高二数学选修1-2模块测试题一
- 格式:doc
- 大小:184.50 KB
- 文档页数:4
高二数学选修1-2模块试卷(一)一、选择题1.已知i i =1,12-=i ,i i -=3,14=i ,i i =5,由此可猜想=2006i ( ) (A )1(B )1-(C )i(D )i -2.可作为四面体的类比对象的是( ) (A )四边形(B )三角形(C )棱锥(D )棱柱3.用反证法证明命题“三角形中最多只有一个内角是钝角”时,结论的否定是( ) (A )没有一个内角是钝角 (B )有两个内角是钝角 (C )有三个内角是钝角(D )至少有两个内角是钝角4.已知i i y x y x 42)()(+-=-++,则实数y x ,的值分别是( ) (A )2-,4(B )4,2-(C )3-,1(D )1,3-5.复数i b a z )1()1(22+-+=),(R b a ∈对应的点位于( ) (A )第一象限(B )第二象限(C )第三象限(D )第四象限6.设复数i z -=11,xi z +-=12)(R x ∈,若21z z 为纯虚数,则x 的值是( ) (A )1- (B )2-(C )1(D )27.=-+ii11( ) (A )1(B )1-(C )i(D )i -8.设i z +=1,则=-|3|z ( ) (A )5(B )5(C )2(D )29.复数z 满足i z z ⋅=-1,则=z ( ) (A )i 2121--(B )i 2121+- (C )i 2121-(D )i 2121+ 二、填空题11完成下面的三段论:大前提:互为共轭复数的乘积是实数小前提:yi x +与yi x -是互为共轭复数 结 论:12若复数i m m z )2()1(++-=对应的点在直线02=-y x 上,则实数m 的值是13读右边的程序框图,则输出结果是开始1=i 0=Si S S += 1+=i i 4≤i输出S结束否是三、解答题15. 已知复数i z -=21,i z 312+=,求2111z z +16. 已知R b a ∈,,求证222)()(2b a b a +≥+18. 当实数m 为何值时,复数i m m m z )1()32(22-+--=是:(1)实数 (2)虚数 (3)纯虚数 (4)实数019我校学生会有如下部门:文娱部、体育部、宣传部、生活部、学习部。
模块综合测评(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知复数z 1=2+i ,z 2=1+3i ,则复数z =z 1z 2在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 2.⎪⎪⎪⎪12-i 等于( )A . 5B .55C .15D .13.下列说法错误的是( )A .球的体积与它的半径具有相关关系B .计算误差、测量误差都将影响到残差的大小C .在回归分析中R 2的值越接近于1,说明拟合效果越好D .在独立性检验中,K 2的观测值k 越大,说明确定两个分类变量有关系的把握越大 4.在△ABC 中,AB →=a ,BC →=b ,且a·b >0,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形5.设回归方程y ^=7-3x ,当变量x 增加两个单位时( ) A .y 平均增加3个单位 B .y 平均减少3个单位 C .y 平均增加6个单位 D .y 平均减少6个单位6.在如图所示的程序框图中,输入a =11π6,b =5π3,则输出c =( )A .33B . 3C .1D .07.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,第100项为( ) A .10 B .14 C .13 D .1008.设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c;类比这个结论可知:四面体S -ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,四面体S -ABC 的体积为V ,则r =( )A .VS 1+S 2+S 3+S 4B .2VS 1+S 2+S 3+S 4C .3VS 1+S 2+S 3+S 4D .4VS 1+S 2+S 3+S 49.⎝ ⎛⎭⎪⎫1+i 1-i 2 014等于( ) A .2i B .-1+i C .1+i D .-110.已知两条直线m ,n ,两个平面α,β.给出下面四个命题:①m ∥n ,m ⊥αn ⊥α;②α∥β,mα,nβm ∥n ;③m ∥n ,m ∥αn ∥α;④α∥β,m ∥n ,m ⊥αn ⊥β.其中正确命题的序号是( ) A .①③ B .②④ C .①④ D .②③11.已知f (x +y )=f (x )+f (y )且f (1)=2,则f (1)+f (2)+…+f (n )不等于( ) A .f (1)+2f (1)+…+nf (1) B .f ⎣⎡⎦⎤n (n +1)2C .n (n +1)D .n (n +1)f (1)12.如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A ,B ,C ,D 四个维修点某种配件各50件,在使用前发现需将A ,B ,C ,D 四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行.那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n )为( )A .15B .16C .17D .18 二、填空题(本大题共4小题,每小题4分,共16分)13.已知复数z =m +i1+i (m ∈R ,i 是虚数单位)是纯虚数,则m 的值是__________.14.按如图所示的程序框图运算,若输入x =8,则输出k =__________.15.观察下列式子1+122<32,1+122+132<53,1+122+132+142<74,…,则可归纳出__________.16.