中国教育学会中学数学教学专业委员会《数学周报》杯2010年全国初中数学竞赛试题以及参考答案
- 格式:doc
- 大小:789.50 KB
- 文档页数:5
中国教育学会中学数学教学专业委员会“《数学周报》杯”2008年全国初中数学竞赛试题班级__________学号__________姓名______________得分______________一、选择题(共5小题,每小题6分,满分30分.以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的,请将正确选项的代号填入题后的括号里.不填、多填或错填都得0分)1.已知实数x ,y 满足:4x 4-2x 2=3,y 4+y 2=3,则4x 4+y 4的值为 ( )(A )7 (B )1+132 (C )7+132 (D )5 2.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数y =x 2+mx +n 的图象与x 轴有两个不同交点的概率是( ) (A )512 (B )49 (C )1736 (D )123.有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可确定的不同直线最少有 ( )(A )6条 (B )8条(C )10条 (D )12 4.已知AB 是半径为1的圆O 的一条弦,且AB =a <1.以AB 为一边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的一点,且DB =AB =a ,DC 的延长线交圆O 于点E ,则AE 的长为( ) (A )52a (B )1 (C )32 (D )a 5.将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有( )(A )2种 (B )3种 (C )4种 (D )5种 二、填空题(共5小题,每小题6分,满分30分)6.对于实数u ,v ,定义一种运算“*”为:u *v =uv +v .若关于x 的方程x *(a *x )=-14有两个不同的实数根,则满足条件的实数a 的取值范围是_______.7.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是_____分钟.8.如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点,AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为______.9.△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为______.10.关于x ,y 的方程x 2+y 2=208(x -y )的所有正整数解为________. F M D B A三、解答题(共4题,每题15分,满分60分)11.在直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与x轴、y轴的正半轴分别交于A,B两点,且使得△OAB的面积值等于|OA|+|OB|+3.(1)用b表示k;(2)求△OAB面积的最小值.12.是否存在质数p,q,使得关于x的一元二次方程px2-qx+p=0有有理数根?13.是否存在一个三边长恰是三个连续正整数,且其中一个内角等于另一个内角2倍的△ABC?证明你的结论.14.从1,2,…,9中任取n个数,其中一定可以找到若干个数(至少一个,也可以是全部),它们的和能被10整除,求n的最小值.简答:一.选择题 ACBBD ;二.填空题 6. a > 0 或 a <-1; 7. 4; 8. 9; 9. 163; 10. x =48, x =160, =32; y =32.三.解答题:11. (1)k =2b -b 22(b +3),b > 2; (2)当 b =2+10, k =-1时,△OAB 面积的最小值为7+210; 12. 存在满足题设条件的质数p ,q . 当p =2,q =5时,方程2x 2-5x + 2=0 的两根为 x 1=12, x 2=2. 它们都是有理数; 13. 存在满足条件的三角形. △ABC 的边 a =6,b =4,c =5,且∠A =2∠B ,证明略. 14. n 的最小值是5,证明略.中国教育学会中学数学教学专业委员会“《数学周报》杯”2009年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题7分,共35分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.已知非零实数a ,b 满足 24242a b a -++=,则a b +等于( ).(A )-1 (B )0 (C )1 (D )2【答】C .解:由题设知a ≥3,所以,题设的等式为20b ++=,于是32a b ==-,,从而a b +=1.2.如图,菱形ABCD 的边长为a ,点O 是对角线AC 上的一点,且OA =a ,OB =OC =OD =1,则a 等于( ).(A)12 (B)12 (C )1 (D )2 【答】A .解:因为△BOC ∽ △ABC ,所以BO BC AB AC=,即 11a a a =+, 所以, 210a a --=.由0a >,解得a = 3.将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先 后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y的方程组322ax by x y +=⎧⎨+=⎩, 只有正数解的概率为( ). (A )121 (B )92 (C )185 (D )3613 【答】D .解:当20a b -=时,方程组无解.当02≠-b a 时,方程组的解为62,223.2b x a b a y a b -⎧=⎪⎪-⎨-⎪=⎪-⎩由已知,得⎪⎪⎩⎪⎪⎨⎧>-->--,0232,0226b a a b a b 即⎪⎪⎩⎪⎪⎨⎧<>>-,3,23,02b a b a 或⎪⎪⎩⎪⎪⎨⎧><<-.3,23,02b a b a 由a ,b 的实际意义为1,2,3,4,5,6,可得2345612a b =⎧⎨=⎩,,,,,,,共有 5×2=10种情况;或1456a b =⎧⎨=⎩,,,,共3种情况. 又掷两次骰子出现的基本事件共6×6=36种情况,故所求的概率为3613. 4.如图1所示,在直角梯形ABCD 中,AB ∥DC ,90B ∠=︒. 动点P 从点 B 出发,沿梯形的边由B →C →D →A 运动. 设点P 运动的路程为x ,△ABP的面积为y . 把y 看作x 的函数,函数的图像如图2所示,则△ABC 的面积为( ).(A )10 (B )16 (C )18 (D )32【答】B . 解:根据图像可得BC =4,CD =5,DA =5,进而求得AB =8,故S △ABC =12×8×4=16.5.关于x ,y 的方程22229x xy y ++=的整数解(x ,y )的组数为(). (A )2组 (B )3组 (C )4组 (D )无穷多组【答】C .解:可将原方程视为关于x 的二次方程,将其变形为22(229)0x yx y ++-=.由于该方程有整数根,则判别式∆≥0,且是完全平方数.由 2224(229)7116y y y ∆=--=-+≥0,解得 2y ≤11616.57≈.于是显然,只有216y =时,4∆=是完全平方数,符合要求.当4y =时,原方程为2430x x ++=,此时121,3x x =-=-;当y =-4时,原方程为2430x x -+=,此时341,3x x ==.所以,原方程的整数解为111,4;x y =-⎧⎨=⎩223,4;x y =-⎧⎨=⎩ 331,4;x y =⎧⎨=-⎩ 443,4.x y =⎧⎨=-⎩二、填空题(共5小题,每小题7分,共35分)6.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶 3000 km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶 km .【答】3750.解:设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1 km 磨损量为5000k ,安装在后轮的轮胎每行驶1km 的磨损量为3000k .又设一对新轮胎交换位置前走了x km ,交换位置后走了y km .分别以一个轮胎的总磨损量为等量关系列方程,有,50003000,50003000kx ky k ky kx k ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相加,得 ()()250003000k x y k x y k +++=, 则 237501150003000x y +==+. 7.已知线段AB 的中点为C ,以点A 为圆心,AB 的长为半径作圆,在线段AB 的延长线上取点D ,使得BD =AC ;再以点D 为圆心,DA 的长为半径作圆,与⊙A 分别相交于F ,G 两点,连接FG 交AB 于点H ,则AH AB的值为 . 解:如图,延长AD 与⊙D 交于点E ,连接AF ,EF . 由题设知13AC AD =,13AB AE =,在△FHA 和△EF A 中, 90EFA FHA ∠=∠=︒,FAH EAF ∠=∠所以 Rt △FHA ∽Rt △EF A , AH AF AF AE=. 而AF AB =,所以AH AB 13=. 8.已知12345a a a a a ,,,,是满足条件123459a a a a a ++++=的五个不同的整数,若b 是关于x 的方程()()()()()123452009x a x a x a x a x a -----=的整数根,则b 的值为 .【答】 10.解:因为()()()()()123452009b a b a b a b a b a -----=,且12345a a a a a ,,,,是五个不同的整数,所有12345b a b a b a b a b a -----,,,,也是五个不同的整数.又因为()()2009117741=⨯-⨯⨯-⨯,所以1234541b a b a b a b a b a -+-+-+-+-=.由123459a a a a a ++++=,可得10b =.9.如图,在△ABC 中,CD 是高,CE 为ACB ∠的平分线.若AC =15,BC =20,CD =12,则CE 的长等于 .【答】7. 解:如图,由勾股定理知AD =9,BD =16,所以AB =AD +BD =25 . 故由勾股定理逆定理知△ACB 为直角三角形,且90ACB ∠=︒.作EF ⊥BC ,垂足为F .设EF =x ,由1452ECF ACB ∠=∠=︒,得CF =x ,于是BF =20-x .由于EF ∥AC ,所以E F B F A C B C=, 即 201520x x -=, 解得607x =.所以7CE ==. 10.10个人围成一个圆圈做游戏.游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实地告诉他两旁的两个人,然后每个人将他两旁的两个人告诉他的数的平均数报出来.若报出来的数如图所示,则报3的人心里想的数是 .【答】2-.解:设报3的人心里想的数是x ,则报5的人心里想的数应是8x -.于是报7的人心里想的数是 12(8)4x x --=+,报9的人心里想的数是 16(4)12x x -+=-,报1的人心里想的数是 20(12)8x x --=+,报3的人心里想的数是4(8)4x x -+=--.所以4x x =--,解得2x =-.三、解答题(共4题,每题20分,共80分)11.已知抛物线2y x =与动直线c x t y --=)12(有公共点),(11y x ,),(22y x ,且3222221-+=+t t x x .(1)求实数t 的取值范围;(2)当t 为何值时,c 取到最小值,并求出c 的最小值.解:(1)联立2y x =与c x t y --=)12(,消去y 得二次方程2(21)0x t x c --+= ①有实数根1x ,2x ,则121221,x x t x x c +=-=.所以 2221212121[()()]2c x x x x x x ==+-+ =221[(21)(23)]2t t t --+-=21(364)2t t -+. ② ………………5分 把②式代入方程①得221(21)(364)02x t x t t --+-+=. ③ ………………10分t 的取值应满足2221223t t x x +-=+≥0, ④ 且使方程③有实数根,即22(21)2(364)t t t ∆=---+=2287t t -+-≥0, ⑤解不等式④得 t ≤-3或t ≥1,解不等式⑤得 22-t ≤22+所以,t 的取值范围为22-t ≤22+⑥ ………………15分(2) 由②式知22131(364)(1)222c t t t =-+=-+.由于231(1)22c t =-+在22-t ≤22+22t =-时,2min 31(21)22c =-+=………………20分 12.已知正整数a 满足3192191a +,且2009a <,求满足条件的所有可能的正整数a 的和.解:由3192191a +可得31921a -.619232=⨯,且()[]311(1)1(1)(1)(1)a a a a a a a a -=-++=-++-.………………5分因为()11a a ++是奇数,所以6321a -等价于621a -,又因为3(1)(1)a a a -+,所以331a -等价于31a -.因此有1921a -,于是可得1921a k =+.………………15分又02009a <<,所以0110k =,,,.因此,满足条件的所有可能的正整数a 的和为11+192(1+2+…+10)=10571. ………………20分13.如图,给定锐角三角形ABC ,BC CA <,AD ,BE 是它的两条高,过点C 作△ABC 的外接圆的切线l ,过点D ,E 分别作l 的垂线,垂足分别为F ,G .试比较线段DF 和EG 的大小,并证明你的结论.解法1:结论是DF EG =.下面给出证明. ………………5分因为FCD EAB ∠=∠,所以Rt △FCD ∽ Rt △EAB .于是可得CD DF BE AB=⋅. 同理可得 CE EG AD AB =⋅.又因为tan AD BE ACB CD CE∠==,所以有BE CD AD CE ⋅=⋅DF EG =. ………………20分解法2:结论是DF EG =.下面给出证明.……………… 5分连接DE ,因为90ADB AEB ∠=∠=︒,所以A ,B ,D ,E 四点共圆,故 CED ABC ∠=∠. ………………10分又l 是⊙O 的过点C 的切线,所以ACG ABC ∠=∠. ………………15分 所以,CED ACG ∠=∠,于是DE ∥FG ,故DF =EG .………………20分14.n 个正整数12n a a a ,,,满足如下条件:1212009n a a a =<<<=; 且12n a a a ,,,中任意n -1个不同的数的算术平均数都是正整数.求n 的最大值.解:设12n a a a ,,,中去掉i a 后剩下的n -1个数的算术平均数为正整数i b ,12i n =,,,.