八年级数学平均数4
- 格式:doc
- 大小:38.50 KB
- 文档页数:2
专题一:平均数一、算术平均数在日常生活中,我们常用平均数表示一组数据的“平均水平”.一般地,对于n 个数x 1,x 2,…,x n ,我们把1n(x 1+x 2+…+x n )叫做这n 个数的算术平均数,简称为平均数,这里记为.求一组数据的平均数是考试中经常出现的题目.例1 新港中学“学用杯”竞赛前10名学生的成绩如下(单位:分): 125,120,115,107,109,120,107,115,115,107.计算这10名学生的平均成绩.析解:根据平均数的定义:x =110(125+120+115+…+107)=110×1140=114(分). 根据定义可求任意一组数据的平均数,但是如果这组数据中的每个数都比较大,计算起来就比较麻烦,那么还有一种计算平均数的方法,如上题还可以这样解答:将本组数据都减去115,得一组新数据:10,5,0,-8,-6,5,-8,0,0,-8,求出这组新数据的平均数x '=110[10+5+0+(-8)+(-6)+…+0+(-8)]=-1,则原数据的平均数x =115+(-1)=114.因此,当一组数据都比较大,且都在某一数的附近波动时,可将它的每一个数都减去同一个适当的数,得到一组新的数据,求出这组新数据的平均数,用这个平均数加上都减去的那个数,就是原数据组的平均数.例2 某校八年级共有六个班,在一次数学考试中,参加的人数和成绩如下表:求该校八年级的全体学生在这一次数学考试中的平均成绩(保留三位有效数字). 析解:根据平均数的定义可知,该校八年级的全体学生在这次数学考试中,平均成绩等于所有的数学成绩总和除以总人数,而成绩总和又等于平均成绩乘以学生总人数,这样可求出各班数学成绩总分,再把各班成绩总分的总和求出来即得全年级成绩总和,从而可求出全年级的平均成绩:x =1308(81×52+80×48+84×55+83×51+86×49+82×53)≈82.7(分). 说明:解答本题时有的学生往往会错解为: 81808483868282.76+++++≈≈82.7(分). 二、加权平均数平均数是体现一组数据的平均状态,但是,在实际问题中,一组数据中的各个数据的“重要程度”并不相同,因而在计算这组数据的平均数时,往往给每一个数据一个“权”,求一组数据的加权平均数通常有两种情况:第一种:该组数据中各数据的重要程度不同,所占比例也不同;例如,李刚的平时成绩为89分,单元测验为90分,期末成绩为91分,如果把三项成绩按2∶3∶4的比例计算总评成绩,那么总评成绩为:89290391490.2234⨯+⨯+⨯++≈≈90.2(分). 在这个问题中,2,3,4分别叫做89,90,91的权,而90.2就是加权平均数.第二种:若一组数据中有多个数据出现多次,例如,数据3,5,10,6,5,3,3,6,10,5,10,3的平均数为:x =112(3×4+5×3+10×3+6×2)=5.75. 其中4,3,3,2分别是3,5,10,6出现的次数,同时也是权.例3 某居民小区开展节约用水活动成效显著,据对该小区200户家庭用水情况统计分析,3月份比2月份节约用水情况如下表所示:求3月份平均每户节约用水多少立方米?分析:本题考查直接求一组数据的加权平均数的方法.解:120 1.520260 1.6200x ⨯+⨯+⨯==(m 3). 上题中,数据20,120,60分别是1,1.5,2的权,本题不能解答为:1 1.52 1.53x ++==(m 3).专练一:1.在一次数学考试中,第一小组的14名同学的成绩与全班平均分的差是2,3,-5,10,12,8,-1,2,-5,4,-10,-2,5,5,全班平均成绩为83分,则这个小组的平均成绩是_________分.2.某班在一次数学测试后,成绩统计如下表:该班这次数学测试的平均成绩是( )A.82 B.75 C.65 D.623.甲、乙两篮球队员在以往16场比赛中的得分情况统计如下:则甲、乙两队员的平均每场得分分别是多少(保留整数)?4.在一次运动会上,各队得奖牌情况如下表:现在为了比较各队的综合实力,分别将金、银、铜以每块按1分,0.7分,0.3分来进行计分比较,问哪一队的综合实力最强?5.从鱼池捕得同时放养的鲤鱼230尾,从中任选10尾,称得每尾鱼的质量分别是1.8,1.7,1.2,1.4,1.3,1.6,1.4,1.6,1.5,1.5(单位:千克).(1)这10尾鱼的平均质量是多少千克?(2)你能估计一下这230尾鱼的总质量是多少千克吗?6.某公司去年的广告宣传投资为:电视广告9 000万,报纸广告4 000万,大型活动6 000万.今年该公司为了加大广告宣传力度,三项投资分别比去年增长了10%、5%、15%.该公司今年的广告宣传投资比去年增长的百分数是多少?(保留两位小数)参考答案:1.852.A3.甲:23分,乙:22分4.C队综合实力强5.(1)1.5千克;(2)345千克6.10.53%。
