6反比例函数九种基本模型
- 格式:docx
- 大小:58.53 KB
- 文档页数:1
反比例函数常见模型一、知识点回顾例1:如图的锐角顶点是直线y=x+m 与双曲线y=在第一象限的交点,且ABC Rt ∆xm,(1)求m 的值 (2)求的面积3=∆AOB S ABC ∆分别过,,作y 轴平行1A 2A 3A ,作x 轴的平行线,2B 3B 影部分的面积之和为上,且AB ∥x 轴,C 、D 在x 轴上,任意不重合的两点,直线AB 交轴于Mx 轴于F 点,x BF ⊥DF例2:如图,一次函数y ax b =+的图象与x 轴,y 轴交于A ,B 两点,与反比例函数ky x=的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①;②相似于DEF CEF S S ∆∆=AOB ∆图1图2模型三:如图,已知反比例函数(k ≠0,x>0)上任意两点P 、C ,过P 做PA ⊥x 轴,ky x=交x 轴于点A ,过C 做CD ⊥x 轴,交x 轴于点D ,则.S S =两点,)的中点E ,交AB 于点D ,若梯形 D. xy 6=题3 题4题5如图,A,B 是函数的图像上关于原点对称的任意xy 2=两点,BC//x 轴,AC//y 轴,的面积记为S ,则S (ABC ∆A.S=2 B.S=4 C.2<S<4 AB=AC=2,直角顶点A 在直线y=x 分别平行于x 轴,y 轴,若双曲线y=kx(1≤k<4B 1、如图,点A 在双曲线上,点B 在双曲线上,且AB ∥x 轴,C 、D 在x 轴上,1y x =3y x=若四边形ABCD 为矩形,则它的面积为 .、如图,双曲线经过四边形的顶点A 、C ,∠ABC =90°,OC )0(2x xy =轴正半轴的夹角,AB ∥轴,将△x交轴于,若,则的解析式是 .y C 1AOB S ∆=2y 课后习练一、填空题42、反比例函数y=kx的图像上有一点k=_______;点P 到原点的距离3、已知双曲线xy=1与直线4、反比例函数y=k的图像经过点 D .22到原点的距离为3)A.0个B.2个C.4个D.无数个。
反比例函数模型及应用 第一讲一、反比例函数的四个模型:(证明略)模型一:(1)=ABOC S k 矩形;(2)=2ACO ABO ACN OBM kS S S S ∆∆∆∆===模型二:=ABO AMNB S S ∆梯形;模型三:AM BN =模型四:AB N //M注:以上四个模型中点A 、B 都是反比例函数上的任一点.二、模型的应用例1:如图,一次函数y ax b =+的图象与x 轴、y 轴交于A ,B 两点,与反比例函数ky x=的图象交于C ,D 两点,过C ,D 两点 分别作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列 四个结论:①△DEF 与△CEF 的面积相等; ②△AOB ∽△FOE ; ③△DCE ≌△CDF ; ④AC=BD . 其中正确的结论是____________(填写序号).例2:已知反比例函数(0)ky k x=>的图象与一次函数y=-x+6 相交与第一象限的A 、B 两点,如图所示,过A 、B 两点分别做 x 、y 轴的垂线,线段AC 、BD 相交与P ,给出以下结论:① OA=OB ;②△OAM ∽△OBN ;③若△ABP 的面积是8,则k=5;④ P 点一定在直线y=x 上;其中正确的结论是____________(填 写序号).例3:(2014遵义)如图,反比例函数(0)ky k x=>的图象与矩 形ABCO 的两边相交于E 、F 两点,若E 是AB 的中点,2BEF S ∆=,则k 得值为____________ .例4:(2013•重庆)如图,在直角坐标系中,正方形OABC 的顶 点O 与原点重合,顶点A 、C 分别在x 轴、y 轴上,反比例函数(0)ky k x=>的图象与正方形的两边AB 、BC 分别交于点M 、N , ND ⊥x 轴,垂足为D ,连接OM 、ON 、MN .下列结论:①△OCN ≌ △OAM ;②四边形DAMN 与△MON 面积相等;③若∠MON=45°, MN=2,则点C的坐标为1).其中正确的结论是____________(填写序号).一、反比例函数与几何图形的综合(重庆中考12题) 1. 如图,已知四边形ABCD 是平行四边形,BC=2AB ,A ,B 两点 的坐标分别是(-1,0),(0,2),C ,D 两点在反比例函k y x =(0x <)的图象上,则k 的值为______________.第1题图 第2题图2. 如图,已知第一象限内的点A 在反比例函数2y x=的图象 上,第二象限内的点B 在反比例函数ky x =的图象上,且OA ⊥OB ,,则k 的值为______________.3. 