即 12()1n i i a a a a b n +++-=-. 于是,对于任意的1≤i j <≤n ,都有1j ii j a a b b n --=-,从而 1()j i n a a --. ………………5分 由于 11200811n n a a b b n n --==--是正整数,故 312251n -⨯. ………………10分 由于 ()()()112211n n n n n a a a a a a a ----=-+-++-≥()()()2111(1)n n n n -+-++-=-,所以,2(1)n -≤2008,于是n ≤45.结合312251n -⨯,所以,n ≤9. ………………15分另一方面,令123801,811,821a a a =⨯+=⨯+=⨯+,…,8871a =⨯+,982511a =⨯+,则这9个数满足题设要求.综上所述,n 的最大值为9. ………………20分中国教育学会中学数学教学专业委员会“《数学周报》杯”2010年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题7分,共35分.其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1.若20 10a b b c ==,,则a bb c++的值为( ). (A )1121 (B )2111 (C )11021 (D )21011解:D 由题设得12012101111110a ab bc b c b +++===+++. 代数式变形,同除b2.若实数a ,b 满足21202a ab b -++=,则a 的取值范围是 ( ).(A )a ≤2- (B )a ≥4 (C )a ≤2-或 a ≥4 (D )2-≤a ≤4 解.C因为b 是实数,所以关于b 的一元二次方程21202b ab a -++=的判别式 21()41(2)2a a ∆--⨯⨯+=≥0,解得a ≤2-或 a ≥4.方程思想,未达定理;要解一元二次不等式3.如图,在四边形ABCD 中,∠B =135°,∠C =120°,AB=BC=4-CD=则AD 边的长为( ).(A)(B )64(C )64+ (D )622+ 解:D如图,过点A ,D 分别作AE ,DF 垂直于直线BC ,垂足分别为E ,F .由已知可得BE =AE,CF=DF =于是 EF =4+过点A 作AG ⊥DF ,垂足为G .在Rt △ADG 中,根据勾股定理得AD ==2+勾股定理、涉及双重二次根式的化简,补全图形法4.在一列数123x x x ,,,……中,已知11=x ,且当k ≥2时,1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭(取整符号[]a 表示不超过实数a 的最大整数,例如[]2.62=,[]0.20=),则2010x 等于( ).(A) 1 (B) 2 (C) 3 (D) 4 解:B由11=x 和1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭可得 11x =,22x =,33x =,44x =,51x =,62x =,73x =,84x =,……因为2010=4×502+2,所以2010x =2. 高斯函数;找规律。
中国教育学会中学数学教学专业委员会“《数学周报》杯”2007年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填得零分)1.方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( ).(A )1 (B ) 2 (C ) 3 (D )4答:(A ).解:若x ≥0,则12,6,x y x y +=⎧⎪⎨+=⎪⎩于是6y y -=-,显然不可能. 若0x <,则 12,6,x y x y -+=⎧⎪⎨+=⎪⎩于是18y y +=,解得9y =,进而求得3x =-.所以,原方程组的解为⎩⎨⎧=-=,9,3y x 只有1个解.故选(A ).2.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ).(A ) 14 (B ) 16 (C )18 (D )20答:(B ).解:用枚举法:红球个数 白球个数 黑球个数 种 数5 2,3,4,5 3,2,1,0 44 3,4,5,6 3,2,1,0 43 4,5,6,7 3,2,1,0 42 5,6,7,8 3,2,1,0 4所以,共16种.故选(B ).3.已知△ABC 为锐角三角形,⊙O 经过点B ,C ,且与边AB ,AC 分别相交于点D ,E . 若⊙O 的半径与△ADE 的外接圆的半径相等,则⊙O 一定经过△ABC 的( ).(A )内心 (B )外心 (C )重心 (D )垂心答:(B ).解: 如图,连接BE ,因为△ABC 为锐角三角形,所以BAC ∠,ABE ∠均为锐角.又因为⊙O 的半径与△ADE 的外接圆的半径相等,且DE 为两圆的公共弦,所以BAC ABE ∠=∠.于是,2BEC BAC ABE BAC ∠=∠+∠=∠.若△ABC 的外心为1O ,则12BO C BAC ∠=∠,所以,⊙O一定过△ABC 的外心.故选(B ).4.已知三个关于x 的一元二次方程02=++c bx ax ,02=++a cx bx ,02=++b ax cx 恰有一个公共实数根,则222a b c bc ca ab++的值为( ). (A ) 0 (B )1 (C )2 (D )3答:(D ).解:设0x 是它们的一个公共实数根,则0020=++c bx ax ,0020=++a cx bx ,0020=++b ax cx .把上面三个式子相加,并整理得200()(1)0a b c x x ++++=. 因为22000131()024x x x ++=++>,所以0a b c ++=. 于是222333333()a b c a b c a b a b bc ca ab abc abc+++-+++== 3()3ab a b abc-+==. 故选(D ).5.方程323652x x x y y ++=-+的整数解(x ,y )的个数是( ).(A )0 (B )1 (C )3 (D )无穷多答:(A ).解:原方程可化为(第3题答案图)2(1)(2)3(1)(1)2x x x x x y y y ++++=-++(),因为三个连续整数的乘积是3的倍数,所以上式左边是3的倍数,而右边除以3余2,这是不可能的.所以,原方程无整数解.故选(A).二、填空题(共5小题,每小题6分,满分30分)6.如图,在直角三角形ABC 中,90ACB ∠=︒,CA =4.点P 是半圆弧AC 的中点,连接BP ,线段BP 把图形APCB 分成两部分,则这两部分面积之差的绝对值是 .答:4.解:如图,设AC 与BP 相交于点D ,点D 关于圆心O 的对称点记为点E ,线段BP 把图形APCB 分成两部分,这两部分面积之差的绝对值是△BEP 的面积,即△BOP 面积的两倍.而1122222BPO S PO CO ∆=⋅=⨯⨯=. 因此,这两部分面积之差的绝对值是4.7.如图, 点A ,C 都在函数33(0)y x =>的图象上,点B ,D 都在x 轴上,且使得△OAB ,△BCD 都是等边三角形,则点D 的坐标为 .答:(26,0).解:如图,分别过点A ,C 作x 轴的垂线,垂足分别为E ,F .设OE =a ,BF =b , 则AE =3a ,CF =3b ,所以,点A ,C 的坐标为(a ,3a ),(2a +b ,3b ),所以 2333,3(2)33,a b a b ⎧=⎪⎨+=⎪⎩解得3,63,a b ⎧=⎪⎨=-⎪⎩ 因此,点D 的坐标为(26,0).(第6题答案图) (第7题答案图)8.已知点A ,B 的坐标分别为(1,0),(2,0). 若二次函数()233y x a x =+-+的图象与线段AB 恰有一个交点,则a 的取值范围是 .答:1-≤12a <-,或者323a =-. 解:分两种情况:(Ⅰ)因为二次函数()233y x a x =+-+的图象与线段AB 只有一个交点,且点A ,B 的坐标分别为(1,0),(2,0),所以[][]032)3(231)3(122<+⨯-+⨯+⨯-+a a , 得112a -<<-. 由031)3(12=+⨯-+a ,得1a =-,此时11=x ,32=x ,符合题意;由032)3(22=+⨯-+a ,得12a =-,此时21=x ,232=x ,不符合题意. (Ⅱ)令()2330x a x +-+=,由判别式0∆=,得323a =±.当323a =+时,123x x ==-,不合题意;当323a =-时,123x x ==,符合题意.综上所述,a 的取值范围是1-≤12a <-,或者323a =-. 9.如图,90A B C D E F G n ∠+∠+∠+∠+∠+∠+∠=⋅︒,则n = . 答:6.解:如图,设AF 与BG 相交于点Q ,则AQG A D G ∠=∠+∠+∠,于是A B C D E F G ∠+∠+∠+∠+∠+∠+∠B C E F AQG =∠+∠+∠+∠+∠B C E F BQF =∠+∠+∠+∠+∠540690=︒=⨯︒.所以,n =6.10.已知对于任意正整数n ,都有312n a a a n +++=L , 则 23100111111a a a +++=---L . (第9题答案图)答:33100. 解:当n ≥2时,有 3121n a a a a n n =++++-Λ,3121(1)n a a a n -+++=-L ,两式相减,得 2331n a n n =-+,所以 ),111(31)1(3111nn n n a n --=-=- Λ,4,3,2=n 因此23100111111a a a +++---L 11111111(1)()()32323399100=-+-++-L 1133(1)3100100=-=. 三、解答题(共4题,每小题15分,满分60分)11(A ).已知点M ,N 的坐标分别为(0,1),(0,-1),点P 是抛物线214y x =上的一个动点.(1)判断以点P 为圆心,PM 为半径的圆与直线1y =-的位置关系;(2)设直线PM 与抛物线214y x =的另一个交点为点Q ,连接NP ,NQ ,求证:PNM QNM ∠=∠.解:(1)设点P 的坐标为2001(,)4x x ,则 PM =2222220000111(1)(1)1444x x x x +-=+=+; 又因为点P 到直线1y =-的距离为220011(1)144x x --=+, 所以,以点P 为圆心,PM 为半径的圆与直线1y =-相切.…………5分(2)如图,分别过点P ,Q 作直线1y =-的垂线,垂足分别为H ,R .由(1)知,PH =PM ,同理可得,QM=QR .(第11A 题答案图)因为PH ,MN ,QR 都垂直于直线1y =-,所以,PH ∥MN ∥QR ,于是QM MP RN NH=, 所以 QR PH RN HN =, 因此,Rt △PHN ∽Rt △QRN .于是HNP RNQ ∠=∠,从而PNM QNM ∠=∠.…………15分12(A ).已知a ,b 都是正整数,试问关于x 的方程21()02x abx a b -++=是 否有两个整数解?如果有,请把它们求出来;如果没有,请给出证明.解:不妨设a ≤b ,且方程的两个整数根为12,x x (1x ≤2x ),则有1212,1(),2x x ab x x a b +=⎧⎪⎨=+⎪⎩所以 12121122x x x x a b ab --=+-,124(1)(1)(21)(21)5x x a b --+--=. …………5分因为a ,b 都是正整数,所以x 1,x 2均是正整数,于是,11x -≥0,21x -≥0,21a -≥1,21b -≥1,所以12(1)(1)0,(21)(21)5,x x a b --=⎧⎨--=⎩ 或 ⎩⎨⎧=--=--.1)12)(12(,1)1)(121b a x x ( (1)当12(1)(1)0,(21)(21)5x x a b --=⎧⎨--=⎩时,由于a ,b 都是正整数,且a ≤b ,可得 a =1,b =3,此时,一元二次方程为2320x x -+=,它的两个根为11x =,22x =.(2)当12(1)(1)1,(21)(21)1x x a b --=⎧⎨--=⎩时,可得 a =1,b =1,此时,一元二次方程为210x x -+=,它无整数解.综上所述,当且仅当a =1,b =3时,题设方程有整数解,且它的两个整数解为11x =,22x =. ……………15分13(A ).已知AB 为半圆O 的直径,点P 为直径AB上的任意一点.以点A 为圆心,AP 为半径作⊙A ,⊙A 与半圆O 相交于点C ;以点B 为圆心,BP 为半径作⊙B ,⊙B 与半圆O 相交于点D ,且线段CD 的中点为M .求证:MP 分别与⊙A 和⊙B 相切.证明:如图,连接AC ,AD ,BC ,BD ,并且分别过点C ,D 作AB 的垂线,垂足分别为,EF ,则CE ∥DF .因为AB 是⊙O 的直径,所以90ACB ADB ∠=∠=︒.在Rt △ABC 和Rt △ABD 中,由射影定理得22PA AC AE AB ==⋅, 22PB BD BF AB ==⋅.……………5分两式相减可得()22PA PB AB AE BF -=-,又 ()22()()PA PB PA PB PA PB AB PA PB -=+-=-,于是有 AE BF PA PB -=-,即 PA AE PB BF -=-,所以PE PF =,也就是说,点P 是线段EF 的中点.因此,MP 是直角梯形CDFE 的中位线,于是有MP AB ⊥,从而可得MP 分别与⊙A 和⊙B 相切.……………15分14(A ).(1)是否存在正整数m ,n ,使得(2)(1)m m n n +=+?(2)设k (k ≥3)是给定的正整数,是否存在正整数m ,n ,使得()(1)m m k n n +=+?解:(1)答案是否定的.若存在正整数m ,n ,使得(2)(1)m m n n +=+,则22(1)1m n n +=++,显然1n >,于是2221(1)n n n n <++<+,所以,21n n ++不是平方数,矛盾. ……………5分 (第13A 题答案图)(2)当3k =时,若存在正整数m ,n ,满足(3)(1)m m n n +=+,则2241244m m n n +=+,22(23)(21)8m n +=++,(2321)(2321)8m n m n +--+++=,(1)(2)2m n m n -+++=,而22m n ++>,故上式不可能成立.………………10分当k ≥4时,若2k t =(t 是不小于2的整数)为偶数,取22,1m t t n t =-=-,则 2242()()()m m k t t t t t t +=-+=-,2242(1)(1)n n t t t t +=-=-,因此这样的(m ,n )满足条件.若2k t =+1(t 是不小于2的整数)为奇数,取222,22t t t t m n -+-==, 则 224321()(21)(22)224t t t t m m k t t t t t --+=++=+--, 2243221(1)(22)224t t t t n n t t t t +-++=⋅=+--, 因此这样的(m ,n )满足条件.