已知x ,y 取值如下表:从所得的数点图分析可知,y 与x 线性相关,且y =0.95x +a ,则a 的值为__________. 三、解答题(本大题共6小题,共74分)17.(12分)调查某桑场采桑员和患桑毛虫皮炎病的情况,结果如下表:误的概率是多少.(注:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .)18.(12分)已知x 2-(3-2i)x -6i =0,i 为虚数单位. (1)若x ∈R ,求x 的值; (2)若x ∈C ,求x 的值.19.(12分)已知△ABC 的三边长为a ,b ,c ,且其中任意两边长均不相等.若1a ,1b ,1c 成等差数列.(1)比较b a与cb的大小,并证明你的结论; (2)求证角B 不可能是钝角.20.(12分)已知f (x )=bx +1(ax +1)2⎝⎛⎭⎫x ≠-1a ,a >0,且f (1)=log 162,f (-2)=1. (1)求函数f (x )的表达式;(2)已知数列{x n }的项满足x n =[1-f (1)]·[1-f (2)]·…·[1-f (n )],试求x 1,x 2,x 3,x 4; (3)猜想{x n }的通项.21.(12分)某市公交车票价按下列规则定价:(1)5公里以内(包括5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算).已知相邻两个公共汽车站之间相距约1公里,如果沿途(包括起点站和终点站)共有16个汽车站,请设计一个算法求出某人坐车x 公里所用的票价,画出程序框图.22.(14分)设△ABC的两个内角A,B所对的边分别为a,b,复数z1=a+b i,z2=cos A +icos B,若复数z1·z2为纯虚数,试判断△ABC的形状,并说明理由.参考答案一、1.解析:复数z =z 1z 2=2+i 1+3i =(2+i )(1-3i )(1+3i )(1-3i )=12-12i ,z 对应的点的坐标为⎝⎛⎭⎫12,-12位于第四象限. 答案:D2.解析:∵12-i =2+i(2-i )(2+i )=2+i 5=25+15i ,∴⎪⎪⎪⎪⎪⎪12-i =⎝⎛⎭⎫252+⎝⎛⎭⎫152=55.答案:B3.解析:A 中球的体积与球的半径是函数关系,不是相关关系.B ,C ,D 都正确. 答案:A4.解析:由于a·b >0,即|a ||b |cos(π-∠ABC )>0, 即cos ∠ABC <0. 又∵0<∠ABC <π, ∴∠ABC 是钝角. ∴△ABC 是钝角三角形. 答案:C5.解析:由回归方程可知,y 与x 是负相关,x 每增加2个单位,y 平均减少6个单位. 答案:D6.解析:由程序框图知,当输入a =11π6,b =5π3时,tan a =-33,tan b =-3,则tana >tanb .故输出c =|tan a |=33. 答案:A7.解析:由于1有1个,2有2个,3有3个,…,则13有13个,所以1~13的总个数为13(1+13)2=91,故第100个数为14.答案:B8.解析:设四面体S -ABC 的内切球球心为O ,那么由V S -ABC =V O -ABC +V O -SAB +V O -SAC +V O -SBC ,即V =13S 1r +13S 2r +13S 3r +13S 4r ,可得r =3V S 1+S 2+S 3+S 4.答案:C9.解析:∵1+i 1-i=(1+i )22=2i2=i ,∴⎝ ⎛⎭⎪⎫1+i 1-i 2 014=i 2 014=(i 2)1 007=-1. 答案:D10.解析:由α∥β,m α,n βm ∥n 或m ,n 异面, ∴②错;由m ∥n ,m ∥αn ∥α或nα,∴③错.故选C. 答案:C11.解析:由f (x +y )=f (x )+f (y )且f (1)=2,知f (2)=f (1)+f (1)=2f (1),f (3)=f (2)+f (1)=3f (1),…,f (n )=nf (1),∴f (1)+f (2)+…+f (n )=(1+2+…+n )f (1)=n (n +1)2f (1)=n (n +1).答案:D12.解析:方法一:若AB 之间不相互调动,则A 调出10件给D ,B 调出5件给C ,C 再调出1件给D ,即可满足调动要求,此时共调动的件次n =10+5+1=16;若AB 之间相互调动,则B 调动4件给C ,调动1件给A ,A 调动11件给D ,此时共调动的件次n =4+1+11=16.所以最少调动的件次为16,故应选B.方法二:设A 调动x 件给D (0≤x ≤10),则调动了(10-x )件给B ,从B 调动了5+10-x =(15-x )件给C ,C 调动出了15-x -4=(11-x )件给D ,由此满足调动需求,此时调动件次n =x +(10-x )+(15-x )+(11-x )=36-2x ,当且仅当x =10时,n 取得最小值16,故应选B.答案:B二、13.解析:z =m +i 1+i =(m +i )(1-i )2=m +12+(1-m )i2,∴m +12=0,且1-m2≠0. ∴m =-1. 答案:-114.解析:输入x =8时,k =0,第一次循环,x =2×8+1=17,k =1,x <115; 第二次循环,x =2×17+1=35,k =2,x <115; 第三次循环,x =2×35+1=71,k =3,x <115; 第四次循环,x =2×71+1=143,k =4,x >115, 输出x =143,k =4. 答案:415.解析:根据三个式子的规律特点进行归纳可知,1+122+132+142+…+1(n +1)2<2n +1n +1(n ∈N *).答案:1+122+132+142+…+1(n +1)2<2n +1n +1(n ∈N *)16.解析:x =16×(0+1+4+5+6+8)=4,y =16×(1.3+1.8+5.6+6.1+7.4+9.3)=5.25,又y ^=0.95x +a ^必过样本中心点(x ,y ),即(4,5.25),于是有5.25=0.95×4+a ,解得a =1.45.