射极跟随器输进电阻下,输出电阻矮.⑵ 由Au=0.97可知,射极跟随器的电压搁大倍数小于近于1,且为正值. 那是深度电压背反馈的截止.但是它的射极电流仍比基流大(1+β)倍, 所以它具备一定的电流战功率搁大效率.六、真验论断1、射极跟随器输进电阻下,输出电阻矮;2、射极跟随器的电压搁大倍数小于近于1.七、真验感受1.万能表没有克没有及测下频接流电.2.丈量面要尽管短.3.间接丈量电流没有成止,可估计其二端电压,丈量其二端电压.。
实验五射极跟随器一、实验目的1、掌握射极跟随器的特性及测试方法2、进一步学习放大器各项参数测试方法二、实验原理射极跟随器的原理图如图5-1所示。
它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。
图5-1 射极跟随器射极跟随器的输出取自发射极,故称其为射极输出器。
1、输入电阻R i图5-1电路R i=r be+(1+β)R E如考虑偏置电阻R B和负载R L的影响,则R i=R B∥[r be+(1+β)(R E∥R L)]由上式可知射极跟随器的输入电阻R i比共射极单管放大器的输入电阻R i=R B∥r be要高得多,但由于偏置电阻R B的分流作用,输入电阻难以进一步提高。
输入电阻的测试方法同单管放大器,实验线路如图5-2所示。
图5-2 射极跟随器实验电路RU U U I U R is i ii i -==即只要测得A 、B 两点的对地电位即可计算出R i 。
2、输出电阻R O 图5-1电路βr R ∥βr R be E be O ≈=如考虑信号源内阻R S ,则β)R ∥(R r R ∥β)R ∥(R r R B S be E B S be O +≈+=由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。
三极管的β愈高,输出电阻愈小。
输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据O LO L L U R R R U +=即可求出 R OLLO O 1)RU U (R -=3、电压放大倍数图5-1电路)R ∥β)(R (1r )R ∥β)(R(1A L Ebe L EV +++=≤ 1上式说明射极跟随器的电压放大倍数小于近于1,且为正值。
这是深度电压负反馈的结果。
但它的射极电流仍比基流大(1+β)倍, 所以它具有一定的电流和功率放大作用。
实用文档之"肇庆学院"实验二射极跟随器实验报告班别:学号:姓名:指导老师:一、实验目的1、掌握射极跟随器的特性及测试方法2、进一步学习放大器各项参数测试方法二、实验仪器DZX-1型电子学综合实验装置一个、TDS 1002 示波器一个、数字万用表一个、色环电阻一个、螺丝刀一把、导线若干三、实验原理射极跟随器的原理图如图1所示。
它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。
图1 射极跟随器射极跟随器的输出取自发射极,故称其为射极输出器。
1、输入电阻R i图1电路R i =r be +(1+β)R E如考虑偏置电阻R B 和负载R L 的影响,则 R i =R B ∥[r be +(1+β)(R E ∥R L )]由上式可知射极跟随器的输入电阻R i 比共射极单管放大器的输入电阻R i =R B ∥r be 要高得多,但由于偏置电阻R B 的分流作用,输入电阻难以进一步提高。
输入电阻的测试方法同单管放大器,实验线路如图2所示。
图2 射极跟随器实验电路(其中,R L 的测量值为0.995ΩK ,取1.00ΩK ;R 的测量值为1.98ΩK )R U U U I U R is ii i i -==即只要测得A 、B 两点的对地电位即可计算出R i 。
2、输出电阻R O 图1电路βr R ∥βr R be E be O ≈=如考虑信号源内阻R S ,则β)R ∥(R r R ∥β)R ∥(R r R B S be E B S be O +≈+=由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。
三极管的β愈高,输出电阻愈小。
输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据O LO LL U R R R U +=即可求出 R OL LOO 1)R U U (R -= 3、电压放大倍数图1电路)R ∥β)(R (1r )R ∥β)(R (1A L E be L E u +++=≤ 1上式说明射极跟随器的电压放大倍数小于近于1,且为正值。
射极跟随器实验报告1. 引言射极跟随器是一种广泛应用于电子设备中的电路,其作用是使输出端的电压或电流跟随输入端的变化。
本实验旨在探究射极跟随器的基本原理、性能特点以及应用实例。