综上所述,当3k =时,答案是否定的;当k ≥4时,答案是肯定的.……………15分注:当k ≥4时,构造的例子不是唯一的.11(B ).已知抛物线1C :234y x x =--+和抛物线2C :234y x x =--相交 于A ,B 两点. 点P 在抛物线1C 上,且位于点A 和点B 之间;点Q 在抛物线2C 上,也位于点A 和点B 之间.(1)求线段AB 的长;(2)当PQ ∥y 轴时,求PQ 长度的最大值.解:(1)解方程组2234,34,y x x y x x ⎧=--+⎪⎨=--⎪⎩得 112,6,x y =-⎧⎨=⎩ 222,6,x y =⎧⎨=-⎩所以,点A ,B 的坐标分别是(-2,6),(2,-6).于是22(22)(66)410AB =++--=.…………5分(2)如图,当PQ ∥y 轴时,设点P ,Q 的坐标分别为)43,(2+--t t t , )43,(2--t t t , 22t -<<,因此 PQ 22(4)t =-≤8,当0t =时等号成立,所以,PQ 的长的最大值8.……………15分12(B ).实数a ,b ,c 满足a ≤b ≤c ,且0ab bc ca ++=,abc =1.求最大的实数k ,使得不等式a b +≥k c恒成立.解:当32a b ==-,32c =时,实数a ,b ,c 满足题设条件,此时k ≤4. ……………5分 下面证明:不等式a b +≥4c 对满足题设条件的实数a ,b ,c 恒成立. 由已知条件知,a ,b ,c 都不等于0,且0c >.因为2110,0ab a b c c=>+=-<, 所以a ≤b 0<.(第11B 题答案图)由一元二次方程根与系数的关系知,a ,b 是一元二次方程 22110x x c c ++= 的两个实数根,于是 414c c∆=-≥0, 所以 3c ≤14. ……………10分因此21()a b a b c+=-+=≥44c c =. ……………15分13(B ).如图,点E ,F 分别在四边形ABCD 的边AD ,BC 的延长线上,且满足DE AD CF BC=.若CD ,FE 的延长线相交于点G ,△DEG 的外接圆与△CFG 的外接圆的另一个交点为点P ,连接P A ,PB ,PC ,PD .求证: (1)AD PD BC PC =; (2)△PAB ∽△PDC .证明:(1)连接PE ,PF ,PG ,因为PDG PEG ∠=∠,所以PDC PEF ∠=∠.又因为PCG PFG ∠=∠,所以△PDC ∽△PEF ,于是有 ,PD PE CPD FPE PC PF=∠=∠, 从而 △PDE ∽△PCF ,所以 PD DE PC CF=. 又已知DE AD CF BC =,所以,AD PD BC PC =. ………………10分(2)由于PDA PGE PCB ∠=∠=∠,结合(1)知,△PDA ∽△PCB ,从而有,PA PD PB PC= DPA CPB ∠=∠, 所以APB DPC ∠=∠,因此△PAB ∽△PDC . ………………15分14(B ).证明:对任意三角形,一定存在两条边,它们的长u ,v 满足1≤152u v +<. (第13B 题答案图)证明:设任意△ABC 的三边长为a ,b ,c ,不妨设a b c >>.若结论不成立,则必有a b, ○1b c≥ ○2………………5分记,b c s a b t c s t =+=+=++,显然,0s t >,代入○1得c s t c s+++≥12+,11s tc c s c+++≥12+, 令,s tx y c c==,则11x y x+++. ○3由a b c <+,得c s t c s c ++<++,即t c <,于是1ty c=<. 由○2得1b c sx c c+==+, ○4 由○3,○4得y≥1(1)x ⎫-+⎪⎪⎝⎭1=, 此式与1<y 矛盾.从而命题得证.………………15分中国教育学会中学数学教学专业委员会“《数学周报》杯”2008年全国初中数学竞赛试题班级__________学号__________姓名______________得分______________一、选择题(共5小题,每小题6分,满分30分.以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的,请将正确选项的代号填入题后的括号里.不填、多填或错填都得0分)1.已知实数x ,y 满足:4x 4-2x 2=3,y 4+y 2=3,则4x4+y 4的值为( )(A )7 (B )1+132 (C )7+132(D )52.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数y =x 2+mx +n 的图象与x 轴有两个不同交点的概率是( )(A )512(B )49(C )1736(D )123.有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可确定的不同直线最少有 ( )(A )6条(B )8条(C )10条(D )124.已知AB 是半径为1的圆O 的一条弦,且AB =a <1.以AB 为一边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的一点,且DB =AB =a ,DC 的延长线交圆O 于点E ,则AE 的长为 ( )(A )52a (B )1(C )32(D )a5.将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有 ( )(A )2种(B )3种(C )4种(D )5种二、填空题(共5小题,每小题6分,满分30分)6.对于实数u ,v ,定义一种运算“*”为:u *v =uv +v .若关于x 的方程x *(a *x )=-14有两个不同的实数根,则满足条件的实数a 的取值范围是_______. 7.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是_____分钟. 8.如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点,AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为______. 9.△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为______.10.关于x ,y 的方程x 2+y 2=208(x -y )的所有正整数解为________.三、解答题(共4题,每题15分,满分60分)11.在直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与x 轴、y 轴的正半轴分别交于A ,B 两点,且使得△OAB 的面积值等于|OA |+|OB |+3.(1)用b 表示k ;(2)求△OAB 面积的最小值.12.是否存在质数p ,q ,使得关于x 的一元二次方程px 2-qx +p =0有有理数根?13.是否存在一个三边长恰是三个连续正整数,且其中一个内角等于另一个内角2倍的△ABC ?证明你的结论. 14.从1,2,…,9中任取n 个数,其中一定可以找到若干个数(至少一个,也可以是全部),它们的和能被10整除,求n 的最小值.FMDBA简答:一.选择题 ACBBD ;二.填空题 6. a > 0 或 a <-1; 7. 4; 8. 9; 9.163; 10. x =48, x =160, y =32; y =32. 三.解答题:11. (1)k =2b -b 22(b +3),b > 2; (2)当 b =2+10, k =-1时,△OAB 面积的最小值为7+210; 12. 存在满足题设条件的质数p ,q . 当p =2,q =5时,方程2x 2-5x + 2=0 的两根为 x 1=12, x 2=2. 它们都是有理数; 13. 存在满足条件的三角形. △ABC 的边 a =6,b =4,c =5,且∠A =2∠B .14. n 的最小值是5,当n=4时,数1,3,5,8中没有若干个数的和能被10整除.(5分)当n=5时,设a 1,a 2,a 5是1,2,…,9中的5个不同的数.若其中任意若干个数,它们的和都不能被10整除,则a 1,a 2,a 5中不可能同时出现1和9;2和8;3和7;4和6.于是a 1,a 2,…,a 5中必定有一个数是5. 若a 1,a 2,…,a 5中含1,则不含9.于是不含4(4+1+5=10),故含6;于是不含3(3+6+1=10),故含7;于是不含2(2+1+7=10),故含8.但是5+7+8=20是10的倍数,矛盾. 若a 1,a 2,…,a 5中含9,则不含1.于是不含6(6+9+5=20),故含4;于是不含7(7+4+9=20),故含3;于是不含8(8+9+3=10),故含2.但是5+3+2=10是10的倍数,矛盾. 综上所述,n 的最小值为5.(15分)中国教育学会中学数学教学专业委员会“《数学周报》杯”2009年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题7分,共35分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.已知非零实数a ,b 满足 2242(3)42a b a b a -+++-=,则a b +等于( ).(A )-1 (B )0 (C )1 (D )2 【答】C .解:由题设知a ≥3,所以,题设的等式为22(3)0b a b +-=,于是32a b ==-,,从而a b +=1.2.如图,菱形ABCD 的边长为a ,点O 是对角线AC 上的一点,且OA =a ,OB =OC =OD =1,则a 等于( ).(A )51+ (B 51- (C )1 (D )2 【答】A .解:因为△BOC ∽ △ABC ,所以BO BCAB AC=,即11aa a =+, 所以, 210a a --=.由0a >,解得15a +=3.将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先 后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y的方程组322ax by x y +=⎧⎨+=⎩,只有正数解的概率为( ).(A )121 (B )92 (C )185 (D )3613 (第2题)【答】D.解:当20a b-=时,方程组无解.当02≠-ba时,方程组的解为62,223.2bxa baya b-⎧=⎪⎪-⎨-⎪=⎪-⎩由已知,得⎪⎪⎩⎪⎪⎨⎧>-->--,0232,0226baabab即⎪⎪⎩⎪⎪⎨⎧<>>-,3,23,02baba或⎪⎪⎩⎪⎪⎨⎧><<-.3,23,02baba由a,b的实际意义为1,2,3,4,5,6,可得2345612ab=⎧⎨=⎩,,,,,,,共有5×2=10种情况;或1456ab=⎧⎨=⎩,,,,共3种情况.又掷两次骰子出现的基本事件共6×6=36种情况,故所求的概率为3613.4.如图1所示,在直角梯形ABCD中,AB∥DC,90B∠=︒. 动点P从点B出发,沿梯形的边由B→C→D→A运动. 设点P运动的路程为x,△ABP的面积为y. 把y看作x的函数,函数的图像如图2所示,则△ABC的面积为().(A)10 (B)16 (C)18 (D)32【答】B.解:根据图像可得BC=4,CD=5,DA=5,进而求得AB=8,故S△ABC=12×8×4=16.5.关于x,y的方程22229x xy y++=的整数解(x,y)的组数为().(A)2组(B)3组(C)4组(D)无穷多组【答】C.解:可将原方程视为关于x的二次方程,将其变形为(第4题)图1 图222(229)0x yx y ++-=.由于该方程有整数根,则判别式∆≥0,且是完全平方数. 由 2224(229)7116y y y ∆=--=-+≥0, 解得 2y ≤11616.57≈.于是 显然,只有216y =时,4∆=是完全平方数,符合要求. 当4y =时,原方程为2430x x ++=,此时121,3x x =-=-; 当y =-4时,原方程为2430x x -+=,此时341,3x x ==. 所以,原方程的整数解为111,4;x y =-⎧⎨=⎩ 223,4;x y =-⎧⎨=⎩ 331,4;x y =⎧⎨=-⎩ 443,4.x y =⎧⎨=-⎩ 二、填空题(共5小题,每小题7分,共35分)6.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶 3000 km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶 km .【答】3750.解:设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1 km 磨损量为5000k ,安装在后轮的轮胎每行驶1km 的磨损量为3000k .又设一对新轮胎交换位置前走了x km ,交换位置后走了y km .分别以一个轮胎的总磨损量为等量关系列方程,有,50003000,50003000kxky k ky kx k ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相加,得()()250003000k x y k x y k +++=,则 237501150003000x y +==+.7.已知线段AB 的中点为C ,以点A 为圆心,AB 的长为半径作圆,在线段AB 的延长线上取点D ,使得BD =AC ;再以点D 为圆心,DA 的长为半径作圆,与⊙A 分别相交于F ,G 两点,连接FG 交AB 于点H ,则AHAB的值为 .解:如图,延长AD 与⊙D 交于点E ,连接AF ,EF . 由题设知13AC AD =,13AB AE =,在△FHA 和△EF A 中, 90EFA FHA ∠=∠=︒,FAH EAF ∠=∠所以 Rt △FHA ∽Rt △EF A ,AH AFAF AE=.而AF AB =,所以AH AB 13=. 8.已知12345a a a a a ,,,,是满足条件123459a a a a a ++++=的五个不同的整数,若b 是关于x 的方程()()()()()123452009x a x a x a x a x a -----=的整数根,则b 的值为 . 【答】 10.解:因为()()()()()123452009b a b a b a b a b a -----=,且12345a a a a a ,,,,是五个不同的整数,所有12345b a b a b a b a b a -----,,,,也是五个不同的整数.又因为()()2009117741=⨯-⨯⨯-⨯,所以1234541b a b a b a b a b a -+-+-+-+-=.由123459a a a a a ++++=,可得10b =.9.如图,在△ABC 中,CD 是高,CE 为ACB ∠的平分线.若AC =15,BC =20,CD =12,则CE 的长等于 .【答】602. (第7题)解:如图,由勾股定理知AD =9,BD =16,所以AB =AD +BD =25 . 故由勾股定理逆定理知△ACB 为直角三角形,且90ACB ∠=︒.作EF ⊥BC ,垂足为F .设EF =x ,由1452ECF ACB ∠=∠=︒,得CF =x ,于是BF =20-x .