如图,在函数11k y x =(0x <)和22ky x =(0x >)的图象上,分别有A ,B 两点,若AB ∥x 轴,交y 轴于点C ,且OA ⊥OB ,12AOC S =△,92BOC S =△,则线段AB 的长度为__________.第3题图 第4题图4. 如图,等腰直角三角形ABC 的顶点A ,C 在x 轴上,∠ACB= 90°,22AC BC ==3y x=(0x >)的图象分别与AB ,BC 交于点D ,E .连接DE ,当△BDE ∽△BCA 时,点E 的坐标为______________. 5. 如图,已知直线12y x =与双曲线ky x=(0k >)交于A ,B 两点,点B 的坐标为(-4,-2),C 为第一象限内双曲线ky x=(0k >)上一点.若△AOC 的面积为6,则点C 的坐标为______________.第5题图 第6题图6. 如图,直线12y x =与双曲线ky x=(0k >,0x >)交于点 A ,将直线12y x =向上平移4个单位长度后,与y 轴交于点C ,与双曲线ky x=(0k >,0x >)交于点B .若OA=3BC ,则k 的值为____________.7. 如图,在平面直角坐标系xOy 中,□ABOC 的对角线OA ,BC交于点E ,双曲线ky x =(0k <)经过C ,E 两点.若□ABOC 的面积为10,则k 的值为________________.第7题图第8题图8.如图,正方形ABCD的边BC在x轴上,E是对角线AC,BD的交点.若反比例函数2yx=(0x>)的图象经过A,E两点,则点E的坐标为________________.。
反比例函数19种模型反比例函数是数学中常见的函数类型之一,用来表示两个变量之间的反比关系。
以下是反比例函数的一些常见模型:1.直线模型:y = k/x,其中k为常数。
2.比例关系模型:y = (kx)/(ax + b),其中k、a、b为常数。
3.反比例关系模型:y = (k/x) + a,其中k、a为常数。
4.工作时间模型:y = k/t,其中k为常数,t表示时间。
5.人口密度模型:y = k/A,其中k为常数,A表示面积。
6.速度和时间模型:y = k/t,其中k为常数,t表示时间。
7.飞行时间和飞行距离模型:y = k/(x^2),其中k为常数,x表示距离。
8.投资收益模型:y = k/(x+a),其中k和a为常数,x表示投资金额。
9.流量与管道直径模型:y = k/(x^2),其中k为常数,x表示管道直径。
10.压力和体积模型:y = k/x,其中k为常数,x表示体积。
11.购买力和价格模型:y = k/x,其中k为常数,x表示价格。
12.照明强度和距离模型:y = k/(x^2),其中k为常数,x表示距离。
13.土地价格和面积模型:y = k/A,其中k为常数,A表示面积。
14.音量和距离模型:y = k/(x^2),其中k为常数,x表示距离。
15.饼干消耗和人数模型:y = k/n,其中k为常数,n表示人数。
16.温度和容器大小模型:y = k/V,其中k为常数,V表示容器大小。
17.实验结果和样本数量模型:y = k/n,其中k为常数,n表示样本数量。
18.电阻和电流模型:y = k/I,其中k为常数,I表示电流。
19.体积和浓度模型:y = k/C,其中k为常数,C表示浓度。
这些模型仅是反比例函数在不同应用领域中的一些示例。
实际上,反比例函数可以描述的反比关系很多,取决于具体应用的背景和需求。
对于不同的问题和场景,可以选择适合的反比例模型来建模和分析。
反比例函数常见几何模型归纳(七大模型)考点归纳【模型1:定值矩形与定值三角形】【模型2:平行线之间的定值三角形】【模型3:“重叠型”定值矩形/定值三角形】【模型4:“喇叭三角形”】【模型5:中点模型】【模型6:比例模型】【模型7:相等模型】考点精讲【模型1:定值矩形与定值三角形】【方法点拨】1.如图,在平面直角坐标系xOy 中,点P 在反比例函数y =6x的图象上,过点P 作P A ⊥y 轴,PB ⊥x 轴,垂足分别为A 、B ,则矩形AOBP 的面积是()A.12B.9C.6D.3【答案】C【分析】本题考查了反比例函数y =k x k ≠0 系数k 的几何意义:从反比例函数y =kxk ≠0 图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为k .因为过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积S 是个定值,即S =k ,据此解答即可.