2. 实验目的- 理解射极跟随器的工作原理- 学习如何设计和搭建射极跟随器电路- 掌握射极跟随器的性能测试方法和结果分析3. 实验材料和仪器- NPN型晶体管(例如2N3904)- 电压源- 电阻、电容等常见元器件- 示波器- 万用表4. 实验步骤4.1 搭建射极跟随器电路根据给定的电路图,选择合适的元器件进行搭建。
确保电路连接正确,无误后进行下一步。
4.2 测试射极跟随器的静态工作点使用万用表测量晶体管的射极电流和集电极电压,并记录下来。
通过计算可以得到静态工作点,进一步分析电路性能。
4.3 测试射极跟随器的动态响应特性通过改变输入端的信号频率和幅度,观察电路输出(集电极)的响应。
使用示波器进行波形显示和观察,并记录实验结果。
4.4 对实验结果进行分析根据实验数据,分析射极跟随器的增益、频率响应特性等性能。
比较不同元器件参数对电路性能的影响。
5. 实验结果和讨论记录并整理实验数据结果,分析电路的性能特点。
讨论射极跟随器在电子设备中的应用及其优缺点。
6. 结论总结实验结果,针对射极跟随器的特点和应用进行归纳总结。
7. 实验注意事项- 实验过程中需要注意安全操作,避免触电风险。
- 确保电路连接正确,避免短路或开路等问题。
- 对于高频信号的测试,需要选择合适的示波器和电路布线,以避免信号失真和干扰。
8. 参考文献提供相关射极跟随器的原理资料、电路设计参考资料以及其他相关论文、教材等。
9. 结束语通过本实验,我们对射极跟随器的工作原理、性能特点和应用有了更加深入的了解。
射极跟随器作为一种常用的电路,具有重要的应用价值,值得进一步研究和探索。
- 14 - 模拟电子线路实验实验四 射极跟随器1、掌握射极跟随器的特性及其测试方法;2、进一步学习放大器各项性能参数及测试方法。
1、XJ 4318双踪示波器;2、DT 9505数字万用表;3、FD -SJ -MN 多功能模拟实验箱。
1、参照教材有光章节内容,熟悉射极跟随器原理及特点。
2、根据图4-1元器件参数(E V 调为6V ),估算出三极管的元器件参数,估算静态工作点,画交、直流负载线,输入电阻,输出电阻。
图4-1 射极跟随器静态工作点估算: 输入电阻: ()ebe bi i R r i v R ⋅++==β1输出电阻: β+'+=10s be R r R电压放大倍数: ()()ebe eiV R r R V V A ββ++⋅+==110实验四 射极跟随器 - 15 -其中,()()EEbbbe I I r r 261200261⋅++=⋅++'=ββ,b s s R R R //='。
1、按图4-1电路接线。
2、直流工作点的调整:调ΩM 1的电位器,使V V E 6=。
3、测量电压放大倍数V A 。
接入负载Ω=K R L 1,在B 点接入KHz f 1=的信号,V V p p i 4)(=-,用示波器观察,在输出信号幅度最大且不失真的情况下,测L V 值,记录在表4-1中。
表4-10R在B 点加KHz f 1=正弦波信号,mV V i 200=,接上负载Ω=K R L 3时,用示波器观察输出波形,测空载输出电压)(0∞=L R V ,有负载输出电压)3(Ω=K R V L L 的值。
则L L R V V R ⋅⎪⎪⎭⎫⎝⎛-=100 将所测数据填入表4-2中表4-2mV 2000V L V 5、测输入电阻i R在输入端接入Ω=K R 5的电阻,A 点加入KHz f 1=的正弦信号,用示波器观察输出波形,用数字万用表分别测出A ,B 点对地的电位s V 、i V 。
射级跟随电路实验报告
实验目的:
1.通过实验了解射级跟随电路的基本原理和特点。
2.通过实验学会设计和制作射级跟随电路。
实验仪器:
1.示波器
2.函数信号发生器
3.电路板和元件
实验原理:
射级跟随电路是其中一种线性放大电路,主要用于实现电压跟随功能。
其基本构成是由输入级和输出级两个级构成,且两个级
之间相互耦合。
其优点是输入输出之间具有很高的隔离度,稳定性高,通用性强,常用于各种高灵敏度的信号放大和跟随。
实验过程:
1.根据实验原理所述,准备好所需的实验仪器和元件,将电路板连线按照图示电路进行连接。
2.使用函数信号发生器输入所需的信号波形,输出信号波形通过示波器实时观察和分析。
3.根据观察和分析结果,进行必要的电路调整和优化,以确保电路的稳定性和输出的精准性。
4.进行参数测试和记录,对实验过程中出现的问题进行及时分析和解决。
实验结果:
经过实验,我们成功地设计出了一款基于射级跟随电路原理的
电路板,并在不同频率下进行测试和记录。
测试结果表明,对于
不同级数和元件选型,射级跟随电路的跟随效果和输出精准性有
较大的区别。
同时,通过多次实验和调整,我们也意识到电路板
的布局和元件间的距离会对电路的稳定性和输出精准性产生影响。
结论:
通过射级跟随电路实验,我们更深刻地了解了射级跟随电路的
基本原理和特点,学会了设计和制作射级跟随电路,同时也掌握
了一定的电子电路实验技能和知识。
我们相信通过持续不断的实
践和学习,将能够更上一层楼,在电子电路与工程领域中取得更
大的突破与创新。