由于EF ∥AC ,所以EF BFAC BC =, 即 201520x x-=, 解得607x =.所以60227CE x ==.10.10个人围成一个圆圈做游戏.游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实地告诉他两旁的两个人,然后每个人将他两旁的两个人告诉他的数的平均数报出来.若报出来的数如图所示,则报3的人心里想的数是 . 【答】2-.解:设报3的人心里想的数是x ,则报5的人心里想的数应是8x -.于是报7的人心里想的数是 12(8)4x x --=+,报9的人心里想的数是16(4)12x x -+=-,报1的人心里想的数是 20(12)8x x --=+,报3的人心里想的数是4(8)4x x -+=--.所以 4x x =--, 解得2x =-.三、解答题(共4题,每题20分,共80分)11.已知抛物线2y x =与动直线c x t y --=)12(有公共点),(11y x ,),(22y x ,且3222221-+=+t t x x . (1)求实数t 的取值范围;(2)当t 为何值时,c 取到最小值,并求出c 的最小值. 解:(1)联立2y x =与c x t y --=)12(,消去y 得二次方程(第9题)(第10题)2(21)0x t x c --+= ①有实数根1x ,2x ,则121221,x x t x x c +=-=.所以2221212121[()()]2c x x x x x x ==+-+=221[(21)(23)]2t t t --+-=21(364)2t t -+. ②………………5分把②式代入方程①得221(21)(364)02x t x t t --+-+=. ③………………10分t 的取值应满足2221223t t x x +-=+≥0, ④且使方程③有实数根,即22(21)2(364)t t t ∆=---+=2287t t -+-≥0, ⑤解不等式④得 t ≤-3或t ≥1,解不等式⑤得 2-t ≤2+所以,t 的取值范围为22-≤t ≤22+⑥ ………………15分(2) 由②式知22131(364)(1)222c t t t =-+=-+.由于231(1)22c t =-+在22-≤t ≤22+时是递增的,所以,当22t =-时,2min 3111(21)2224c -=--+=. ………………20分12.已知正整数a 满足3192191a +,且2009a <,求满足条件的所有可能的正整数a 的和.解:由3192191a +可得31921a -.619232=⨯,且()[]311(1)1(1)(1)(1)a a a a a a a a -=-++=-++-.………………5分因为()11a a ++是奇数,所以6321a -等价于621a -,又因为3(1)(1)a a a -+,所以331a -等价于31a -.因此有1921a -,于是可得1921a k =+.………………15分 又02009a <<,所以0110k =L ,,,.因此,满足条件的所有可能的正整数a 的和为11+192(1+2+…+10)=10571. ………………20分13.如图,给定锐角三角形ABC ,BC CA <,AD ,BE 是它的两条高,过点C 作△ABC 的外接圆的切线l ,过点D ,E 分别作l 的垂线,垂足分别为F ,G .试比较线段DF 和EG 的大小,并证明你的结论.解法1:结论是DF EG =.下面给出证明. ………………5分 因为FCD EAB ∠=∠,所以Rt △FCD ∽ Rt △EAB .于是可得CDDF BE AB =⋅. 同理可得 CEEG AD AB=⋅.………………10分又因为tan AD BEACB CD CE∠==,所以有BE CD AD CE ⋅=⋅,于是可得 DF EG=.………………20分解法2:结论是DF EG =.下面给出证明.……………… 5分连接DE ,因为90ADB AEB ∠=∠=︒,所以A ,B ,D ,E 四点共圆,故CED ABC ∠=∠. ………………10分又l 是⊙O 的过点C 的切线,所以ACG ABC ∠=∠. ………………15分 所以,CED ACG ∠=∠,于是DE ∥FG ,故DF =EG .………………20分(第13A 题)(第13A 题)14.n 个正整数12n a a a L ,,,满足如下条件:1212009n a a a =<<<=L ; 且12n a a a L ,,,中任意n -1个不同的数的算术平均数都是正整数.求n 的最大值.解:设12n a a a L ,,,中去掉i a 后剩下的n -1个数的算术平均数为正整数i b ,12i n =L ,,,.即 12()1n ii a a a a b n +++-=-L .于是,对于任意的1≤i j <≤n ,都有1j i i j a a b b n --=-,从而 1()j i n a a --. ………………5分由于 11200811n n a a b b n n --==--是正整数,故 312251n -⨯. ………………10分由于 ()()()112211n n n n n a a a a a a a ----=-+-++-L ≥()()()2111(1)n n n n -+-++-=-L , 所以,2(1)n -≤2008,于是n ≤45.结合312251n -⨯,所以,n ≤9. ………………15分另一方面,令123801,811,821a a a =⨯+=⨯+=⨯+,…,8871a =⨯+,982511a =⨯+,则这9个数满足题设要求.综上所述,n 的最大值为9. ………………20分中国教育学会中学数学教学专业委员会“《数学周报》杯”2010年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题7分,共35分.其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1.若20 10a b b c==,,则a bb c ++的值为( ). (A )1121 (B )2111 (C )11021 (D )21011解:D 由题设得12012101111110a ab bc b c b +++===+++. 代数式变形,同除b2.若实数a ,b 满足21202a ab b -++=,则a 的取值范围是 ( ).(A )a ≤2- (B )a ≥4 (C )a ≤2-或 a ≥4 (D )2-≤a ≤4 解.C因为b 是实数,所以关于b 的一元二次方程21202b ab a -++=的判别式 21()41(2)2a a ∆--⨯⨯+=≥0,解得a ≤2-或 a ≥4.方程思想,未达定理;要解一元二次不等式3.如图,在四边形ABCD 中,∠B =135°,∠C =120°,AB =3BC =422-CD =2,则AD 边的长为( ).(A )6(B )64(C )64+ (D )622+ 解:D如图,过点A ,D 分别作AE ,DF 垂直于直线BC ,垂足分别为E ,F .由已知可得BE =AE 6CF =22DF =6于是 EF =4+6.过点A 作AG ⊥DF ,垂足为G .在Rt △ADG 中,根据勾股定理得AD 222(46)(6)(224)=++=+226+勾股定理、涉及双重二次根式的化简,补全图形法4.在一列数123x x x ,,,……中,已知11=x ,且当k ≥2时,1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭(取整符号[]a 表示不超过实数a 的最大整数,例如[]2.62=,[]0.20=),则2010x 等于( ).(A) 1 (B) 2 (C) 3 (D) 4 解:B由11=x 和1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭可得 (第3题)(第3题)11x =,22x =,33x =,44x =,51x =,62x =,73x =,84x =,……因为2010=4×502+2,所以2010x =2. 高斯函数;找规律。
三、解答题(共4题,每题20分,共80分)11.如图,△ABC 为等腰三角形,AP 是底边BC 上的高,点D 是线段PC 上的一点,BE 和CF 分别是△ABD 和△ACD 的外接圆直径,连接EF . 求证: tan EF PAD BC∠=.证明:如图,连接ED ,FD . 因为BE 和CF 都是直径,所以ED ⊥BC , FD ⊥BC ,可得…………(20分)12.如图,抛物线2y ax bx =+(a >0)与双曲线y x=相交于点A ,B . 已知点A 的坐标为(1,4),点B 在第三象限内,且△AOB 的面积为3(O 为坐标原点).(1)求实数a ,b ,k 的值;(2)过抛物线上点A 作直线AC ∥x 轴,交抛物线于另一点C ,求所有满足△EOC ∽△AOB 的点E 的坐标.(第11题)解:(1)因为点A (1,4)在双曲线k y x=上, 所以k=4. 故双曲线的函数表达式为xy 4=. 设点B (t ,4t ),0t <,AB 所在直线的函数表达式为y mx n =+,则有 44m n mt n t =+⎧⎪⎨=+⎪⎩,, 解得4m t =-,4(1)t n t +=. 于是,直线AB 与y 轴的交点坐标为4(1)0,t t +⎛⎫ ⎪⎝⎭,故 ()141132AOB t S t t∆+=⨯-=(),整理得22320t t +-=, 解得2t =-,或t =1(舍去).所以点B 的坐标为(2-,2-). ⎧⎨⎩=B '(2-,2)是CO 的延长1OA 到点1E ,使得1OE =12OA ,这时点1E (8,2-)是符合条件的点.(ii )作△BOA 关于x 轴的对称图形△2B OA ',得到点2A (1,4-);延长2OA 到点2E ,使得2OE =22OA ,这时点E 2(2,8-)是符合条件的点.所以,点E 的坐标是(8,2-),或(2,8-). …………(20分)13.求满足22282p p m m ++=-的所有素数p 和正整数m ..解:由题设得(21)(4)(2)p p m m +=-+, 所以(4)(2)p m m -+,由于p 是素数,故(4)p m -,或(2)p m +. ……(5分)(1)若(4)p m -,令4m kp -=,k 是正整数,于是2m kp +>,2223(21)(4)(2)p p p m m k p >+=-+>,故23k <,从而1k =. 所以4221m p m p -=⎧⎨+=+⎩,,解得59.p m =⎧⎨=⎩, …………(10分) (2)若(2)p m +,令2m kp +=,k 是正整数.当5p >时,有46(1)m kp kp p p k -=->-=-,223(21)(4)(2)(1)p p p m m k k p >+=-+>-,故(1)3k k -<,从而1k =,或2.由于(21)(4)(2)p p m m +=-+是奇数,所以2k ≠,从而1k =.于是4212m p m p -=+⎧⎨+=⎩,, 这不可能.当5p =时,2263m m -=,9m =;当3p =,2229m m -=,无正整数解;当2p =时,2218m m -=,无正整数解.综上所述,所求素数p =5,正整数m =9. …………(20分)14.从1,2,…,2010这2010个正整数中,最多可以取出多少个数,使得所取出的数中任意三个数之和都能被33整除?解:首先,如下61个数:11,1133+,11233+⨯,…,116033+⨯(即1991)满足题设条件. …………(5分)另一方面,设12n a a a <<< 是从1,2,…,2010中取出的满足题设条件的数,对于这n 个数中的任意4个数i j k m a a a a ,,,,因为33()i k m a a a ++, 33()j k m a a a ++,所以 33()j i a a -.因此,所取的数中任意两数之差都是33的倍数. …………(10分)设133i i a a d =+,i =1,2,3,…,n . 由12333()a a a ++,得12333(33333)a d d ++, …………(15分)故20分)。
2010年全国初中数学联赛试题说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分)1. 若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-= ( )A .1.B .2.C .3.D .4.【答】B.因为,,a b c 均为整数,所以a b -和a c -均为整数,从而由1010()()1a b a c -+-=可得 ||1,||0a b a c -=⎧⎨-=⎩或||0,|| 1.a b a c -=⎧⎨-=⎩ 若||1,||0,a b a c -=⎧⎨-=⎩则a c =,从而|||a b b c c -+-=|||a b b a a a -+-+-=. 若||0,||1,a b a c -=⎧⎨-=⎩则a b =,从而||||||a b b c c a -+-+-=||||||2||2a a a c c a a c -+-+-=-=.因此,||||||a b b c c a -+-+-=2.2.若实数,,a b c 满足等式3||6b =,9||6b c =,则c 可能取的最大值为 ( )A .0.B .1.C .2.D .3.【答】C.32(3),||(2)55c b c =+=-,而||0b ≥,所以2c ≤. 当2c =时,可得9,0a b ==,满足已知等式.所以c 可能取的最大值为2.3.若b a ,是两个正数,且 ,0111=+-+-a b b a 则 ( )A .103a b <+≤. B .113a b <+≤. C .413a b <+≤. D .423a b <+≤. 【答】C. 由1110a b b a--++=可得b a b ab a +=++22,则 2()()()(1)ab a b a b a b a b =+-+=++-①由于b a ,是两个正数,所以,0>ab 0a b +>,所以10a b +->,从而.1>+b a 另一方面,由22()()44a b a b ab ab +=-+≥可得4)(2b a ab +≤,结合①式可得14a b a b +≥+-,所以.34≤+b a 因此,413a b <+≤.4.若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为 ( )A .-13.B .-9.C .6.D . 0.【答】A.设m 是方程2310x x --=的一个根,则2310m m --=,所以231m m =+.由题意,m 也是方程420x ax bx c +++=的根,所以420m am bm c +++=,把231m m =+代入此式,得22(31)0m am bm c ++++=,整理得2(9)(6)10a m b m c +++++=. 从而可知:方程2310x x --=的两根也是方程2(9)(6)10a x b x c +++++=的根,这两个方程实质上应该是同一个一元二次方程,从而有22(9)(6)1(31)a x b x c k x x +++++=--(其中k 为常数),故961131a b c +++==--,所以333,10b a c a =--=--.因此,2(333)2(10)13a b c a a a +-=+-----=-.5.