答案:1.45三、17.解:因为a =18,b =12,c =5,d =78,所以a +b =30,c +d =83,a +c =23,b +d =90,n =113,所以K 2的观测值k =n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=113(18×78-5×12)230×83×23×90≈39.6>10.828.所以有99.9%的把握认为“患桑毛虫皮炎病与采桑”有关系,认为两者有关系会犯错误的概率是0.1%.18.分析:(1)利用复数相等的充要条件可直接求解;(2)中要求x 的值,就应先设出x 的代数形式再利用复数相等的充要条件求解.解:(1)当x ∈R 时,由已知方程, 得(x 2-3x )+(2x -6)i =0,则⎩⎪⎨⎪⎧x 2-3x =0,2x -6=0,解得x =3. (2)当x ∈C 时,设x =a +b i(a ,b ∈R ),将其代入已知方程, 整理,得(a 2-b 2-3a -2b )+(2ab -3b +2a -6)i =0.则⎩⎪⎨⎪⎧ a 2-b 2-3a -2b =0,2ab -3b +2a -6=0, 解得⎩⎪⎨⎪⎧a =0,b =-2或⎩⎪⎨⎪⎧a =3,b =0.故x =-2i 或x =3. 19.(1)解:大小关系为ba<c b. 证明如下: 要证ba<c b ,只需证b a <c b. ∵a ,b ,c >0,∴只需证b 2<ac . ∵1a ,1b ,1c 成等差数列, ∴2b =1a +1c≥21ac.∴b 2≤ac .又△ABC 的任意两边长均不相等,即a ,b ,c 任意两数不相等,∴b 2<ac 成立. 故所得大小关系正确,即b a<c b. (2)证明:假设角B 是钝角,则cos B <0, 而cos B =a 2+c 2-b 22ac ≥2ac -b 22ac >ac -b 22ac >0.这与cos B <0矛盾,故假设不成立, 即角B 不可能是钝角.20.解:(1)把f (1)=log 162=14,f (-2)=1代入f (x )=bx +1(ax +1)2,得⎩⎪⎨⎪⎧b +1(a +1)2=14,-2b +1(1-2a )2=1,整理,得⎩⎪⎨⎪⎧4b +4=a 2+2a +1,-2b +1=4a 2-4a +1,解得⎩⎪⎨⎪⎧a =1,b =0,所以f (x )=1(x +1)2(x ≠-1).(2)x 1=1-f (1)=1-14=34,x 2=34×⎝⎛⎭⎫1-19=23, x 3=23×⎝⎛⎭⎫1-116=58, x 4=58×⎝⎛⎭⎫1-125=35. (3)由(2),得x 1=34,x 2=23,x 3=58,x 4=35,可变形为34,46,58,610,…,从而可归纳出{x n }的通项x n =n +22(n +1). 21.解:依题意得,某人坐车x 公里所用的票价y =⎩⎪⎨⎪⎧ 2,0<x ≤5,3,5<x ≤10,4,10<x ≤15.程序框图如下:22.解:△ABC 为等腰三角形或直角三角形. 理由:∵z 1=a +b i ,z 2=cos A +icos B , ∴z 1z 2=(a cos A -b cos B )+i(a cos B +b cos A ). 又∵z 1z 2为纯虚数,∴⎩⎪⎨⎪⎧ a cos A =b cos B ,a cos B +b cos A ≠0, ①②由①及正弦定理, 得sin A cos A =sin B cos B ,即sin 2A =sin 2B .∵A ,B 为△ABC 的内角,∴0<2A <2π,0<2B <2π,且2A +2B <2π. ∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2, 也就是A =B 或C =π2. 由②及正弦定理,得sin A cos B +sin B cos A ≠0, 即sin(A +B )≠0.∵A ,B 是△ABC 的内角,∴0<A +B <π.∴sin(A +B )≠0成立.综上所述,知A =B 或C =π2. ∴△ABC 为等腰三角形或直角三角形.。
模块综合检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z 满足(z -1)i =1+i ,则z 等于( ) A .-2-i B .-2+i C .2-i D .2+i2.已知复数z 1=2+i ,z 2=1+3i ,则复数z =z 1z 2在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.用反证法证明:“a >b ”,应假设( ) A .a >b B .a <b C .a =b D .a ≤b4.由①正方形的对角线相等;②矩形的对角线相等;③正方形是矩形.写一个“三段论”形式的推理,则作为大前提、小前提和结论的分别为( )A .②①③B .③①②C .①②③D .②③①5.若P =a +a +7,Q =a +3+a +4,a ≥0,则P ,Q 的大小关系是( ) A .P >Q B .P =QC .P <QD .由a 的取值确定6.已知数组(x 1,y 1),(x 2,y 2),…,(x 10,y 10)满足线性回归方程y ^=b ^x +a ^,则“(x 0,y 0)满足线性回归方程y ^=b ^x +a ^”是“x 0=x 1+x 2+…+x 1010,y 0=y 1+y 2+…+y 1010”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.在如图所示的程序框图中,输入a =11π6,b =5π3,则输出c =( )A.33B. 3 C .1 D .0 8.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,第100项为( ) A .10 B .14 C .13 D .1009.