【详解】解:∵点P 在反比例函数y =6x的图象上,过点P 作P A ⊥y 轴,PB ⊥x 轴,∴矩形AOBP 的面积=6 =6.故选:C .2.如图,点A 是反比例函数y =-4x <0 的图象上的一点,过点A 作平行四边形ABCD ,使B 、C 在x 轴上,点D 在y 轴上,则平行四边形ABCD 的面积为()A.2B.4C.6D.8【答案】B【分析】本题考查了反比例函数y =k x k ≠0 系数k 的几何意义:从反比例函数y =kxk ≠0 图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为k .作AH ⊥OB 于H ,根据平行四边形的性质得AD ∥OB ,则S 平行四边形ABCD =S 矩形AHOD ,再根据反比例函数y =kxk ≠0 系数k 的几何意义得到S 矩形AHOD =-4 =4,所以有S 平行四边形ABCD =4.【详解】解:作AH ⊥OB 于H ,如图,∵四边形ABCD 是平行四边形,∴AD ∥OB ,∴S 平行四边形ABCD =S 矩形AHOD ,∵点A 是反比例函数y =-4xx <0 的图象上的一点,∴S 矩形AHOD =-4 =4,∴S 平行四边形ABCD =4.故选:B .3.如图,A 、B 是反比例函数y =kx(k ≠0)的图象上两点,点C 、D 、E 、F 分别在坐标轴上,若正方形OCAD 的面积为6,则矩形OEBF 的面积为.【答案】6【分析】本题主要考查反比例函数中比例系数k 的几何意义和函数图象的对称性,难易程度适中,是中考较常见的考查点.根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的四边形的面积S 的关系即S =k ,进行解答即可.【详解】解:∵S 正方形OCAD =OD ⋅OC =x A ⋅y A =k =6,∴S 长方形OCAD =OE ⋅OF =x B ⋅y B =k =6.故答案为:6.4.如图是反比例函数y =-4x在第二象限内的图象,则图中矩形BCOA 的面积为.【答案】4【分析】根据矩形的面积公式S 矩形BCOA =AB ⋅BC =a ⋅b =ab ,再根据反比例函数的性质解答即可.本题考查了矩形的面积公式,反比例函数的性质,熟练运用反比例函数的性质是解题的关键.【详解】解:设点B a ,b ,∵四边形BCOA 是矩形,∴AB =a ,BC =b ,∴S 矩形BCOA =AB ⋅BC =a ⋅b =ab ,∵点B 在反比例函数y =-4x在图象上,∴a ⋅b =-4,∴a ⋅b =4,∴S 矩形BCOA =ab =4;故答案为4.【模型2:平行线之间的定值三角形】【方法点拨】5.如图,是反比例函数y =5x 和y =-9x在x 轴上方的图象,x 轴的平行线AB 分别与这两个函数图象相交于点A ,B ,则△AOB 的面积是()A.7B.14C.18D.28【答案】A【分析】本题考查了反比例函数k 的几何意义,利用反比例函数的比例系数的几何意义直接写出答案即可.【详解】解:∵x 轴的平行线AB 分别与这两个函数图象相交于点A .B ,∴AB ⊥y 轴,∵点A 、B 在反比例函数y =5x 和y =-9x 的x 轴上方的图象上,∴S △AOB =S △COB +S △AOC =12(5+9)=7,故选:A .6.已知反比例函数y =-6x x <0 与y =2xx >0 的图象如图所示,过y 轴正半轴上的任意一点P 作x 轴的平行线,分别与这两个函数的图象交于M ,N 两点.若点A 是x 轴上的任意一点,连接MA ,NA ,则S △AMN 等于.【答案】4【分析】本题考查了反比例函数k 的几何意义,连接MO ,NO ,根据MN ∥x 轴可得,S △AMN =S △OMN ,进而即可求解.【详解】解:如图所示,连接MO ,NO ,∵MN ∥x 轴∴S △AMN =S △OMN =S △POM +S △PON =-62+22=4故答案为:4.7.如图,在函数y =2x x >0 的图象上任取一点A ,过点A 作y 轴的垂线交函数y =-8xx <0 的图象于点B ,连接OA 、OB ,则△AOB 的面积是.【答案】5【分析】根据反比例函数系数k 的几何意义进行计算即可.理解反比例函数系数k 的几何意义是正确解答的关键.【详解】解:如图,∵点A 在函数y =2xx >0 的图象上,∴S △AOC =12×2=1,又∵点B 在反比例函数y =-8xx <0 的图象上,∴S △BOC =12×8=4,∴S △AOB =S △AOC +S △BOC =1+4=5,故答案为:5.8.如图,B 、C 两点分别在函数y =5x (x >0)和y =-1x(x <0)的图象上,线段BC ⊥y 轴,点A 在x 轴上,则△ABC 的面积为.