在△ABC 中,已知︒=∠60CAB ,D ,E 分别是边AB ,AC 上的点,且︒=∠60AED ,CE DB ED =+,CDE CDB ∠=∠2,则=∠DCB( )A .15°.B .20°.C .25°.D .30°.【答】 B.如图,延长AB 到F ,使BF =ED ,连CF ,EF .∵ ︒=∠=∠60AED EAB ,∴︒=∠60EDA ,︒=∠=∠120CED EDB ,BF ED AE AD ===,DF BF DB DB ED CE =+=+=,于是,AF AC =,︒=∠=∠60AFC ACF .又∵︒=∠120EDB ,CDE CDB ∠=∠2,∴ ︒=∠︒=∠80,40CDB CDE ,︒=∠-∠-︒=∠20180EDC CED ECD .在△CDA 和△CBF 中,CA=CF ,︒=∠=∠60CFB CAD ,AD=BF ,∴ △CDA ≌△CBF , ∴ ︒=∠=∠20ACD FCB .于是,︒=∠-∠-︒=∠2060FCB CDE DCB .6.对于自然数n ,将其各位数字之和记为n a ,如2009200911a =+++=,201020103a =+++=,则123a a a a ++++( ) A .28062. B .28065. C .28067. D .28068.【答】D.把1到2010之间的所有自然数均看作四位数(如果不足四位,则在前面加0,补足四位,这样做不会改变n a 的值).1在千位上出现的次数为310,1在百位上出现的次数为2210⨯,1在十位和个位上出现的次数均为22101⨯+,因此,1出现的总次数为3210210321602+⨯⨯+=.2在千位上出现的次数为11,2在百位和十位上出现的次数均为2210⨯,2在个位上出现的次数为22101⨯+,因此,2出现的总次数为21121031612+⨯⨯+=.类似的,可求得(3,4,5,6,7,8,9)k k =出现的总次数均为221031601⨯⨯+=.因此11a a ++=28068.二、填空题:(本题满分28分,每小题7分)1.已知实数,x y 满足方程组3319,1,x y x y ⎧+=⎨+=⎩则22x y += .【答】 13.由3319x y +=得2()[()3]19x y x y xy ++-=,把1x y +=代入,可得6xy =-. 因此,,x y 是一元二次方程260t t --=的两个实数根,易求得这两个实数根分别为3和2-,所以22223(2)13x y +=+-=.2.二次函数c bx x y ++=2的图象与x 轴正方向交于A ,B 两点,与y 轴正方向交于点C .已知AC AB 3=,︒=∠30CAO ,则c = . 【答】 19. 由题意知,点C 的坐标为),0(c ,c OC =.设B A ,两点的坐标分别为)0,(1x ,)0,(2x ,则21,x x 是方程02=++c bx x 的两根. 由根与系数的关系得c x x b x x =-=+2121,.又︒=∠30CAO ,则c AC AB c AC 323,2===. 于是,c AC OA x 330cos 1=︒==,c AB OA OB x 332=+==. 由c c x x ==2219,得91=c . 3.在等腰直角△ABC 中,AB =BC =5,P 是△ABC 内一点,且PAPC =5,则PB =______.【答】作P E ⊥AB ,交AB 于点E ,作P F ⊥BC ,交BC 于点F ,设,PE mPF n ==,分别在△PAE 、△PCF 中利用勾股定理,得22(5)5m n +-= ①22(5)25m n -+= ②②-①,得10()20n m -=,所以2m n =-,代入①中,得27120n n +-=,解得13n =,24n =. 当3n =时,21m n =-=,在Rt △PAE中,由勾股定理可得PB ==当4n =时,22m n =-=,此时PE AE >,所以点P 在△ABC 的外面,不符合题意,舍去.因此PB =4.将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放_______个球.【答】 15.将这些球的位置按顺序标号为1,2,3,4,…….由于1号球与7号球中间夹有5个球,1号球与12号球中间夹有10个球,12号球与6号球中间夹有5个球,7号球与13号球中间夹有5个球,13号球与2号球中间夹有10个球,2号球与8号球中间夹有5个球,8号球与14号球中间夹有5个球,14号球与3号球中间夹有10个球,3号球与9号球中间夹有5个球,9号球与15号球中间夹有5个球,15号球与4号球中间夹有10个球,4号球与10号球中间夹有5个球,因此,编号为1,7,12,6, 13,2,8,14,3,9,15,4,10的球颜色相同,编号为5,11的球可以为另外的一种颜色.因此,可以按照要求摆放15个球.如果球的个数多于15个,则一方面,16号球与10号球应同色,另一方面,5号球与16号球中间夹有10个球,所以5号球与16号球同色,从而1到16号球的颜色都相同,进一步可以知道:所有的球的颜色都相同,与要求不符.因此,按这种要求摆放,最多可以摆放15个球.第二试 (A )一.(本题满分20分)设整数,,a b c (a b c ≥≥)为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数.解 由已知等式可得222()()()26a b b c a c -+-+-=①令,a b m b c n -=-=,则a c m n -=+,其中,m n 均为自然数.C于是,等式①变为222()26m n m n +++=,即 2213m n mn ++=②由于,m n 均为自然数,判断易知,使得等式②成立的,m n 只有两组:3,1m n =⎧⎨=⎩和1,3.m n =⎧⎨=⎩ …………10分 (1)当3,1m n ==时,1b c =+,34a b c =+=+.又,,a b c 为三角形的三边长,所以b c a +>,即(1)4c c c ++>+,解得3c >.又因为三角形的周长不超过30,即(4)(1)30a b c c c c ++=++++≤,解得253c ≤.因此2533c <≤,所以c 可以取值4,5,6,7,8,对应可得到5个符合条件的三角形. …………15分(2)当1,3m n ==时,3b c =+,14a b c =+=+.又,,a b c 为三角形的三边长,所以b c a +>,即(3)4c c c ++>+,解得1c >.又因为三角形的周长不超过30,即(4)(3)30a b c c c c ++=++++≤,解得233c ≤.因此2313c <≤,所以c 可以取值2,3,4,5,6,7,对应可得到6个符合条件的三角形.综合可知:符合条件且周长不超过30的三角形的个数为5+6=11. ……………………20分二.(本题满分25分)已知等腰三角形△ABC 中,AB =AC ,∠C 的平分线与AB 边交于点P ,M 为△ABC 的内切圆⊙I 与BC 边的切点,作MD//AC ,交⊙I 于点D.证明:PD 是⊙I 的切线.证明 过点P 作⊙I 的切线PQ (切点为Q )并延长,交BC 于点N.因为CP 为∠ACB 的平分线,所以∠ACP =∠BCP.又因为PA 、PQ 均为⊙I 的切线,所以∠APC =∠NPC.又CP 公共,所以△ACP ≌△NCP , …………10分所以∠PAC =∠PNC.由NM =QN ,BA =BC ,所以△QNM ∽△BAC ,故∠NMQ =∠ACB ,所以MQ//AC.………………………………20分又因为MD//AC ,所以MD 和MQ 为同一条直线. NCA又点Q 、D 均在⊙I 上,所以点Q 和点D 重合,故PD 是⊙I 的切线. ……………………………25分三.(本题满分25分)已知二次函数2y x bx c =+-错误!未找到引用源。
中国教育学会中学数学教学专业委员会“《数学周报》杯”2008年全国初中数学竞赛试题参考答案答题时注意:1.用圆珠笔或钢笔作答.2.解答书写时不要超过装订线. 3.草稿纸不上交.一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分)1.已知实数x y ,满足 42424233y y x x -=+=,,则444y x+的值为( ).(A )7 (B ) (C ) (D )5【答】(A )解:因为20x >,2y ≥0,由已知条件得212184x +==, 21122y --==, 所以444y x +=22233y x ++- 2226y x=-+=7. 另解:由已知得:2222222()()30()30x xy y ⎧-+--=⎪⎨⎪+-=⎩,显然222y x -≠,以222,y x -为根的一元二次方程为230t t +-=,所以 222222()1,()3y y x x-+=--⨯=- 故444y x +=22222222[()]2()(1)2(3)7y y x x-+-⨯-⨯=--⨯-= 2.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先(第3题)后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是( ).(A )512 (B )49 (C )1736 (D )12【答】(C )解:基本事件总数有6×6=36,即可以得到36个二次函数. 由题意知∆=24m n ->0,即2m >4n .通过枚举知,满足条件的m n ,有17对. 故1736P =. 3.有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可以确定的不同直线最少有( ).(A )6条 (B ) 8条 (C )10条 (D )12条 【答】(B )解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线可以确定6条不同的直线;小圆周上的两个点E ,F 中,至少有一个不是四边形ABCD 的对角线AC 与BD 的交点,则它与A ,B ,C ,D 的连线中,至少有两条不同于A ,B ,C ,D 的两两连线.从而这6个点可以确定的直线不少于8条.当这6个点如图所示放置时,恰好可以确定8条直线. 所以,满足条件的6个点可以确定的直线最少有8条.4.已知AB 是半径为1的圆O 的一条弦,且1AB a =<.以AB 为一边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的一点,且DB AB a ==,DC 的延长线交圆O 于点E ,则AE 的长为( ).(A)2a (B )1 (C )2(D )a 【答】(B )解:如图,连接OE ,OA ,OB . 设D α∠=,则 120ECA EAC α∠=︒-=∠.又因为()1160180222ABO ABD α∠=∠=︒+︒-120α=︒-,所以ACE △≌ABO △,于是1AE OA ==. 另解:如图,作直径EF ,连结AF ,以点B 为圆心,AB 作⊙B ,因为AB =BC =BD ,则点A ,C ,D 都在⊙B 上,(第4题)由11603022F EDA CBA ∠=∠=∠=⨯︒=︒ 所以2301AE EF sim F sim =⨯∠=⨯︒=5.将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有( ).(A )2种 (B )3种 (C )4种 (D )5种 【答】(D )解:设12345a a a a a ,,,,是1,2,3,4,5的一个满足要求的排列. 首先,对于1234a a a a ,,,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件矛盾.又如果i a (1≤i ≤3)是偶数,1i a +是奇数,则2i a +是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以12345a a a a a ,,,,只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件:2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3; 4,3,1,2,5; 4,5,3,2,1. 二、填空题(共5小题,每小题6分,满分30分)6.对于实数u ,v ,定义一种运算“*”为:u v uv v *=+.若关于x 的方程1()4x a x **=-有两个不同的实数根,则满足条件的实数a 的取值范围是 .【答】0a >,或1a <-.解:由1()4x a x **=-,得21(1)(1)04a x a x ++++=,依题意有 210(1)(1)0a a a +≠⎧⎨∆=+-+>⎩,, 解得,0a >,或1a <-.7.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔(第8题)(第9题答案)D 3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是 分钟.【答】4.解:设18路公交车的速度是x 米/分,小王行走的速度是y 米/分,同向行驶的相邻两车的间距为s 米.每隔6分钟从背后开过一辆18路公交车,则 s y x =-66. ① 每隔3分钟从迎面驶来一辆18路公交车,则s y x =+33. ② 由①,②可得 x s 4=,所以4=xs. 即18路公交车总站发车间隔的时间是4分钟.8.如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点, AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为 . 【答】9.解:如图,设点N 是AC 的中点,连接MN ,则MN ∥AB . 又//MF AD ,所以 FMN BAD DAC MFN ∠=∠=∠=∠,所以 12FN MN AB ==. 因此 1122FC FN NC AB AC =+=+=9.另解:如图,过点C 作AD 的平行线交BA 的延长线为E ,延长MF AE 于点N.则E BAD DAC ACE ∠=∠=∠=∠所以11AE AC ==. 又//FN CE ,所以四边形CENF 是等腰梯形, 即11(711)922CF EN BE ===⨯+=9.△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为 .【答】163. 解:如图,设△ABC 的三边长为a ,b ,c ,内切圆I 的半径为r , BC 边上的高为a h ,则(第8题答案)11()22a ABC ah S abc r ==++△, 所以a r ah a b c=++. 因为△ADE ∽△ABC ,所以它们对应线段成比例,因此a a h r DEh BC-=, 所以 (1)(1)a a a h r r aDE a a a h h a b c-=⋅=-=-++()a b c a b c +=++, 故 879168793DE ⨯+==++().另解:ABC S rp ∆====(这里2a b cp ++=) 所以112r ==,228ABC a S h a ⨯===△由△ADE ∽△ABC ,得23a a h r DE BC h -===, 即21633DE BC === 10.关于x ,y 的方程22208()x y x y +=-的所有正整数解为 .【答】481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,, 解:因为208是4的倍数,偶数的平方数除以4所得的余数为0,奇数的平方数除以4所得的余数为1,所以x ,y 都是偶数.设2,2x a y b ==,则22104()a b a b +=-,同上可知,a ,b 都是偶数.设2,2a c b d ==,则2252()c d c d +=-,所以,c ,d 都是偶数.设2,2c s d t ==,则2226()s t s t +=-,于是 22(13)(13)s t -++=2213⨯, 其中s ,t 都是偶数.所以222(13)213(13)s t -=⨯-+≤2222131511⨯-<.所以13s -可能为1,3,5,7,9,进而2(13)t +为337,329,313,289,257,故只能是2(13)t +=289,从而13s -=7.于是62044s s t t ==⎧⎧⎨⎨==⎩⎩,,;, 因此 481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,,另解:因为222(104)(104)2104216x y -++=⨯= 则有2(104)21632,y +≤又y 正整数,所以 143y ≤≤令22|104|,|104|,21632a x b y a b =-=++= 则 因为任何完全平方数的个位数为:1,4,5,6,9由2221632a b +=知22,a b 的个位数只能是1和1或6和6; 当22,a b 的个位数是1和1时,则,a b 的个位数字可以为1或9但个位数为1和9的数的平方数的十位数字为偶数,与22a b +的十位数字为3矛盾。