已知x >0,不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,可推广为x +ax n ≥n +1,则a的值为( )A .2nB .n 2C .22(n-1)D .n n10.下面给出了关于复数的四种类比推理:①复数的加减法运算可以类比多项式的加减法运算法则;②由向量a 的性质|a |2=a 2类比得到复数z 的性质|z 2|=z 2;③方程ax 2+bx +c =0(a ,b ,c ∈R )有两个不同实数根的条件是b 2-4ac >0可以类比得到:方程az 2+bz +c =0(a ,b ,c ∈C )有两个不同复数根的条件是b 2-4ac >0;④由向量加法的几何意义可以类比得到复数加法的几何意义.其中类比得到的结论错误的是( ) A .①③ B .②④ C .②③ D .①④11.已知f (x +y )=f (x )+f (y )且f (1)=2,则f (1)+f (2)+…+f (n )不等于( ) A .f (1)+2f (1)+…+nf (1) B .f ⎣⎡⎦⎤n (n +1)2C .n (n +1)D .n (n +1)f (1)12.如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A ,B ,C ,D 四个维修点某种配件各50件,在使用前发现需将A ,B ,C ,D 四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行.那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n )为( )A .15B .16C .17D .18二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知复数z =m +i1+i (m ∈R ,i 是虚数单位)是纯虚数,则m 的值是________.14.已知x ,y 的取值如表:x 0 1 3 4 y2.24.34.86.7由表格中数据的散点图分析,y 与x 线性相关,且回归方程为y ^=0.95x +a ,则a =________.15.在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按如图所标边长,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么类比得到的结论是________.16.观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2; ⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …… 照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=________. 三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明证明过程或演算步骤)17.(本小题10分)已知复数z 满足|z |=2,z 2的虚部为2. (1)求复数z ;(2)设z ,z 2,z -z 2在复平方内对应的点分别为A ,B ,C ,求△ABC 的面积.18.(本小题12分)小流域综合治理可以有三个措施:工程措施、生物措施和农业技术措施.其中,工程措施包括打坝建库、平整土地、修基本农田和引水灌溉,其功能是贮水拦沙、改善生产条件和合理利用水土.生物措施包括栽种乔木、灌木和草木,其功能是蓄水保土和发展多种经营;农业技术措施包括深耕改土、科学施肥、选育良种,地膜覆盖和轮作套种,其功能是蓄水保土、提高肥力和充分利用光和热.用结构图把“小流域综合治理”的措施与功能表示出来.19.(本小题12分)为研究大气污染与人的呼吸系统疾病是否无关,对重污染地区和轻污染地区作跟踪调查,得如下数据:20.(本小题12分)求证:对于任意的正实数a ,b ,c ,31a +1b +1c ≤a +b +c 3(当且仅当a=b =c 时取等号).21.(本小题12分)已知f (x )=bx +1(ax +1)2⎝⎛⎭⎫x ≠-1a ,a >0,且f (1)=log 162,f (-2)=1. (1)求函数f (x )的表达式;(2)已知数列{x n }的项满足x n =[1-f (1)]·[1-f (2)]·…·[1-f (n )],试求x 1,x 2,x 3,x 4; (3)猜想{x n }的通项.22.(本小题12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?答案1.解析:选C 因为(z -1)i =1+i ,所以z =1+ii+1=2-i.2.解析:选D 复数z =z 1z 2=2+i 1+3i =(2+i )(1-3i )(1+3i )(1-3i )=12-12i ,z 对应的点的坐标为⎝⎛⎭⎫12,-12位于第四象限.3.解析:选D 因为“a >b ”的反面就是“a <b 或a =b ”,所以选D. 4.解析:选D 由“三段论”的推理形式可知D 正确. 5.解析:选C P 2=2a +7+2a 2+7a , Q 2=2a +7+2a 2+7a +12, 由于a 2+7a <a 2+7a +12, 所以2a 2+7a <2a 2+7a +12, 从而P 2<Q 2,即P <Q .6.解析:选B 由题可知若x 0=x ,y 0=y ,由回归直线的性质可知(x 0,y 0)满足回归方程y ^=b ^x +a ^,但满足回归方程y ^=b ^x +a ^的除(x ,y )外,可能还有其他样本点.7.解析:选A 由程序框图知,当输入a =11π6,b =5π3时,tan a =-33,tan b =-3,则tan a >tan b .故输出c =|tan a |=33. 8.解析:选B 由于1有1个,2有2个,3有3个,…,则13有13个,所以1~13的总个数为13(1+13)2=91,故第100个数为14.9.解析:选D 由归纳推理,知a =n n .10.