【答案】3【分析】设B m ,n ,则mn =5,结合BC ⊥y 轴,得到C -1n ,n ,计算BC =m --1n =m +1n,根据平行线间的距离处处相等,得到△ABC 的面积为1BC ·y B =1m +1×n 计算即可.本题考查了反比例函数的性质,平行线间距离处处相等,熟练掌握反比例函数的性质是解题的关键.【详解】设B m ,n ,根据题意,得mn =5,∵BC ⊥y 轴,∴C -1n ,n ,∴BC =m --1n =m +1n,根据平行线间的距离处处相等,得到△ABC 的面积为12BC ·y B =12m +1n ×n =12mn +1 =3,故答案为:3.【模型3:“重叠型”定值矩形/定值三角形】【方法点拨】9.如图,点A 在反比例函数y =1x 的图像上,点B 在反比例函数y =3x的图像上,且AB ∥x 轴,点C .D 在x 轴上,若四边形ABCD 为长方形,则它的面积为.【答案】2【分析】此题考查了反比例函数的系数k 的几何意义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.首先延长BA 交y 轴于点E ,易得四边形ADOE 与四边形BCOE 是矩形,又由点A 在反比例函数y =1x 的图像上,点B 在反比例函数y =3x的图像上,即可得S 矩形ADOE =1,S 矩形BCOE =3,继而求得答案.【详解】解:延长BA 交y 轴于点E ,∵四边形ABCD 为矩形,且AB ∥x 轴,点C 、D 在x 轴上,∴AE ⊥y 轴,∴四边形ADOE 与四边形BCOE 是矩形,∵点A 在反比例函数y =1x 的图像上,点B 在反比例函数y =3x的图像上,∴S 矩形ADOE =1,S 矩形BCOE =3,∴S 矩形ABCD =S 矩形BCOE -S 矩形ADOE =3-1=2.故答案为:2.10.如图,点A 、B 分别是反比例函数y =3xx >0 的图象上两点,分别过点A 、B 向坐标轴作垂线,四边形ACEG 的面积记作S 1,四边形BFDG 的面积记作S 2,则S 1S 2(填>、<或=).【答案】=【分析】本题考查了反比例系数k 的几何意义,在反比例函数y =kx图像中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值k ,在反比例函数的图像上任意一点作坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12k ,且保持不变.根据反比例函数解析式中k 的几何意义可知S 矩形ACOD =S 矩形BEOF =3,设S 矩形DOEG =m ,得出S 1=3-m ,S 2=3-m ,即可得出答案.【详解】解:∵A ,B 两点在反比例函数y =3xx >0 的图像上,∴S 矩形ACOD =S 矩形BEOF =3,设S 矩形DOEG =m ,∴S 1=3-m ,S 2=3-m ,∴S 1=S 2.故答案为:=.11.如图,平行于x 轴的直线l 与函数y =6x (x >0)和y =2x(x >0)的图象分别相交于A ,B 两点,分别连接AO 、BO ,则△ABO 的面积为.【答案】2【分析】本题考查反比例函数图象上点的坐标特征,k 的几何意义,设l 交y 轴于点M ,根据反比例函数k 的几何意义,得出S △ABO =S △AOM -S △BOM =2,即可求解.【详解】解:如图,设l 交y 轴于点M ,∵S △AOM =3,S △BOM =1,则S △ABO =S △AOM -S △BOM =2,故答案为:2.12.如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x上,且AB ∥x 轴,则△ABO 的面积是.【答案】1【分析】本题主要考查了反比例函数比例系数的几何意义,延长BA 交y 轴于C ,则AB ⊥y 轴,根据反比例函数比例系数的几何意义可得S △AOC =12,S △BOC =32,则S △AOB =S △BOC -S △AOC =1.【详解】解:如图所示,延长BA 交y 轴于C ,∵AB ∥x 轴,∴AB ⊥y 轴,∵点A 在双曲线y =1x 上,点B 在双曲线y =3x上,∴S △AOC =12,S △BOC =32,∴S △AOB =S △BOC -S △AOC =1,故答案为:1.【模型4:“喇叭三角形”】【方法点拨】13.如图,点A ,B ,在反比例函数y =4x的图象上,连接OA ,OB ,分别过点A ,B 作x 轴的垂线,垂足分别为M ,N ,图中两块阴影部分面积分别为S 1、S 2;若S 1=1,则AMBN=.