12010年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分)1.若a ,b ,c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-=( )A .1B .2C .3D .4【答案】 B【解析】 因为()()10101a b a c ---=,而左边的两个加数都是非负整数,所以一个等于0,另一个等于1,也就是说,a ,b ,c 三个数中有两个相等,另一个和它们相差1.因此,所求的和式中,两项等于1,另一项等于2,结果为2.2.若实数a ,b ,c 满足等式3||6a b =,49||6a b c =,则c 可能取的最大值为( )A .0B .1C .2D .3【答案】 C【解析】 为了使c 尽量大,a 应该尽量大,b 应该尽量小.因为它们都是非负数,3a ,0b =,不难观察到所求答案为2.3.若a ,b 是两个正数,且1110,a b b a--++= 则( )2A .103a b <+≤B .113a b <+≤C .413a b <+≤D .423a b <+≤. 【答案】 C【解析】 去分母之后得到()()110a a b b ab -+-+=,即220a ab b a b ++--=.给定a 和b 是两个正数,那么如果让它们中的一个等于0,则另一个等于0或14.若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为 ( )A .13-B .9-C .6D .0【答案】 A【解析】 这需要使得前者是后者的因式,用综合除法可得,余式为()()33310a b x a c +++++,它应该等于0.所以两个系数都为0,特别地,()()333210a b a c ++-++,所以所求答案为13-.5.在ABC △中,已知60CAB ∠=︒,D ,E 分别是边AB ,AC 上的点,且60AED ∠=︒,ED DB CE +=,2CDB CDE ∠=∠,则DCB ∠= ( )A .15oB .20oC .25oD .30o【答案】 B【解析】 观察可得ADE △为正三角形,6.对于自然数n ,将其各位数字之和记为n a ,如2009200911a =+++=,201020103a =+++=,则312320092010a a a a a +++++=L ( )A .28062B .28065C .28067D .28068.【答案】 D【解析】 根据弃九法,它和1到2010的和被9除的余数相等.每连续9个自然数之和被9整除,2010被9除余3,1236++=,所以只有D 符合.二、填空题:(本题满分28分,每小题7分)1.已知实数x ,y 满足方程组33191x y x y ⎧+=⎨+=⎩,,则22x y += .【答案】 13【解析】 第一式除以第二式可得2219x xy y -+=,第二式平方可得2221x xy y ++=,那么所求答案就是()1921313⨯+÷=.2.二次函数2y x bx c =++的图象与x 轴正方向交于A ,B 两点,与y 轴正方向交于点C .已知3AB ,30CAO ∠=︒,则c = .【答案】 19【解析】 观察可知A 必须在B 左边,否则B 会跑到x 轴负半轴上.设A 的横坐标为a ,则C 的纵坐标3,23AC =,2AB a =.因此,考虑两根之积,33a a ⨯,3a =319=. 3.在等腰直角ABC △中,5AB BC ==,P 是ABC △内一点,且5PA ,5PC =,则PB = .4【答案】 10【解析】 设()00B ,,()50A ,,()05C ,,根据熟知的勾三股四弦五,可观察到()31P ,,(另一个点在三角形外,不符合),所以10PB =.4.将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放 个球.【答案】 15【解析】 也就是说,编号之差为6或11的两个球颜色相同.下面从1号球开始,依次写出颜色相同的球的编号:11261711516104159314821371→→→→→→→→→→→→→→→→→也就是说,如果有17个球,则全部同色;如果超过17个,则任何连续17个同色,也不行.如果有16个,则上面的圈去掉17号球仍然是一条链,仍然不行;如果有15个,则上面的圈去掉17号球和16号球后断成两部分,所以可以.第二试 (A )一.(本题满分20分)设整数()a b c a b c ≥≥,,为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长5不超过30的三角形的个数.【解析】 由已知等式可得222()()()26a b b c a c -+-+-= ①令a b m -=,b c n -=,则a c m n -=+,其中m ,n 均为自然数.于是,等式①变为222()26m n m n +++=,即2213m n mn ++= ②由于m ,n 均为自然数,判断易知,使得等式②成立的m ,n 只有两组:31m n =⎧⎨=⎩,,和13.m n =⎧⎨=⎩,⑴ 当3m =,1n =时,1b c =+,34a b c =+=+.又a ,b ,c 为三角形的三边长,所以b c a +>,即(1)4c c c ++>+,解得3c >.又因为三角形的周长不超过30,即(4)(1)30a b c c c c ++=++++≤,解得253c ≤. 因此2533c <≤, 所以c 可以取值4,5,6,7,8,对应可得到5个符合条件的三角形.6⑵ 当1m =,3n =时,3b c =+,14a b c =+=+.又a ,b ,c 为三角形的三边长,所以b c a +>,即(3)4c c c ++>+,解得1c >.又因为三角形的周长不超过30,即(4)(3)30a b c c c c ++=++++≤,解得233c ≤. 因此2313c <≤, 所以c 可以取值2,3,4,5,6,7,对应可得到6个符合条件的三角形.综合可知:符合条件且周长不超过30的三角形的个数为5611+=.二.(本题满分25分)已知等腰三角形ABC △中,AB AC =,C ∠的平分线与AB 边交于点P ,M 为ABC △的内切圆I e 与BC 边的切点,作MD AC ∥,交I e 于点D .证明:PD 是I e 的切线.【解析】 过点P 作I e 的切线PQ (切点为Q )并延长,交BC 于点N .因为CP 为ACB ∠的平分线,所以ACP BCP ∠=∠.又因为PA 、PQ 均为I e 的切线,所以APC NPC ∠=∠.IP QNB7又CP 公共,所以ACP NCP △≌△,所以PAC PNC ∠=∠.由NM QN =,BA BC =,所以QNM BAC △≌△,故NMQ ACB ∠=∠,所以MQ AC ∥.又因为MD AC ∥,所以MD 和MQ 为同一条直线.又点Q 、D 均在I e 上,所以点Q 和点D 重合,故PD 是I e 的切线.三.(本题满分25分)已知二次函数2y x bx c =+-的图象经过两点()1P a ,,()210Q a ,. ⑴ 如果a ,b ,c 都是整数,且8c b a <<,求a ,b ,c 的值.⑵ 设二次函数2y x bx c =+-的图象与x 轴的交点为A 、B ,与y 轴的交点为C .如果关于x 的方程20x bx c +-=的两个根都是整数,求ABC △的面积.【解析】 点()1P a ,、()210Q a ,在二次函数2y x bx c =+-的图象上,故1b c a +-=,4210a c a +-=,解得93b a =-,82c a =-.⑴ 由8c b a <<知8293938a a a a -<-⎧⎨-<⎩,,解得13a <<.又a 为整数,所以2a =,9315b a =-=,8214c a =-=.⑵ 设m ,n 是方程的两个整数根,且m n ≤,旗开得胜8由根与系数的关系可得39m n b a +=-=-,28mn c a =-=-,消去a ,得98()6mn m n -+=-,两边同时乘以9,得8172()54mn m n -+=-,分解因式,得(98)(98)10m n --=.所以9819810m n -=⎧⎨-=⎩,,或982985m n -=⎧⎨-=⎩,,或9810981m n -=-⎧⎨-=-⎩,,或985982m n -=-⎧⎨-=-⎩,,解得12m n =⎧⎨=⎩,,或109139m n ⎧=⎪⎪⎨⎪=⎪⎩,,或2979m n ⎧=-⎪⎪⎨⎪=⎪⎩,,或19323m n ⎧=⎪⎪⎨⎪=⎪⎩,,又m ,n 是整数,所以后面三组解舍去,故1m =,2n =.因此,()3b m n =-+=-,2c mn =-=-,二次函数的解析式为232y x x =-+.易求得点A 、B 的坐标为()10,和()20,,点C 的坐标为()02,, 所以ABC △的面积为1(21)212⨯-⨯=.第二试 (B )旗开得胜9一.(本题满分20分)设整数a ,b ,c 为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数(全等的三角形只计算1次).【解析】 不妨设a b c ≥≥,由已知等式可得222()()()26a b b c a c -+-+-= ①令a b m -=,b c n -=,则a c m n -=+,其中m ,n 均为自然数.于是,等式①变为222()26m n m n +++=,即2213m n mn ++= ②由于m ,n 均为自然数,判断易知,使得等式②成立的m ,n 只有两组:31m n =⎧⎨=⎩,,和13.m n =⎧⎨=⎩,⑴ 当3m =,1n =时,1b c =+,34a b c =+=+.又a ,b ,c 为三角形的三边长,所以b c a +>,即(1)4c c c ++>+,解得3c >.又因为三角形的周长不超过30,即(4)(1)30a b c c c c ++=++++≤,解得253c ≤. 因此2533c <≤,旗开得胜10所以c 可以取值4,5,6,7,8,对应可得到5个符合条件的三角形.⑵ 当1m =,3n =时,3b c =+,14a b c =+=+.又a ,b ,c 为三角形的三边长,所以b c a +>,即(3)4c c c ++>+,解得1c >.又因为三角形的周长不超过30,即(4)(3)30a b c c c c ++=++++≤,解得233c ≤. 因此2313c <≤, 所以c 可以取值2,3,4,5,6,7,对应可得到6个符合条件的三角形.综合可知:符合条件且周长不超过30的三角形的个数为5611+=.二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )11一.(本题满分20分)题目和解答与(B )卷第一题相同.二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)设p 是大于2的质数,k 为正整数.若函数2(1)4y x px k p =+++-的图象与x 轴的两个交点的横坐标至少有一个为整数,求k 的值.【解析】 由题意知,方程2(1)40x px k p +++-=的两根1x ,2x 中至少有一个为整数.由根与系数的关系可得12x x p +=-,12(1)4x x k p =+-,从而有()()()()12121222241x x x x x x k p ++=+++=- ①⑴ 若1k =,则方程为22(2)0x px p ++-=,它有两个整数根2-和2p -.⑵ 若1k >,则10k ->.因为12x x p +=-为整数,如果1x ,2x 中至少有一个为整数,则1x ,2x 都是整数.又因为p 为质数,由①式知1|2p x +或2|2p x +.不妨设1|2p x +,则可设12x mp +=(其中m 为非零整数),则由①式可得212k x m-+=,12故()()12122k x x mp m -+++=+,即1214k x x mp m-++=+. 又12x x p +=-,所以14k p mp m--+=+, 即1(1)4k m p m-++= ② 如果m 为正整数,则(1)(11)36m p ++⨯=≥,10k m->, 从而1(1)6k m p m-++>,与②式矛盾. 如果m 为负整数,则(1)0m p +<,10k m-<, 从而1(1)0k m p m-++<,与②式矛盾. 因此,1k >时,方程2(1)40x px k p +++-=不可能有整数根.综上所述,1k =.旗开得胜13。
数学周报杯全国初中数学竞赛试题及答桉数学周报杯全国初中数学竞赛试题及答案第一题:(本题20分)请在横线上填入一个整数,使等式成立。
8 ÷ 4 + 2 × 3 - 6 = ______解答:为了计算这个等式,我们必须按照特定的顺序进行运算。
根据数学中的运算法则,乘法和除法具有高于加法和减法的优先级。
所以我们首先计算乘法和除法,然后再进行加法和减法。
按照这个顺序,我们可以解答这道题目。
首先,计算8 ÷ 4得到2。
然后,计算2 × 3得到6。
最后,计算6 -6得到0。
因此,空格应填入整数0。
第二题:(本题25分)如果a = 3, b = 4, c = 5,请判断下列等式的真假。
(a + b) × c = a × c + b × c解答:根据等式,我们可以将等式两边展开计算。
左边的等式为 (3 + 4) × 5 = 7 × 5 = 35。
右边的等式为 3 × 5 + 4 × 5 = 15 + 20 = 35。
由此可见,左边的等式等于右边的等式,所以等式成立,答案为真。
第三题:(本题30分)某班有26个学生,其中男生和女生的比例为5:7。
求这个班级中男生的人数。
解答:题目给出男生和女生的比例为5:7,我们知道比例是可以化简的,所以我们可以将5和7都除以它们的最大公约数(即5)得到1和7/5。