解析:选C 因为复数z 中,|z |2为实数,z 2不一定为实数,所以|z |2≠z 2,故②错;当方程az 2+bz +c =0(a ,b ,c ∈C )有两个不同复数根时,应设出复数根的表达式,利用复数相等的条件列关系式,故③错.11.解析:选D 由f (x +y )=f (x )+f (y )且f (1)=2,知f (2)=f (1)+f (1)=2f (1),f (3)=f (2)+f (1)=3f (1),…,f (n )=nf (1),∴f (1)+f (2)+…+f (n )=(1+2+…+n )f (1)=n (n +1)2f (1)=n (n +1).12.解析:选B 法一:若AB 之间不相互调动,则A 调出10件给D ,B 调出5件给C ,C 再调出1件给D ,即可满足调动要求,此时共调动的件次n =10+5+1=16;若AB 之间相互调动,则B 调动4件给C ,调动1件给A ,A 调动11件给D ,此时共调动的件次n =4+1+11=16.所以最少调动的件次为16,故应选B.法二:设A 调动x 件给D (0≤x ≤10),则调动了(10-x )件给B ,从B 调动了5+10-x =(15-x )件给C ,C 调动出了15-x -4=(11-x )件给D ,由此满足调动需求,此时调动件次n =x +(10-x )+(15-x )+(11-x )=36-2x ,当且仅当x =10时,n 取得最小值16.13.解析:z = m +i 1+i =(m +i )(1-i )2=m +12+(1-m )i2,∴m +12=0,且1-m2≠0. ∴m =-1. 答案:-114.解析:因为(x ,y )必在直线y ^=0.95x +a 上, 又x =0+1+3+44=2,y =2.2+4.3+4.8+6.74=92,所以92=0.95×2+a ,所以a =2.6.答案:2.6 15.解析:将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S 24=S 21+S 22+S 23.答案:S 24=S 21+S 22+S 2316.解析:通过观察已给出等式的特点,可知等式右边的43是个固定数,43后面第一个数是等式左边最后一个数括号内角度值分子中π的系数的一半,43后面第二个数是第一个数的下一个自然数,所以,所求结果为43×n ×(n +1),即43n (n +1).答案:43n (n +1)17.解:(1)设z =a +b i(a ,b ∈R ),由已知条件得:a 2+b 2=2,z 2=a 2-b 2+2abi , 所以2ab =2.所以a =b =1或a =b =-1, 即z =-1+i 或z =-1-i .(2)当z =1+i 时,z 2=(1+i )=2i ,z -z 2-1-i ,所以点A (1,1),B (0,2),C (1,-1),所以S △ABC =12|AC |×1=12×2×1=1;当z =-1-i 时,z 2=(-1-i )2=2i ,z -z 2=-1-3i. 所以点A (-1,-1),B (0,2),C (-1,-3), 所以S △ABC =12|AC |×1=12×2×1=1.即△ABC 的面积为1. 18.解:19.解:假设H 0:大气污染与人的呼吸系统疾病无关. 由公式得k =3 000×(103×1 487-1 397×13)2116×2 884×1 500×1 500≈72.636.因为72.636>10.828,所以拒绝H 0,即我们在犯错误的概率不超过0.001的前提下认为大气污染与人的呼吸系统疾病有关. 20.证明:对于任意正实数a ,b ,c , 要证31a +1b +1c ≤a +b +c 3成立,只需证9≤(a +b +c )⎝⎛⎭⎫1a +1b +1c , 即证9≤3+a b +a c +b a +b c +c a +c b ,即证6≤⎝⎛⎭⎫a b +b a +⎝⎛⎭⎫a c +c a +⎝⎛⎭⎫b c +c b (*) 因为对于任意正实数a ,b ,c ,有a b +b a ≥2a b ·ba=2, 同理a c +c a ≥2,b c +cb≥2,所以不等式(*)成立,且要使(*)的等号成立必须b a =a b 且c a =a c 且b c =c b .即当且仅当a =b =c 时等号成立.21.解:(1)把f (1)=log 162=14,f (-2)=1代入f (x )=bx +1(ax +1)2,得⎩⎪⎨⎪⎧b +1(a +1)2=14,-2b +1(1-2a )2=1,整理,得⎩⎪⎨⎪⎧4b +4=a 2+2a +1,-2b +1=4a 2-4a +1,解得⎩⎪⎨⎪⎧a =1,b =0,所以f (x )=1(x +1)2(x ≠-1).(2)x 1=1-f (1)=1-14=34,x 2=34×⎝⎛⎭⎫1-19=23, x 3=23×⎝⎛⎭⎫1-116=58, x 4=58×⎝⎛⎭⎫1-125=35, (3)由(2),得x 1=34,x 2=23,x 3=58,x 4=35,可变形为34,46,58,610,…,从而可归纳出{x n }的通项x n =n +22(n +1).22.解:(1)设事件A 表示“选取的2组数据恰好是不相邻2天的数据”,则A 表示“选取的数据恰好是相邻2天的数据”.基本事件总数为10,事件A 包含的基本事件数为4. 所以P (A )=410=25,所以P (A )=1-P (A )=35.(2)x =12,y =27,∑i =13x i y i =977,∑i =13x 2i =434,所以b ^=∑i =13x i y i -3x -y-∑i =13x 2i -3x -2=977-3×12×27434-3×122=2.5,a ^=y -b ^x -=27-2.5×12=-3, 所以y ^=2.5x -3.(3)由(2)知:当x =10时,y ^=22,误差不超过2颗; 当x =8时,y ^=17,误差不超过2颗. 故所求得的线性回归方程是可靠的.。