【答案】2【分析】本题考查的是反比例函数系数k 的几何意义,熟知在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积为12|k |是解答此题的关键.利用k 的几何意义求出△OAM 、△OBN 的面积,然后求出△OCM 的面积,利用相似三角形的性质得到S △OCM S △OBN =OM ON 2即可求解.【详解】解:设OB 交AM 于点C ,∵分别过点A ,B 作x 轴的垂线,垂足分别为M ,N ,∴S △OAM =S △OBN =2,∴S △OCM =S △OAM -S 1=2-1=1,又∵AM ∥BN ,∴△OCM ∽△OBN ,∴S △OCM S △OBN =OM ON2=12,∴OM ON=22,又∵OM ⋅AM =ON ⋅BN ,∴AM BN =ON OM =2.故答案为:214.如图是一个反比例函数(x >0)的图象,点A (2,4)在图象上,AC ⊥x 轴于C ,当点A 运动到图象上的点B (4,2)处,BD ⊥x 轴于D ,△AOC 与△BOD 重叠部分的面积为()A.1B.2C.34D.13【答案】A【解答】解:如图所示:∵点A (2,4),点B (4,2),AC ⊥x 轴于C ,BD ⊥x 轴于D ,∴点C 的坐标为(2,0),点D 的坐标为(4,0),AC ∥BD ,∴△OCE ∽△ODB ,∴OC OD =CE DB ,即24=CE 2解得CE =1,∴S △OCE OC ⋅CE 2=2×12=1,即△AOC 与△BOD 重叠部分的面积为1.故选:A .15.如图,过反比例函数y =9x(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得()A.S 1>S 2B.S 1=S 2C.S 1<S 2D.大小关系不能确定【答案】B 【解答】解:由于A 、B 均在反比例函数y =9x 的图象上,且AC ⊥x 轴,BD ⊥x 轴,则S 1=92;S 2=92.故S 1=S 2.故选:B .16.如图,在第一象限内,点P (2,3),M (a ,2)是双曲线y =k x (k ≠0)上的两点,P A ⊥x 轴于点A ,MB ⊥x 轴于点B ,P A 与OM 交于点C ,则△OAC 的面积为()A.32B.43C.2D.83【答案】B 【解答】解:把P (2,3),M (a ,2)代入y =k x得k =2×3=2a ,解得k =6,a =3,设直线OM 的解析式为y =mx ,把M (3,2)代入得3m =2,解得m =23,所以直线OM 的解析式为y =23x ,当x =2时,y =23×2=43,所以C 点坐标为(2,43),所以△OAC 的面积=12×2×43=43.故选:B .【方法点拨】条件:A /B 两点分别位y =k x上不同两点,延长AB 交x 轴与点F ,B 位AF 的中点结论:①▲ACF ~▲BDF ,且相似比为BF AF =12。
反比例函数十大模型反比例函数是一种常见的数学函数,它可以用来描述两个变量之间的反比例关系。
它的表达式为:y=k/x,其中k为常数,x为自变量,y为因变量。
反比例函数的特点是:当x增大时,y减小;当x减小时,y增大。
反比例函数是一种数学模型,它表示两个变量之间呈规律性反比关系的函数。
反比例函数的一般形式为 y=k/x,其中 x 和 y 是两个变量,k 是常数。
在这个模型中,当 x 的值变大时,y 的值会变小;当 x 的值变小时,y 的值会变大。
下面列举出十种常见的反比例函数模型:1.空气阻力模型:在一些物理运动的过程中,物体的运动受到空气的阻力影响,空气阻力与物体的速度呈规律性反比关系,可以用反比例函数来描述。
例如:F=kv^2,其中F 是空气阻力,v 是物体的速度,k 是常数。
2.电视天线模型:电视天线的收视质量与天线的高度呈规律性反比关系,可以用反比例函数来描述。
例如:Q=k/h,其中 Q 是电视天线的收视质量,h 是天线的高度,k 是常数。
3.热传导模型:在热传导过程中,热传导速度与热导率之间呈规律性反比关系,可以用反比例函数来描述。
例如:q=k/δ,其中 q 是热流密度,δ是热导率,k 是常数。
4.声音传播模型:声音在空气中的传播速度与温度之间呈规律性反比关系,可以用反比例函数来描述。
例如:v=k/T,其中 v 是声音的传播速度,T 是温度,k 是常数。
5.水流流速模型:水流的流速与水流的流量之间呈规律性反比关系,可以用反比例函数来描述。
例如:v=k/q,其中 v 是水流的流速,q 是水流的流量,k 是常数。
6.车辆油耗模型:车辆的油耗与车辆的速度之间呈规律性反比关系,可以用反比例函数来描述。
例如:F=k/v,其中 F 是车辆的油耗,v 是车辆的速度,k 是常数。