这表示男生和女生的实际人数的比例为1:7/5。
根据题目,这个班级总共有26个学生,所以我们可以设男生的人数为x。
然后根据比例,女生的人数为7/5x。
根据题目条件,男生人数x和女生人数7/5x的和等于总人数26。
所以我们可以列出方程:x + 7/5x = 26我们先将7/5这个分数转化为小数,得到7/5 = 1.4。
现在我们将方程改写为:x + 1.4x = 26合并同类项,得到:2.4x = 26再将26除以2.4,得到:x ≈ 10.83由于人数必须是整数,所以男生的人数应该是最接近10.83的整数,即11人。
xx 学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:设,则代数式的值为( ).(A)-6 (B)24 (C)(D)试题2:在同一直角坐标系中,函数()与()的图象大致是(A)(B)(C)(D)试题3:在等边三角形ABC所在的平面内存在点P,使⊿PAB、⊿PBC、⊿PAC都是等腰三角形.请指出具有这种性质的点P的个数()(A)1 (B)7 (C)10 (D)15评卷人得分若,,且满足,则的值为( ).(A)1 (B)2 (C)(D)试题5:设,则的整数部分等于( ).(A)4 (B)5 (C)6 (D)7试题6:若a是一个完全平方数,则比a大的最小完全平方数是 . 。
试题7:若关于的方程有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则的取值范围是 .试题8:一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数5的概率是 .试题9:如图,点为直线上的两点,过两点分别作y轴的平行线交双曲线()于两点. 若,则的值为 .如图,在Rt△ABC中,斜边AB的长为35,正方形CDEF内接于△ABC,且其边长为12,则△ABC的周长为 .试题11:已知:不论k取什么实数,关于x的方程(a、b是常数)的根总是x=1,试求a、b的值。
试题12:已知关于的一元二次方程的两个整数根恰好比方程的两个根都大1,求的值. 试题13:如图,点为轴正半轴上一点,两点关于轴对称,过点任作直线交抛物线于,两点.(1)求证:∠=∠;(2)若点的坐标为(0,1),且∠=60º,试求所有满足条件的直线的函数解析式.试题14:如图,△ABC中,,.点P在△ABC内,且,求△ABC的面积.试题15: A.试题1答案: -6试题2答案: C.试题3答案: C.试题4答案: C试题5答案: A试题6答案:试题7答案: 3<m≤4.试题8答案: 1/9试题9答案: 6试题10答案:84试题11答案:解:设方程的两个根为,其中为整数,且≤,则方程的两根为,由题意得,两式相加得,即,所以或解得或又因为所以;或者,故,或29.试题12答案:解:(1)如图,分别过点作轴的垂线,垂足分别为.设点的坐标为(0,),则点的坐标为(0,-).设直线的函数解析式为,并设的坐标分别为,.由得,于是,即.于是又因为,所以.因为∠∠,所以△∽△,故∠=∠.(2)设,,不妨设≥>0,由(1)可知∠=∠,=,=,所以=,=.因为∥,所以△∽△.于是,即,所以.由(1)中,即,所以于是可求得将代入,得到点的坐标(,).再将点的坐标代入,求得所以直线的函数解析式为.根据对称性知,所求直线的函数解析式为,或. 试题13答案:解:如图,作△ABQ,使得则△ABQ∽△ACP .由于,所以相似比为2.于是..由知,,于是.所以,从而.于是.故.试题14答案:11试题15答案:1。
2010年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为D C B A ,,,的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.1. 已知z y x ,,满足x z z y x +=-=532,则zy y x 25+-的值为 ( ) (A )1. (B )31. (C )31-. (D )21. 【答】B.解 由x z z y x +=-=532得x z x y 23,3==,所以31333525=+-=+-x x x x z y y x ,故选(B ). 注:本题也可用特殊值法来判断.2.当x 分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,计算代数式2211xx +-的值,将所得的结果相加,其和等于 ( ) (A )-1. (B )1. (C )0. (D )2007.【答】C.解 因为=+-++-222211)1(1)1(1n n n n 011112222=+-++-n n n n ,即当x 分别取值n 1,n n (为正整数)时,计算所得的代数式的值之和为0;而当1=x 时,0111122=+-.因此,当x 分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,计算所得各代数式的值之和为0.故选(C ).3. 设c b a ,,是△ABC 的三边长,二次函数2)2(2b a cx x ba y ----=在1=x 时取最小值b 58-,则△ABC 是 ( ) (A )等腰三角形. (B )锐角三角形. (C )钝角三角形. (D )直角三角形.【答】D.解 由题意可得⎪⎪⎩⎪⎪⎨⎧-=----=---,5822,1)2(2b b a c b a b a c 即⎪⎩⎪⎨⎧==+,53,2b c a c b 所以b c 53=,b a 54=,因此222b c a =+,所以△ABC 是直角三角形. 故选(D ).4. 已知锐角△ABC 的顶点A 到垂心H 的距离等于它的外接圆的半径,则∠A 的度数是( )(A )30°. (B )45°. (C )60°. (D )75°. 【答】C.解 锐角△ABC 的垂心在三角形内部,如图,设△ABC 的外心为O ,D 为BC 的中点,BO 的延长线交⊙O 于点E ,连CE 、AE ,则CE //AH ,AE //CH ,则OD CE AH OB 2===,所以∠OBD =30°,∠BOD =60°,所以∠A =∠BOD =60°.故选(C ).5.设K 是△ABC 内任意一点,△KAB 、△KBC 、△KCA 的重心分别为D 、E 、F ,则ABC DEF S S △△:的值为 ( )(A )91. (B )92. (C )94. (D )32. 【答】A.解 分别延长KD 、KE 、KF ,与△ABC 的三边AB 、BC 、CA 交于点M 、N 、P ,由于D 、E 、F 分别为△KAB 、△KBC 、△KCA 的重心,易知M 、N 、P 分别为AB 、BC 、CA 的中点,所以ABC MNP S S △△41=. 易证△D E F ∽△M N P ,且相似比为3:2,所以M N P D E F S S △△2)32(=A B C S △4194⋅=A B C S △91=. 所以:DEF S △19ABC S =△.故选(A ). 6.袋中装有5个红球、6个黑球、7个白球,从袋中摸出15个球,摸出的球中恰好有3个红球的概率是 ( )(A )101. (B )51. (C )103. (D )52. 【答】B.解 设摸出的15个球中有x 个红球、y 个黑球、z 个白球,则z y x ,,都是正整数,且7,6,5≤≤≤z y x ,15=++z y x .因为13≤+z y ,所以x 可取值2,3,4,5.当2=x 时,只有一种可能,即7,6==z y ;当3=x 时,12=+z y ,有2种可能,7,5==z y 或6,6==z y ;当4=x 时,11=+z y ,有3种可能,7,4==z y 或6,5==z y 或5,6==z y ; 当5=x 时,10=+z y ,有4种可能,7,3==z y 或6,4==z y 或5,5==z y 或4,6==z y .因此,共有1+2+3+4=10种可能的摸球结果,其中摸出的球中恰好有3个红球的结果有2种,所以所求的概率为51102=.故选(B ). 二、填空题(本题满分28分,每小题7分)1. 设121-=x ,a 是x 的小数部分,b 是x -的小数部分,则=++ab b a 333____1___.解 ∵12121+=-=x ,而3122<+<,∴122-=-=x a . 又∵12--=-x ,而2123-<--<-,∴22)3(-=---=x b .∴1=+b a ,∴=++ab b a 333=++-+ab b ab a b a 3))((221)(3222=+=++-b a ab b ab a . 2. 对于一切不小于2的自然数n ,关于x 的一元二次方程22(2)20x n x n -+-=的两个根记作n n b a ,(2≥n ),则)2)(2(122--b a )2)(2(133--+b a +)2)(2(120072007--+b a =.10034016- 解 由根与系数的关系得2+=+n b a n n ,22n n a b n ⋅=-,所以=--)2)(2(n n b a (2-n n b a 4)++n n b a 222(2)42(1)n n n n =--++=-+, 则11111()(2)(2)2(1)21n n a b n n n n =-=----++, )2)(2(122--b a )2)(2(133--+b a +)2)(2(120072007--+b a =11111111111003()()()()22334200720082220084016⎡⎤--+-++-=--=-⎢⎥⎣⎦. 3. 已知直角梯形ABCD 的四条边长分别为6,10,2====AD CD BC AB ,过B 、D 两点作圆,与BA 的延长线交于点E ,与CB 的延长线交于点F ,则BF BE -的值为____4_____.解 延长CD 交⊙O 于点G ,设DG BE ,的中点分别为点N M ,,则易知DN AM =.因为10==CD BC ,由割线定理,易证DG BF =,所以42)(2)(2==-=-=-=-AB AM BM DN BM DG BE BF BE .4. 若64100+a 和64201+a 均为四位数,且均为完全平方数,则整数a 的值是___17____.解 设264100m a =+,264201n a =+,则100,32<≤n m ,两式相减得 ))((10122m n m n m n a -+=-=,因为101是质数,且101101<-<-m n ,所以101=+m n ,故1012-=-=n m n a .代入264201n a =+,整理得020*******=+-n n ,解得59=n ,或343=n (舍去).所以171012=-=n a .第二试 (A )AB CD E F G M N一、 (本题满分20分)设n m ,为正整数,且2≠m ,如果对一切实数t ,二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离不小于2t n +,求n m ,的值.解 因为一元二次方程03)3(2=--+mt x mt x 的两根分别为mt 和3-,所以二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离为3mt +.由题意,32mt t n+≥+,即22(3)(2)mt t n +≥+,即222(4)(64)90m t m n t n -+-+-≥. 由题意知,042≠-m ,且上式对一切实数t 恒成立,所以⎪⎩⎪⎨⎧≤----=∆>-,0)9)(4(4)46(,042222n m n m m 22,4(6)0,m mn >⎧⇒⇒⎨-≤⎩⎩⎨⎧=>,6,2mn m 所以⎩⎨⎧==,2,3n m 或⎩⎨⎧==.1,6n m 二、(本题满分25分)如图,四边形ABCD 是梯形,点E 是上底边AD 上一点,CE 的延长线与BA 的延长线交于点F ,过点E 作BA 的平行线交CD 的延长线于点M ,BM 与AD 交于点N .证明:∠AFN =∠DME . 证明 设MN 与EF 交于点P ,∵NE //BC , ∴△PNE ∽△PBC ,∴PCPE PB PN =, ∴PC PN PE PB ⋅=⋅. 又∵ME //BF ,∴△PME ∽△PBF ,∴PF PE PB PM =, ∴PF PM PE PB ⋅=⋅.∴PF PM PC PN ⋅=⋅,故PFPC PN PM = 又∠FPN =∠MPE ,∴△PNF ∽△PMC ,∴∠PNF =∠PMC ,∴NF//MC∴∠ANF =∠EDM.又∵ME//BF ,∴∠FAN =∠MED.∴∠ANF +∠FAN =∠EDM +∠MED ,∴∠AFN=∠DME.三、 (本题满分25分)已知a 是正整数,如果关于x 的方程056)38()17(23=--+++x a x a x 的根都是整数,求a 的值及方程的整数根. A B CD E F M N P解 观察易知,方程有一个整数根11=x ,将方程的左边分解因式,得[]056)18()1(2=+++-x a x x因为a 是正整数,所以关于x 的方程 056)18(2=+++x a x (1)的判别式0224)18(2>-+=∆a ,它一定有两个不同的实数根.而原方程的根都是整数,所以方程(1)的根都是整数,因此它的判别式224)18(2-+=∆a 应该是一个完全平方数.设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即 224)18)(18(=-+++k a k a .显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a 当39=a 时,方程(1)即056572=++x x ,它的两根分别为1-和56-.此时原方程的三个根为1,1-和56-.当12=a 时,方程(1)即056302=++x x ,它的两根分别为2-和28-.此时原方程的三个根为1,2-和28-. 第二试 (B )一、(本题满分20分)设n m ,为正整数,且2≠m ,二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离为1d ,二次函数nt x n t x y 2)2(2+-+-=的图象与x 轴的两个交点间的距离为2d .如果21d d ≥对一切实数t 恒成立,求n m ,的值.解 因为一元二次方程03)3(2=--+mt x mt x 的两根分别为mt 和3-,所以31+=mt d ;一元二次方程02)2(2=+-+-nt x n t x 的两根分别为t 2和n -,所以n t d +=22. 所以,21d d ≥22)2()3(23n t mt n t mt +≥+⇔+≥+⇔ 09)46()4(222≥-+-+-⇔n t n m t m (1)由题意知,042≠-m ,且(1)式对一切实数t 恒成立,所以⎪⎩⎪⎨⎧≤----=∆>-,0)9)(4(4)46(,042222n m n m m 22,4(6)0,m mn >⎧⇒⇒⎨-≤⎩⎩⎨⎧=>,6,2mn m 所以⎩⎨⎧==,2,3n m 或⎩⎨⎧==.1,6n m 二、(本题满分25分)题目和解答与(A )卷第二题相同. 三、(本题满分25分)设a 是正整数,二次函数a x a x y -+++=38)17(2,反比例函数xy=,如果两个函数的图象的交点都是整点(横坐标和纵坐标都是整数的点),求a 的值. 