模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数z=-1+2i,则z的虚部为()A.1B.-1C.2D.-2【解析】∵z=-1+2i,∴z=-1-2i,∴z的虚部为-2.【答案】 D2.根据二分法求方程x2-2=0的根得到的程序框图可称为()A.工序流程图B.程序流程图C.知识结构图D.组织结构图【解析】由于该框图是动态的且可以通过计算机来完成,故该程序框图称为程序流程图.【答案】 B3.利用独立性检测来考查两个分类变量X,Y是否有关系,当随机变量χ2的值()A.越大,“X与Y有关系”成立的可能性越大B.越大,“X与Y有关系”成立的可能性越小C.越小,“X与Y有关系”成立的可能性越大D.与“X与Y有关系”成立的可能性无关【解析】由χ2的意义可知,χ2越大,说明X与Y有关系的可能性越大.【答案】 A4.(2015·安庆高二检测)用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除”.则假设的内容是()【导学号:37820061】A.a,b都能被5整除B.a,b都不能被5整除C.a不能被5整除D.a,b有1个不能被5整除【解析】“至少有1个”的否定为“一个也没有”,故应假设“a,b都不能被5整除”.【答案】 B5.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误【解析】一般的演绎推理是三段论推理:大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理对特殊情况作出的判断.此题的推理不符合上述特征,故选C.【答案】 C6.(2015·深圳高二检测)在两个变量的回归分析中,作散点图是为了()A.直接求出回归直线方程B.直接求出回归方程C.根据经验选定回归方程的类型D.估计回归方程的参数【解析】散点图的作用在于判断两个变量更近似于什么样的函数关系,便于选择合适的函数模型.【答案】 C7.(2015·南阳高二检测)已知i为虚数单位,则复平面内表示复数z=i3+i的点在()A.第一象限B.第二象限C.第三象限D.第四象限【解析】因为i3+i=i(3-i)(3+i)(3-i)=1+3i10=110+310i,所以复平面内表示复数i3+i 的点的坐标是⎝⎛⎭⎪⎫110,310,该点位于第一象限,选A.【答案】 A8.给出下面类比推理:①“若2a<2b,则a<b”类比推出“若a2<b2,则a<b”;②“(a+b)c=ac+bc(c≠0)”类比推出“a+bc=ac+bc(c≠0)”;③“a,b∈R,若a-b=0,则a=b”类比推出“a,b∈C,若a-b=0,则a=b”;④“a,b∈R,若a-b>0,则a>b”类比推出“a,b∈C,若a-b>0,则a>b(C为复数集)”.其中结论正确的个数为()A.1B.2C.3D.4【解析】①显然是错误的;因为复数不能比较大小,所以④也是错误的,②③正确,故选B.【答案】 B9.如果执行如图1所示的程序框图,输入x=4.5,则输出的数i等于()图1A.2B.3C.4D.5【解析】 依次执行为x =4.5,i =1;x =3.5,i =2;x =2.5,i =3;x =1.5;i =4;x =0.5<1,此时退出循环,故选C.【答案】 C10.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 33=( ) A.3 B.-3 C.6D.-6【解析】 a 1=3,a 2=6,a 3=a 2-a 1=3,a 4=a 3-a 2=-3,a 5=a 4-a 3=-6,a 6=a 5-a 4=-3,a 7=a 6-a 5=3,a 8=a 7-a 6=6,…,观察可知{a n }是周期为6的周期数列,故a 33=a 3=3. 【答案】 A11.(2015·青岛高二检测)下列推理合理的是( ) A.f (x )是增函数,则f ′(x )>0B.因为a >b (a ,b ∈R ),则a +2i >b +2i(i 是虚数单位)C.α,β是锐角△ABC 的两个内角,则sin α>cos βD.A 是三角形ABC 的内角,若cos A >0,则此三角形为锐角三角形 【解析】 A 不正确,若f (x )是增函数,则f ′(x )≥0;B 不正确,复数一般不比较大小;C 正确,∵α+β>π2,∴α>π2-β,∴sin α>cos β;D 不正确,只有cos A >0,cos B >0,cos C >0,才能说明此三角形为锐角三角形.【答案】 C12.有人收集了春节期间平均气温x 与某取暖商品销售额y 的有关数据如下表:归方程y ^=b ^x +a ^的系数b ^=-2.4,则预测平均气温为-8℃时该商品销售额为( )A.34.6万元B.35.6万元C.36.6万元D.37.6万元【解析】 x -=-2-3-5-64=-4,y -=20+23+27+304=25,所以这组数据的样本中心点是(-4,25). 因为b ^=-2.4,把样本中心点代入线性回归方程得a ^=15.4, 所以线性回归方程为y ^=-2.4x +15.4. 当x =-8时,y =34.6.故选A. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.已知复数z =m 2(1+i)-m (m +i)(m ∈R ),若z 是实数,则m 的值为________.【导学号:37820062】【解析】 z =m 2+m 2i -m 2-m i =(m 2-m )i , ∴m 2-m =0,∴m=0或1.【答案】0或114.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:“是”或“否”).【解析】因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,即ba+b=1858,dc+d=2742,两者相差较大,所以经直观分析,收看新闻节目的观众与年龄是有关的.【答案】是15.(2016·天津一中检测)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________.