7.转角灵敏度模型:机器人的转角灵敏度与机器人的转速之间呈规律性反比关系,可以用反比例函数来描述。
例如:θ=k/ω,其中θ是机器人的转角灵敏度,ω是机器人的转速,k 是常数。
反比例函数常见几何模型反比例函数是一种特殊的函数类型,它描述了一种比例关系,其中一个变量的变化与另一个变量的变化成反比。
它在数学上的一般形式为y=k/x,其中k是一个常数,x和y是变量。
在几何学中,反比例函数常见于许多不同的模型中。
以下是一些常见的几何模型,这些模型可以用反比例函数来描述。
1.电阻和电流:欧姆定律描述了电阻和电流之间的关系,即电流与电阻成反比。
根据欧姆定律,电流I在电阻R中的关系为I=V/R,其中V是电压。
这个关系可以使用反比例函数来描述。
2.凸透镜的放大力:凸透镜的放大力与物体离透镜的距离成反比。
放大力是指通过透镜放大影像的能力。
根据物理学的知识,放大力F与物体离透镜的距离s的关系为F=k/s,其中k是一个常数。
这个关系可以使用反比例函数来表示。
3.时间和速度:根据物理学中的速度定义,速度v等于物体所走的距离d除以所花费的时间t。
因此,速度与时间成反比。
速度v和时间t之间的关系可以表示为v=k/t,其中k是一个常数。
这个关系可以使用反比例函数来描述。
4.管道流量和管道直径:在液体或气体流体力学中,管道的直径和流量之间成反比。
根据伯努利原理,如果管道的截面积减小,则液体或气体的速度增加,从而使流量增加。
因此,管道的直径和流量之间的关系可以用反比例函数表示。
5.球体的表面积和半径:球体的表面积与其半径成反比。
根据数学知识,球体的表面积S与其半径r之间的关系为S=4πr^2、从这个方程可以看出,当半径增加时,表面积会减小。
因此,球体的表面积和半径之间可以用反比例函数描述。
6.声波的衰减:声波在传播过程中会经历衰减,衰减的程度与传播距离成反比。
声波的衰减率与传播距离之间的关系可以用反比例函数来描述。
以上是反比例函数在几何模型中的一些常见应用。
这些模型在科学研究和实际应用中都具有重要的意义。
通过理解和运用反比例函数,我们可以更好地了解和解释这些几何模型。
反比例函数的常见模型解决反比例函数的问题,除了掌握反比例函数的图像及性质以及反比例函数常见的面积模型之外,还要熟练掌握以下几个经典模型:【模型1】正比例函数图像被反比例函数图像所截得的线段相等【模型2】一次函数图像被坐标系和反比例函数图像所截得的相等线段【模型3】同一象限内反比例函数图像上两点连线的平行线【模型4】反比例函数与矩形(1)【模型5】反比例函数与矩形(2)【模型6】反比例函数与最值【模型7】反比例函数与黄金分割让我们一起领略反比例函数的神奇一、个人对反比例函数的几点困惑与感悟1.为何正比例函数的比例系数是比,而反比例函数的比例系数却不是比?2.为何我市中考的反比例函数问题总不像其它函数那么深入?只探究一些皮毛问题!至多探究一下的几何意义(面积),例如2016年台州市中考考查的也是“函数的研究通法”,并非专门深入研究反比例函数.3.过去我们遇到稍难一点的反比例函数问题,就只有“暴力设元”这一途径,总无法避开多元方程、分式方程、高次方程.4.个人认为作为老师,不应该只应付中考,而应该研究更纯粹的数学,站在更高的位置来了解数学本质!做到居高临下、解有依据!5.实际上,反比例函数中也存在很多的“比”,斜比、直比(纵比、横比、纵横比)、面积比,可以说“比比皆是”!现在就让我们一起来比出精彩、比出神奇.二、一道曾经困惑我多时的中考题某年宁波市中考的填空压轴题:如图,的顶点(,),双曲线经过点、,当以、、为顶点的三角形与的相似时,则.1.常规性解法:通过设元,例如设(,),则(,),再根据条件列方程:(1)利用、、或列方程;(2)利用列方程;(3)利用“一线三等角”模型、和列方程.实际上,在上述常规处理方法中,已经透着一点智慧、一点灵性了,具体操作方法中也具备了一定的技巧性.但我本人对此,却一直难言满意,耿耿于怀!2.挖掘隐含性质,巧解此题(1)实际上,此图中含有一些很重要的性质:过点作轴于,连接,直线分别交坐标轴于点、.则有①∥;②,;③,.基于以上这些性质,有如下解法.(2)我的第一种解法(整体思想):由,可得,,即,于是,,……(3)我一个同事的解法(斜边转直比):由,可得,,转为横比,,因此,……(4)我一个学生的解法(斜等转直等):由得,则,……(5)我的第二种解法(平行导角度):由∥得,,于是,……(6)下面我们要着重解决两件事:①上述性质是否永远成立?如何证明?②解题技巧除上述方法:整体思想、斜边转直比、斜等转直等、平行导角度外,还有斜长转直长、面积比与边比互转、纯面积转化等等,后面将一、一介绍.三、探究性质1.如图,双曲线与矩形边交于点、,直线交坐标轴于点、.