平均数、加权平均数、中位数、众数、极差和方差归纳与复习一、回顾与梳理。
平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
即x=(x1+x2+……+xn)÷n中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
平均数:一组数据的平均值,平均水平.平均数是描述一组数据的一种常用指标,反映了这组数据中各数据的平均大小。
平均数的大小与一组数据里的每个数据都有关系,其中任何数据的变动都会引起平均数的相应变动.平均数一般的计算方法为:用一组数据的总和除以这组数据的个数.平均数的优点。
反映一组数的总体情况比中位数、众数更为可靠、稳定.平均数的缺点。
平均数需要整批数据中的每一个数据都加人计算,因此,在数据有个别缺失的情况下,则无法准确计算,计算的工作量也较大。
平均数易受极端数据的影响,从而使人对平均数产生怀疑。
中位数:在有序排列的一组数据中最居中的那个数据中等水平.中位数是描述数据的另一种指标,如果将一组数按从小到大排列那么中位数的左边和右边恰有一样多的数据。
中位数仅与数据的大小排列位置有关,某些数据的变动对它的中位数没有影响.中位数是将数据按大小顺序依次排列(相等的数也要全部参加排序)后“找”到的.当数据的个数是奇数时,中位数就是最中间的那个数据;当数据的个数是偶数时,就取最中间的两个数据的平均数作为中位数.中位数的优点。
简单明了,很少受一组数据的极端值的影响。
中位数的缺点。
中位数不受其数据分布两端数据的影响,因此中位数缺乏灵敏性,不能充分利用所有数据的信息。
当观测数据已经分组或靠近中位数附近有重复数据出现时,则难以用简单的方法确定中位数。
众数:一组数据中出现次数最多的那个数据。
集中趋势众数告诉我们,这个值出现次数最多,一组数据可以有不止一个众数,也可以没有众数。
众数着眼于对各数据出现的频数的考查,其大小只与这组数据中的部分数据有关.一组数据中的众数不止一个.当一组数据中有相同数据多次出现时,其众数往往是我们关心的.众数的优点。
教学设计:教学目标:1.知识与能力目标:(1)理解平均数的定义和计算方法;(2)学会解决与平均数相关的实际问题;(3)培养学生判断和分析问题的能力。
2.过程与方法目标:(1)采用情境化教学法,激发学生的学习兴趣;(2)通过小组合作学习,培养学生的合作意识和能力;(3)引导学生反思学习过程,总结学习方法。
教学重难点:1.平均数的计算方法和实际运用;2.将实际问题转化为数学问题的能力。
教学过程:Step 1: 导入新知识 (5分钟)教师使用幻灯片或板书呈现几个有关平均数的实际问题,引起学生的注意,并引发学生思考:什么是平均数?我们平时在生活中为什么会使用平均数?有哪些实际应用场景?Step 2: 探究平均数的定义和计算 (15分钟)教师给出一个简单的例子,如班级同学的身高数据,带领学生思考如何计算平均身高,并引导学生得出平均数的定义和计算方法。
然后教师再给出几组数据,让学生进行计算。
Step 3: 组织小组合作学习 (20分钟)教师将学生分为小组,每个小组成员都有自己的计算任务。
学生可以相互交流讨论,共同解决问题。
每个小组完成后,教师进行评价,鼓励他们讲解自己的计算过程和结果。
Step 4: 解决实际问题 (20分钟)教师给出几个与平均数相关的实际问题,如手机销售量、考试成绩等,让学生分组讨论解决方法,并进行展示。
教师引导学生思考,如何将实际问题转化为数学问题,并运用平均数来解决。
Step 5: 归纳总结 (10分钟)教师引导学生总结平均数的计算方法,以及解决实际问题的过程。
学生通过小组讨论,分享自己的学习心得和方法。
Step 6: 完成作业 (5分钟)教师布置相关的练习题,作为课后作业,以巩固学生的学习成果。
反思:在这次教学中,我尝试了采用情境化教学法,通过实际问题激发学生的学习兴趣,使他们能够主动参与学习。
在小组合作学习中,学生可以相互交流讨论,互相学习。
这样的学习方式培养了学生的合作意识和能力。
第74课时
教学内容:6.1平均数(2)
教学目标:会求加权平均数,并体会权的差异对结果的影响,通过利用平均数解决实际问题,发展学生的数学应用能力。
教学重点:加权平均数对结果的影响及算术平均数的联系与区别
教学难点:探索算术平均数和加权平均数的联系和区别
教学过程:
(一)创设情境导入新课
导入问题:
学校举办了一次英语竞赛,该竞赛由阅读、作文、听力和口语四部分构成,小明、小亮和小丽参加了这次竞赛,成绩如下:
1、计算3个人4项比赛成绩的算术平均数,谁的竞赛成绩最高?