【解析】已知等式可改写为:13+23=(1+2)2;13+23+33=(1+2+3)2;13+23+33+43=(1+2+3+4)2,由此可得第五个等式为:13+23+33+43+53+63=(1+2+3+4+5+6)2=212.【答案】13+23+33+43+53+63=21216.(2016·江西吉安高二检测)已知等差数列{a n}中,有a11+a12+…+a2010=a1+a2+…+a3030,则在等比数列{b n}中,会有类似的结论________.【解析】由等比数列的性质可知,b1b30=b2b29=…=b11b20,∴10b11b12 (20)30b1b2 (30)【答案】10b11b12 (20)30b1b2…b30三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(2016·哈三中模拟)设z=(1-4i)(1+i)+2+4i3+4i,求|z|.【解】z=1+i-4i+4+2+4i3+4i=7+i3+4i,∴|z|=|7+i||3+4i|=525= 2.18.(本小题满分12分)我校学生会有如下部门:文娱部、体育部、宣传部、生活部、学习部.请画出学生会的组织结构图.【解】学生会的组织结构图如图.19.(本小题满分12分)调查某桑场采桑员和辅助工中患桑毛虫皮炎发情况结果如下表:采桑不采桑合计患者人数181230健康人数57883合计2390认为两者有关系会犯错误的概率是多少?【解】n11=18,n12=12,n21=5,n22=78,所以n1+=n11+n12=30,n2+=n21+n22=83,n+1=n11+n21=23,n+2=n12+n22=90,n=113.所以χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2=113×(18×78-5×12)230×83×23×90=39.6>6.635.所以有99%的把握认为“患桑毛虫皮炎病与采桑”有关系.认为两者有关系会犯错误的概率是1%.20.(本小题满分12分)已知非零实数a ,b ,c 构成公差不为0的等差数列,求证:1a ,1b ,1c 不能构成等差数列.【导学号:37820063】【证明】 假设1a ,1b ,1c 能构成等差数列,则2b =1a +1c ,因此b (a +c )=2ac . 而由于a ,b ,c 构成等差数列,且公差d ≠0,可得2b =a +c , ∴(a +c )2=4ac ,即(a -c )2=0,于是得a =b =c , 这与a ,b ,c 构成公差不为0的等差数列矛盾. 故假设不成立,即1a ,1b ,1c 不能构成等差数列.21.(本小题满分12分)已知a 2+b 2=1,x 2+y 2=1,求证:ax +by ≤1(分别用综合法、分析法证明).【证明】 综合法:∵2ax ≤a 2+x 2,2by ≤b 2+y 2, ∴2(ax +by )≤(a 2+b 2)+(x 2+y 2). 又∵a 2+b 2=1,x 2+y 2=1, ∴2(ax +by )≤2,∴ax +by ≤1. 分析法:要证ax +by ≤1成立, 只要证1-(ax +by )≥0,只要证2-2ax -2by ≥0, 又∵a 2+b 2=1,x 2+y 2=1,∴只要证a 2+b 2+x 2+y 2-2ax -2by ≥0, 即证(a -x )2+(b -y )2≥0,显然成立.22.(本小题满分12分)某班5名学生的数学和物理成绩如下表:学生学科成绩A B C D E 数学成绩(x ) 88 76 73 66 63 物理成绩(y )7865716461(1)画出散点图;(2)求物理成绩y 对数学成绩x 的回归直线方程; (3)一名学生的数学成绩是96,试预测他的物理成绩. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:【解】 (1)散点图如图,(2) x -=15×(88+76+73+66+63)=73.2, y -=15×(78+65+71+64+61)=67.8.=88×78+76×65+73×71+66×64+63×61=25 054. =882+762+732+662+632=27 174.所以b ^==25 054-5×73.2×67.827 174-5×73.22≈0.625.a ^=y --b ^x -≈67.8-0.625×73.2=22.05. 所以y 对x 的回归直线方程是 y ^=0.625x +22.05.(3)x =96,则y ^=0.625×96+22.05≈82,即可以预测他的物理成绩是82分.。
数学·选修1-2(人教A版)模块综合检测卷(测试时间:120分钟评价分值:150分)一、选择题(本大题共10小题,每小题5分,共50分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.对于自变量x和因变量y,当x取值一定时,y的取值带有一定的随机性,x,y间这种非确定的关系叫做()A.函数关系B.线形关系C.相关关系D.回归关系答案:C2.下列是关于出生男婴与女婴调查的2×2列联表,那么表中m,n的值分别是()A.58,60 B.答案:D3.△ABC三个顶点对应的复数分别是z1,z2,z3,若复数z满足|z-z1|=|z-z2|=|z-z3|,则z对应的点是△ABC的() A.内心B.重心C.垂心D.外心答案:D4.用反证法证明命题“若整系数方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个偶数”时,下列假设正确的是() A.假设a,b,c都是偶数B.假设a,b,c都不是偶数C .假设a ,b ,c 至多有一个偶数D .假设a ,b ,c 至多有两个偶数 答案:B5.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,则函数f (x )=⎪⎪⎪⎪⎪⎪⎪⎪2cos x ,1,1,cos x 的图象的一条对称轴方程是( )A .x =π2B .x =π3C .x =π4D .x =π6解析:依题意得:f (x )=2cos 2x -1=cos 2x ,∴选A. 答案:A6.