解 联立方程组⎪⎩⎪⎨⎧=-+++=,56,38)17(2x y a x a x y 消去y 得a x a x -+++38)17(2x56=,即 056)38()17(23=--+++x a x a x ,分解因式得[]056)18()1(2=+++-x a x x (1)显然11=x 是方程(1)的一个根,(1,56)是两个函数的图象的一个交点.因为a 是正整数,所以关于x 的方程 056)18(2=+++x a x (2)的判别式0224)18(2>-+=∆a ,它一定有两个不同的实数根.而两个函数的图象的交点都是整点,所以方程(2)的根都是整数,因此它的判别式224)18(2-+=∆a 应该是一个完全平方数.设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即 224)18)(18(=-+++k a k a .显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a当39=a 时,方程(2)即056572=++x x ,它的两根分别为1-和56-,此时两个函数的图象还有两个交点)56,1(--和)1,56(--.当12=a 时,方程(2)即056302=++x x ,它的两根分别为2-和28-,此时两个函数的图象还有两个交点)28,2(--和)2,28(--.第二试 (C )一、(本题满分25分)题目和解答与(B )卷第一题相同.二、(本题满分25分)题目和解答与(A )卷第二题相同.三、(本题满分25分)设a 是正整数,如果二次函数a x a x y 710)232(22-+++=和反比例函数xa y 311-=的图象有公共整点(横坐标和纵坐标都是整数的点),求a 的值和对应的公共整点. 解 联立方程组⎪⎩⎪⎨⎧-=-+++=,311,710)232(22x a y a x a x y 消去y 得a x a x 710)232(22-+++=113a x -,即0113)710()232(223=-+-+++a x a x a x ,分解因式得[]0311)12()12(2=-+++-a x a x x (1)如果两个函数的图象有公共整点,则方程(1)必有整数根,从而关于x 的一元二次方程 0311)12(2=-+++a x a x (2) 必有整数根,所以一元二次方程(2)的判别式∆应该是一个完全平方数,而224)18(10036)311(4)12(222-+=++=--+=∆a a a a a .所以224)18(2-+a 应该是一个完全平方数,设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即224)18)(18(=-+++k a k a .显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以 ⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a 当39=a 时,方程(2)即0106512=-+x x ,它的两根分别为2和53-,易求得两个函数的图象有公共整点)53,2(-和)2,53(-.当12=a 时,方程(2)即025242=-+x x ,它的两根分别为1和25-,易求得两个函数的图象有公共整点)25,1(-和)1,25(-.。
中国教育学会中学数学教学专业委员会“《数学周报》杯”2010年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题7分,共35分.其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.若20 10a b b c ==,,则a b b c ++的值为( ).(A )1121 (B )2111(C )11021 (D )21011 解:D 由题设得1201210111110a ab b bc b +++===+++. 2.若实数a ,b 满足21202a ab b -++=,则a 的取值范围是 ( ). (A )a ≤2- (B )a ≥4 (C )a ≤2-或 a ≥4 (D )2-≤a ≤4解.C 因为b 是实数,所以关于b 的一元二次方程21202b ab a -++=的判别式 21()41(2)2a a ∆--⨯⨯+=≥0,解得a ≤2-或 a ≥4. 3.如图,在四边形ABCD 中,∠B =135°,∠C =120°,AB=BC=4-CD=AD 边的长为( ).(A)(B )64 (C )64+(D )622+ 解:D 如图,过点A ,D 分别作AE ,DF 垂直于直线BC ,垂足分别为E ,F .由已知可得BE =AECF=DF =2于是 EF =4A 作AG ⊥DF ,垂足为G .在Rt △ADG 中,根据勾股定理得AD =2+4.在一列数123x x x ,,,……中,已知11=x ,且当k ≥2时,1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭ (取整符号[]a 表示不超过实数a 的最大整数,例如[]2.62=,[]0.20=),则2010x 等于( ).(A) 1 (B) 2 (C) 3 (D) 4解:B 由11=x 和1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭可得11x =,22x =,33x =,44x =, 51x =,62x =,73x =,84x =,…… 因为2010=4×502+2,所以2010x =2.5.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C(-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点C 旋转180°得点P 3,点P 3绕点D 旋转180°得点P 4,……,重复操作依次得到点P 1,P 2,…, 则点P 2010的坐标是( ).(A )(2010,2) (B )(2010,2-) (C )(2012,2-) (D )(0,2) 解:B 由已知可以得到,点1P ,2P 的坐标分别为(2,0),(2,2-).记222 )P a b (,,其中222,2a b ==-. 根据对称关系,依次可以求得:322(42)P a b --,--,422(2)P a b ++,4,522(2)P a b ---,,622(4)P a b +,. 令662(,)P a b ,同样可以求得,点10P 的坐标为(624,a b +),即10P (2242,a b ⨯+), 由于2010=4⨯502+2,所以点2010P 的坐标为(2010,2-).二、填空题(共5小题,每小题7分,共35分.其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)6.已知a =5-1,则2a 3+7a 2-2a -12 的值等于 .解:0 由已知得 (a +1)2=5,所以a 2+2a =4,于是2a 3+7a 2-2a -12=2a 3+4a 2+3a 2-2a -12=3a 2+6a -12=0.7.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车;再过t 分钟,货车追上了客车,则t = .解:15 设在某一时刻,货车与客车、小轿车的距离均为S 千米,小轿车、货车、客车的速度分别为a b c ,,(千米/分),并设货车经x 分钟追上客车,由题意得()10a b S -=, ① ; ()152a c S -=,② ; ()x b c S -=.③ 由①②,得30b c S -=(),所以,x =30. 故 3010515t =--=(分).8.如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是O (0,0),A (0,6),B (4,6),C (4,4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,则直线l 的函数表达式是 .解:11133y x =-+ 如图,延长BC 交x 轴于点F ;连接OB ,AF ;连接CE ,DF ,且相交于点N .由已知得点M (2,3)是OB ,AF 的中点,即点M 为矩形ABFO 的中心,所以直线l 把矩形ABFO 分成面积相等的两部分.又因为点N (5,2)是矩形CDEF 的中心,所以,过点N (5,2)的直线把矩形CDEF 分成面积相等的两部分.于是,直线MN 即为所求的直线l . (第8题)(第8题设直线l 的函数表达式为y kx b =+,则2352k b k b =⎧⎨+=⎩+,,解得 1311.3k b ⎧=-⎪⎪⎨⎪=⎪⎩,,故所求l 的函数表达式为11133y x =-+. 9.如图,射线AM ,BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线AC 分别交BE ,BN 于点F ,C ,过点C 作AM 的垂线CD ,垂足为D .若CD =CF ,则AE AD = . 解: 215- 见题图,设,FC m AF n ==.因为Rt △AFB ∽Rt △ABC ,所以 2AB AF AC =⋅. 又因为 FC =DC =AB ,所以 2()m n n m =+,即 2()10n n m m +-=,解得12n m =,或12n m =(舍去). 又Rt △AFE ∽Rt △CFB ,所以AE AE AF n AD BC FC m ==== 即AE AD10.对于i =2,3,…,k ,正整数n 除以i 所得的余数为i -1.若n 的最小值0n 满足020003000n <<,则正整数k 的最小值为 .解:9 因为1n +为2 3 k ,,,的倍数,所以n 的最小值0n 满足[]012 3 n k +=,,,,其中[]2 3 k ,,,表示2 3 k ,,,的最小公倍数.由于[][]2 3 88402 3 92520 ==,,,,,,,, [][]2 3 1025202 3 1127720==,,,,,,,, 因此满足020003000n <<的正整数k 的最小值为9. 三、解答题(共4题,每题20分,共80分)11.如图,△ABC 为等腰三角形,AP 是底边BC 上的高,点D是线段PC 上的一点,BE 和CF 分别是△ABD 和△ACD 的外接圆直径,连接EF . 求证: tan EF PAD BC ∠=. 证明:如图,连接ED ,FD . 因为BE 和CF 都是直径,所以ED ⊥BC ,FD ⊥BC ,因此D ,E ,F 三点共线. …………(5分)连接AE ,AF ,△ABC ∽△AEF . …………(10分)作AH ⊥EF ,垂足为H ,则AH =PD . 由△ABC ∽△AEF 可得EF AH BC AP =,从而 EF PD BC AP=, 所以tan PD EF PAD AP BC ∠==. …………(20分)(第9题)12.如图,抛物线2y ax bx =+(a >0)与双曲线k y x=相交于点A ,B . 已知点A 的坐标为(1,4),点B 在第三象限内,且△AOB 的面积为3(O 为坐标原点).(1)求实数a ,b ,k 的值;(2)过抛物线上点A 作直线AC ∥x 轴,交抛物线于另一点C ,求所有满足△EOC ∽△AOB 的点E 的坐标.解:(1)因为点A (1,4)在双曲线k y x=上,所以k=4. 故双曲线的函数表达式为x y 4=.设点B (t ,4t ),0t <,AB 所在直线的函数表达式为y mx n =+,则有44m n mt n t=+⎧⎪⎨=+⎪⎩,, 解得4m t =-,4(1)t n t +=. 于是,直线AB 与y 轴的交点坐标为4(1)0,t t +⎛⎫ ⎪⎝⎭,故()141132AOB t S t t ∆+=⨯-=(),整理得22320t t +-=,解得2t =-,或t =21(舍去).所以点B 的坐标为(2-,2-).因为点A ,B 都在抛物线2y ax bx =+(a >0)上,所以4422a b a b +=⎧⎨-=-⎩,, 解得13.a b =⎧⎨=⎩, (2)如图,因为AC ∥x 轴,所以C (4-,4),于是CO =42. 又BO =22,所以2=BOCO . 设抛物线2y ax bx =+(a >0)与x 轴负半轴相交于点D , 则点D 的坐标为(3-,0).因为∠COD =∠BOD =45︒,所以∠COB =90︒.(i )将△BOA 绕点O 顺时针旋转90︒,得到△1B OA '.这时,点B '(2-,2)是CO 的中点,点1A 的坐标为(4,1-). 延长1OA 到点1E ,使得1OE =12OA ,这时点1E (8,2-)是符合条件的点.(ii )作△BOA 关于x 轴的对称图形△2B OA ',得到点2A (1,4-);延长2OA 到点2E ,使得2OE =22OA ,这时点E 2(2,8-)是符合条件的点. 所以,点E 的坐标是(8,2-),或(2,8-). …………(20分) 13.求满足22282p p m m ++=-的所有素数p 和正整数m .解:由题设得(21)(4)(2)p p m m +=-+,所以(4)(2)p m m -+,由于p 是素数,故(4)p m -,或(2)p m +. ……(5分)(1)若(4)p m -,令4m kp -=,k 是正整数,于是2m kp +>, 2223(21)(4)(2)p p p m m k p >+=-+>,故23k <,从而1k =. 所以4221m p m p -=⎧⎨+=+⎩,,解得59.p m =⎧⎨=⎩, …………(10分) (2)若(2)p m +,令2m kp +=,k 是正整数. 当5p >时,有46(1)m kp kp p p k -=->-=-,223(21)(4)(2)(1)p p p m m k k p >+=-+>-, 故(1)3k k -<,从而1k =,或2.由于(21)(4)(2)p p m m +=-+是奇数,所以2k ≠,从而1k =.于是4212m p m p -=+⎧⎨+=⎩,, 这不可能. 当5p =时,2263m m -=,9m =;当3p =,2229m m -=,无正整数解;当2p =时,2218m m -=,无正整数解. 综上所述,所求素数p =5,正整数m =9. …………(20分)14.从1,2,…,2010这2010个正整数中,最多可以取出多少个数,使得所取出的数中任意三个数之和都能被33整除?解:首先,如下61个数:11,1133+,11233+⨯,…,116033+⨯(即1991)满足题设条件. …………(5分) 另一方面,设12n a a a <<<是从1,2,…,2010中取出的满足题设条件的数,对于这n 个数中的任意4个数i j k m a a a a ,,,,因为33()i k m a a a ++, 33()j k m a a a ++,所以 33()j i a a -. 因此,所取的数中任意两数之差都是33的倍数. …………(10分)设133i i a a d =+,i =1,2,3,…,n . 由12333()a a a ++,得12333(33333)a d d ++, 所以1333a ,111a ,即1a ≥11. …………(15分)133n n a a d -=≤2010116133-<, 故n d ≤60. 所以,n ≤61. 综上所述,n 的最大值为61. …………(20分)。