①如图1,若,则;②如图2,若,则;③如图3,若,则,直线与的位置关系是,与的大小关系.图1图2图32.①如图1,双曲线与直线交于点、,轴于点,轴于点,请探究直线与的位置关系,线段与的大小关系.②如图2,双曲线与直线交于点、,轴于,轴于,轴于,轴于,请探究直线与、的位置关系,以及线段与的大小关系.图1图2四、最常见思想方法(斜转直):斜边转直比、斜等转直等、斜长转直长1.如图,直线反比例函数()图象交直线于点、,且,则的值为.(1)常规方法(斜长转直长):,则,可设(,),则(,),列方程解决;(2)口算巧解(斜边转直比):由,得,,转为横比得,,则,,……2.同类变式题:如图,直线交坐标轴于点、,双曲线交直线于点、.若,则的值为;3.难题展示(中国数学教育名师讲堂481230254,每日一题第8题,2017/3/29)如图,点(,),,在双曲线上,,分别交,轴于,,分别交,轴于,.(1)求的面积;(2)求证:.4.原创清新小题和近年的中考题:(1)如图1,,的面积为,则的值为.(2)如图2,点,在双曲线上运动,轴,.①在运动过程中,的面积是不是定值?答:;②若,且是正三角形,则点的坐标为.(3)如图3,□中,,,双曲线经过点和中点,则该双曲线的解析式为.(4)如图4,直线与分别与双曲线交于点、,,则的值为.图1图2图3图4(5)(十堰)如图5,正的边长为,双曲线经过点、,且,则的值为.(6)如图6,双曲线与直线交于点、.①(原创、铺垫②)若、,且,则;②(常州模拟·改编)若,且,则;③(杭州模拟·改编)若,且,则.(7)(据上题改编)如图7,为双曲线上的动点,过点作矩形,直线的解析式为,交矩形边于,,则.图5图6图7五、面积比、边比互转1.①(原创、铺垫)如图1①,直线与双曲线交于点,为双曲线上一点,射线交轴于点,若的面积为,则点坐标为;②(成都)如图1②,直线与双曲线交于点、,为双曲线上一点,射线交轴于点,若的面积为,则点坐标为.2.(无锡)如图2,轴,∥轴,双曲线过点、,且,已知的面积为,则的值为.图1①图1②图33.(宁波)如图3,正的顶点在双曲线上,双曲线与边交于点,连接,则的面积为.4.(丽水)如图4,双曲线与直线交于点、,轴,设点的横坐标为.①用含的式子表示;②若与四边形的面积和为,则.5.如图5,双曲线与直线交于点、.①(常州模拟)若,且,则;②(改编自①)若、,且,则.图3图4图56.如图6,轴,为中点,延长到,延长到,若双曲线恰好经过点,,且,则.7.如图7,双曲线过点,,过点,,若,均与轴平行,,,且它们之间的距离长为,则.8.如图8,直线交双曲线于点,,若,则.图6图7图89.如图,点在双曲线上,轴,,延长线交轴于,若的面积为,则的值为.10.如图,点、在双曲线上,轴,轴,垂足、分别在轴的正半轴和负半轴上,,,是的中点,若面积是的倍,则的值为.六、反比例函数图象中的“一线三等角”构造,初探黄金比例1.如图1,中,,,双曲线经过点、,且点的纵坐标为,则的值为.(1)剖析:对于坐标系中的一个直角,若两条边均“倾斜”,我们经常构造“”形全等或相似,即“一线三等角”模型,或叫“矩形大法”,见图2,得. (2)后感:我们可以发现,矩形恰好是一个“黄金矩形”,这到底是一种偶然的巧合,还是一种必然的存在呢?这有待于我们进一步探究…(3)探究(2016临沭模拟):如图3,双曲线与矩形的边交于点,,若设点的坐标为(,),且有,,则.图1图2图32.类似题:①(2015临海模拟·填空压轴题)如图,,,双曲线经过点,双曲线经过点,已知点的纵坐标为,则,点的坐标为.②(个人原创)如图2,中,,,双曲线经过点,双曲线经过点,且点的纵坐标为,则的值为.3.难题展示(常州·于新华老师原创题)(1)如图1,点(,),均在双曲线上,过点作轴垂线,过点作轴垂线,两垂线交于点,垂足分别为,,将沿翻折,点恰好落在轴上的点处.求点的坐标.(2)如图2,点(,),均在双曲线上,过点作轴垂线,过点作轴垂线,两垂线交于点,垂足分别为,,将沿翻折,点恰好落在轴上的点处.求点的坐标.图1图24.如图,矩形的边的解析式为,顶点,在双曲线上.①若,则点的坐标为;②连接,,若是等边三角形,则.后感:若能发现,本题将更简单!拓展:如图,正方形的顶点、在双曲线上,、在双曲线上,则正方形的面积为.5.(2013湖州模拟)如图1,矩形的顶点、在双曲线上,若点(,),则点的坐标为.6.如图2,矩形中,,点(,),点,在双曲线上,若为中点,则的值为.图1图27.①如图1,点,在双曲线上运动,以为底边作等腰直角,则点也在一条双曲线上运动,则该双曲线的解析式为;②如图2,点,在双曲线上运动,以为底边作等腰,则点也在一条双曲线上运动,若,则该双曲线解析式为;③如图3,点,在双曲线上运动,以为底作等腰,点在另一双曲线上运动,若,请用,表示.