2、根据这4项比赛成绩的“重要程度”,将阅读、作文、听力和口语分别按30%、30%20%
和20%的比例计算他们3人的竞赛成绩,谁的竞赛成绩最高?
3、如果你是比赛的负责人,你觉得谁得第一名合适?
(二)合作交流解读探究
1、学校广播站要招聘1名记者,小明、小亮、小丽报名参加了3项素质测试,成绩如下,
把采访写作、计算机和创意设计按成绩按5:2:3的比例计算3个人的素质测试平均成绩,那么谁将被录取?
在实际生活中,一组数据中各个数据的重要程度并不总是相同的,有时有些数据比期他数据更重要,所以,我们在计算这组数据的平均数时,往往根据其重要程度,分别给每个数据一个“权”,例如在本例中的5、2、和3分别是采访写作、计算机和创意设计测试成绩的“权”,将计算结果叫做小明、小亮、小丽3项素质测试成绩的加权平均数。
2、我校对各个班级教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面、一天,
三个班级的各项卫生成绩分别如下:
(1)小明将黑板、门窗、桌椅、地面这四项得分依次按15%、10%、35%、40%的比例计算各班的卫生成绩,那么哪个班的成绩最高?
(2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案,根据你的方案,哪一个班的卫生成绩最高?
(三)应用迁移巩固提高
类型加权平均数的理解
例:小颖家去年的饮食支出为3600元,教育支出为1200元,其他支出为7200元,小颖家今年的这三项去出比去年增长39%、3%、6%,小颖家今年的总支出比去年增长的百分数是多少?
由于小颖家去年的饮食、教育和其他三项支出金额不等,因此,饮食、教育和其他在项支出的增长率“地位”不同,它们对总支出增长率的“影响”不同,不能简单的用算术平均数计算总支出的增长率,而应将这三项支出金额3600、1200、7200分别视为三项支出增长率的“权”,从而求出总支出的增长率。
(三)总结反思拓展升华
一般说来,如果在n个数中,x1出现f1次,x2出现f2次……,x n出现f n次(这里f1+f2+…
f n=n),那么这n个数的平均数可以表示为
在计算这个平均数的公式中,相同数据x1的个数f1叫做“权”,这个“权”,含有所占分量轻重的意思,f1越大,表示x1的个数越多,于是x1的“权”就越重。
因此这个公式又成为加权平均数公式。
[思考]
1、加权平均数受什么因素影响?权的差异对结果有无影响?
2、算术平均数与加权平均数有哪些联系与区别?
[拓展]
小明在初二第二学期的数学成绩分别为:测验一得分85分,测验二得84分,测验三得86分,期中考试得92分,期末考试得88分,如果按照平时、期中、期末的权分别为10%、30%、60%,那么小明该学期的总评成绩应该为多少分?(88.9分)
(四)当堂检测反馈
1、一个班级有45名学生,其中14岁的有16 人,15岁的有17人,16岁的有8人,17
岁的有4 人,那么这个班的平均年龄是15岁
2、一名射手连续射靶20次,其中2次射中10环,7次射中9环,8次射中8环,3次射
中7环,平均每次射中8.4 环。
3、小明上学期期末语文、数学、英语三科平均分为92分,他记得语文得了88分,英语
得了93分,但他把数学成绩忘记了,你能告诉他数学应得多少分?(94分)
4、甲、乙、丙三种糖果售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10
千克,丙种3千克混合在一起,则售价应定为每千克 6.76 元
5、某班环保小组的6名同学记录了自己家10月份的用水量,结果如下(单位:吨):17、
18、20、16.5、18、18.5,如果该班有45名同学,那么根据提供的数据估计10月份全
班同学各家总共用水量的数量约为810吨
6、某校规定学生的体育成绩由三部分组成:早锻炼及课外活动表现占成绩的20%,体育
理论测试占30%,体育技能测试占50%,小颖的上述成绩依次是92分、80分、84分,则小颖这学期的体育成绩是84.4分。