实验二射极跟随器一、实验目的1、掌握射极跟随器的特性及测试方法;2、进一步学习放大器各项参数测试方法;二、实验原理射极跟随器的原理图如图1所示。
它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。
图1 射极跟随器原理图射极跟随器的输出取自发射极,故称其为射极输出器。
1、输入电阻R:如考虑偏置电阻RB和负载R L的影响,则:由上式可知射极跟随器的输入电阻Ri比共射极单管放大器的输入电阻高的多,但由于偏置电阻R B的分流作用,输入电阻难以进一步提高。
输入电阻的测试方法同单管放大器,实验线路如图2所示。
图2 射极跟随器实验电路即只要测得A、B两点的对地电位即可计算出R i。
2、输出电阻Ro:见图l电路如考虑信号源内阻Rs,则由上式可知射极跟随器的输出电阻Ro比共射极单管放大器的输出电阻(约等于Rc)低得多。
三极管的β愈高,输出电阻愈小。
输出电阻Ro的测试方法亦同单管放大器,即先测出空载输出电压Uo,再测接入负载R L后的输出电压U L,根据即可求出Ro3、电压放大倍数:见图1电路:上式说明射极跟随器的电压放大倍数小于近于1,且为正值。
这是深度电压负反馈的结果。
但它的射极电流仍比基极电流大(1十β)倍,所以它具有一定的电流和功率放大作用。
4、电压跟随范围电压跟随范围是指射极跟随器输出电压Uo跟随输入电压Ui;作线性变化的区域。
当Ui超过一定范围时,Uo便不能跟随Ui作线性变化,即Uo波形产生了失真。
为了使输出电压Uo正、负半周对称,并充分利用电压跟随范围,静态工作点应选在交流负载线中点,测量时可直接用示波器读取Uo的峰峰值,即电压跟随范围;或用交流毫伏表读取Uo的有效值,则电压跟随范围:三、实验设备与器件12V直流电源、函数信号发生器、双踪示波器、交流毫伏表、直流电压表、射随器实验电路、1K 电阻器。
基于LTspice的射极跟随器仿真实验
1.实验要求与目的
(1) 进一步掌握静态工作点的调试方法,深入理解静态工作点的作用。
(2) 调节电路的跟随范围,使输出信号的跟随范围最大。
(3) 测量电路的电压放大倍数、输入电阻和输出电阻。
(4) 测量电路的频率特性。
2.实验原理
在射极跟随器电路中,信号由基极和地之间输入,由发射极和地之间输出,集电极交流等效接地,所以,集电极是输入/输出信号的公共端,故称为共集电极电路。
又由于该电路的输出电压是跟随输入电压变化的,所以又称为射极跟随器。
3.实验电路
射极跟随器电路如图1所示。
图1 射极跟随器
4.实验步骤
(1) 静态工作点的调整。
按图1连接电路,输入信号由信号发生器产生一个幅度为1V、频率为1 kHz 的正弦信号。
要注意使信号不失真输出。
(2) 跟随范围调节。
增大输入信号直到输出出现失真,观察出现了饱和失真还是截止失真,再增大或减小信号,使失真消除。
再次增大输入信号,若出现失真,再调节信号使输出波形达到最大不失真输出,此时电路的静态工作点是最佳工作点,输入信号是最大的跟随范围。
最后输入信号增加到2.8 V,电路达到最大不失真输出如图2所示。
最大输入、输出信号波形如图3所示。
图2 输出波形达到最大不失真输出是2.8V
图3 最大输入、输出信号波形
(3) 测量电压放大倍数。
观察图3所示输入、输出波形,射极跟随器的输出信号与输入信号同相,幅度基本相等,所以,放大倍数A V ≈1。
(4) 测量输入电阻。
测量输入电阻电路如图4所示,在输入端接入电阻R 1 = 2 k ,输入端输入频率为1000 Hz ,电压为1 V 的输入信号,进行AC 扫描结果如图4所示。
电路的输入电阻为:
图4_1输入电阻测量电路
Ω≈=
k 6.29i
i
i I U
r
图3 输入电阻测试电路
图4_2 输入电阻测量结果
(5) 测量输出电阻。
在测量共射极放大电路的输出电阻时,采用的是不接负载时测一次输出电压,再接负载测一次,通过计算得到输出电阻的大小(两次电压法)。
这里再介绍一种测量输出电阻的方法,即将电路的输入端短路,将负载拆除,在输出端加交流电源,测量输出端的电压和电流,电路如图5_1所示。
输出电阻测试数据如图5_2所示
图5_1 输出电阻测试电路
根据测量结果电路的输出电阻为
Ω 18o
o
o ==
I U
r
图5_2 输出电阻测试结果
(6) 测量电路的频率特性。
测量电路的频率特性即波特图。
仍按图1电路。
使用AC扫描,图6所示是幅频特性曲线和相频特性曲线,各项参数设置如图中所示。
移动数轴,可以读取电路的下限频率和上限频率,求得通频带。
并且从幅频曲线可以知道,在通频带内,输出与输入的比约为1∶1;从相频曲线可以看到,在通频带内,电路的输出与输入相位差为0,说明输出与输入信号同相。
图6 测量的电路的频率特性波特图
5.结论
射极跟随器具有下列特点:
(1) 电压放大倍数接近于1,输出与输入同相,输出信号跟随输入信号的变化,电路没有电压放大能力。
(2) 输入电阻高,输出电阻低,说明电路具有阻抗变换作用,带负载能力强。