图1图2图3七、平行导角度,角度导比例1.如图,点,在双曲线上,经过原点,过点作∥轴,连接并延长,交双曲线于点.①求证:;②求的值.根据本题的发现,改编了一个清新小题:如图,点,在双曲线上,经过原点,过点的直线交该双曲线于点,分别交轴,轴于点,,若,.求的值.2.如图,直线交在双曲线于点、,经过原点,过作交轴于点,连接并延长,交双曲线于点.求的值.3.如图,双曲线与过原点的直线交于点、,点在双曲线上,直线、分别交轴于点、.若设,,则.4.如图,,双曲线经过点、、,求证:.八、纯面积推导1.如图,点(,),,在双曲线上,,分别交,轴于,,分别交,轴于,.求证:.(此方法感谢江苏·于新华老师的指导!)2.(2016菏泽)如图,,均是等腰直角三角形,双曲线经过点,交线段与点,求与的面积之差.后感:①题中条件“,均是等腰直角三角形”可如何改变?②写出,,的关系:.3.(十堰)如图5,正的边长为,双曲线经过点、,且,则的值为.4.(常州)如图1,,双曲线经过点、,且,求的值;5.如图2,,双曲线经过点、、,求证:.图1图2。
反比例函数常见社会模型
概述
反比例函数是一种常见的函数模型,它描述了两个变量之间的相反比例关系。
在社会科学中,反比例函数常被用来分析和预测一些社会模型。
本文将介绍一些常见的反比例函数社会模型。
1. 人口增长模型
人口增长模型是社会科学中应用反比例函数的典型例子之一。
反比例函数可以描述人口增长与人口稠密度之间的关系。
随着人口稠密度增加,资源利用率变高,导致人口增长率下降。
这种模型在城市规划、环境保护等领域中具有重要的应用价值。
2. 教育资源配置模型
教育资源配置模型是另一个应用反比例函数的社会模型。
该模型用于分配有限的教育资源,以实现公平和效率。
根据反比例函数的特性,资源将更倾向于投入到资源匮乏的地区,以提高整体的教育水平。
3. 税收与经济发展模型
税收与经济发展模型也可以使用反比例函数进行建模。
这种模
型可以描述税收与经济发展之间的关系。
随着经济的发展,税收往
往会增加,但增长速度会相对减缓。
这是因为随着经济规模的扩大,税收增长所带来的负担也会逐渐增加。
4. 社会服务分配模型
反比例函数在社会服务分配模型中也有应用。
例如,医疗资源
可以根据人口密度进行合理的分配。
使用反比例函数,可以根据需
求和资源的匹配程度来确定资源分配的合理性,以确保社会公平。
结论
反比例函数在社会科学中具有广泛的应用。
通过理解和应用这
些反比例函数社会模型,我们可以更好地分析和解决一些社会问题。
这些模型可以帮助我们做出更明智的决策,实现社会的可持续发展。
反比例函数在实际中的应用
基本模型:
(1)当体积(面积)为定值时,底面积(边长)与高成反比例函数关系;
(2)当工程总量为定值时,工作时间与工作效率成反比例函数关系;
(3)当力F 所做功为定值时,力F 与物体在F 方向通过的距离S 成反比例函数关系;
(4)杠杆定律:力X 力臂二定值;
(5)压强公式:其中P 为压强,F 为压力,S 为受力面积;
(6)欧姆定律:IR=U,其中I 为电流(A ) , R 为电阻(Q ),
U 为电压(V );
(7)在温度不变的条件下,密度与体积成反比例函数关系
. 例
1、某汽车的功率为一定值,汽车行驶时的速度v (米/秒)与它所受的牵引力 F (牛)之间的函数关系如图所示:
(1)这辆汽车的功率是多少瓦?请写出这一函数表达式;
(2)当它所受牵引力为1200牛时,汽车的速度为多少于米/
(3)如果限定汽车的速度不超过30米/秒,则F 在什么范围内?
解:(1)由P=FV=3000X20=6X104瓦.
(2)当F 二1200 牛时,v-^-soCmfe).
50mfc ■ SOx3aWz fj|t/It ■ L80kmfli. 1000
& 1*竺r>2000 . 枷(米/
秒)
60 50
40
30
20
10。
反比例函数九种基本模型
一、2个矩形模型
模型特点:曲线切坐标矩形 模型特点:曲线截坐标矩形
结论:k S OABC =矩形 结论:(1)DE ∥AC (2)2)(OB
OF CB CE AB AD == 二、3个等线段模型
模型特点:经过原点双交曲 模型特点:与双曲线单支 模型特点:与双曲线双交直线 线的直线 相交直线
结论:OA =OB 结论:AB =CD 结论:AB =CD 三、4类三角形模型
(1)一点在线,两点在轴,一边或两边垂直于轴 结论:k S 2
1=∆
(2)两点在线,原点对称,一边垂直于轴 结论:k S =∆
(3)两点在线,原点对称,两边垂直于轴 (4)两点在线,一点在心
结论:k S 2=∆ 结论:ACDB OAB S S 梯形=∆。