复数(a 2-a )+(|a -1|-1)i(a ∈R)不是纯虚数,则有( ) A .a ≠0 B .a ≠0且a ≠1 C .a ≠1 D .a ≠0且a ≠2 答案:C7.在“由于任何数的平方都是非负数,所以(2i)2≥0”这一推理中,产生错误的原因是( )A .推理的形式不符合三段论的要求B .大前提错误C .小前提错误D .推理的结果错误解析:大前提错误,应为“任何实数的平方都是非负数”.故选B.答案:B8.如图(1)、(2),它们都表示的是输出所有立方小于1 000的正整数的程序框图,那么应分别补充的条件为( )A.(1)n3≥1 000?(2)n3<1 000?B.(1)n3≤1 000?(2)n3≥1 000?C.(1)n3<1 000?(2)n3≥1 000?D.(1)n3<1 000?(2)n3<1 000?答案:C9.有一堆形状、大小相同的珠子,其中只有一粒重量比其他的轻,某同学经过思考,他说根据科学的算法,利用天平,三次肯定能找到这粒最轻的珠子,则这堆珠子最多有几粒()A.21 B.24 C. 27 D. 30答案:C10.如下面两图,已知命题:若矩形ABCD的对角线BD与边AB和BC所成角分别为α,β,则cos2α+cos2β=1.若把它推广到长方体ABCD-A1B1C1D1中,对角线BD1与棱AB,BB1,BC所成的角分别为α,β,γ,则相应的命题形式()A.cos2α+cos2β+cos2γ=1 B.sin2α+sin2β+sin2γ=1C.cos2α+cos2β+cos2γ=2 D.sin2α+sin2β+sin2γ=2答案:A二、填空题(本大题共4小题,每小题5分,共20分;将正确答案填在题中的横线上)11.设复数z=1+i,ω=z-2|z|-4,则ω=_______________.答案:-3-22+i12.数列{an}中,a1=2,an+1=an3an+1(n∈N*),依次计算a2,a3,a4,然后归纳、猜想an=_______________.答案:26n-513.为解决四个村庄用电问题,政府投资在已建电厂与四个村庄之间架设输电线路,现已知这四个村庄及电厂之间的距离如图(距离单位:km),则能把电力输送到这四个村庄的输电线路最短总长度应该是________.解析:要使电厂与四个村庄相连,则需四条线路,注意最短的四条线路能使电厂与四个村庄相连,∴4+5+5.5+6=20.5 km.答案:20.5 km14.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,右图一组蜂巢的截面图中,第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n幅图的蜂巢总数,则f(4)=______,f(n)=______.解析:f (4)=4+5+6+7+6+5+4=37,f (n )=n +(n +1)+…+(2n -1)+…+(n +1)+n =2×n [n +(2n -1)]2-(2n -1)=3n 2-3n +1.答案:37 3n 2-3n +1三、解答题(本大题共6小题,共80分;解答时应写出必要的文字说明、证明过程及演算步骤)15.(12分)计算(1)(1+2i )2+3(1-i )2+i ;(2)1-3i (3+i )2.解析:(1)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i =i 2+i =i (2-i )5=15+25i ; (2)1-3i(3+i )2=(3+i )(-i )(3+i )2=-i3+i=(-i )(3-i )4=-14-34i.16.(12分)某班主任对全班50名学生进行了作业量多少的调查,数据如下表:认为作业多认为作业不多 总计喜欢玩电脑游戏 18 9 27 不喜欢玩电脑游戏8 15 23 总计262450是否相关.解析:根据公式计算,K 2的观测值k =50(18×15-8×9)226×24×27×23≈5.059,∵5.059>5.024,∴约有97.5%的把握认为喜欢玩电脑游戏和认为作业量的多少有关.17.(14分)某人早晨起床后泡茶的过程可用流程图表示为:这种安排方式耗时多少分钟?还可以有其他的安排方法吗?试用流程图表示你准备采用的方式,并计算按你的方式耗时多少分钟.解析:按照题中流程图的安排,总耗时数为2+15+3+2+1=23(min).由于洗茶杯、取放茶叶可在烧开水时进行,故工作流程图也可以这样安排:18.(14分)如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.求证:(1)AB∥平面PCD.(2)BC⊥平面PAC.证明:(1)∵AB∥DC,且AB⊄平面PCD,CD⊂平面PCD,∴AB∥平面PCD.(2)在直角梯形ABCD中,过C作CE⊥AB于点E(如图),则四边形ADCE为矩形.∴AE=DC=1,又AB=2,∴BE=1,在Rt△BEC中,∠ABC=45°,∴CE=BE=1,CB= 2.∴AD=CE=1,则AC=AD2+DC2= 2.∴AC2+BC2=AB2,∴BC⊥AC.又∵PA⊥平面ABCD.∴PA⊥BC.又∵PA∩AC=A,∴BC⊥平面PAC.19.(14分)在关于人体脂肪含量y(百分比)和年龄x(岁)关系的研究中,得到如下一组数据:年龄(x)232739414550脂肪含量(y)9.517.821.225.927.528.2(1)画出散点图,判断x与y是否具有相关关系;(2)通过计算可知b^=0.651 2,â=-2.737 9,请写出y对x的回归直线方程,并计算出23岁和50岁的残差.解析:(1)涉及两个变量,年龄与脂肪含量.因此选取年龄为自变量x,脂肪含量为因变量y.散点图如图所示,从图中可以看出x与y具有相关关系.(2)y对x的回归直线方程为y^=0.651 2x-2.737 9.当x=23 时,y^=12.239 7,y-y^=9.5-12.239 7=-2.739 7.当x =50 时,y ^=29.822 1,y -y ^=28.2-29.822 1=-1.622 1. 所以23岁和50岁的残差分别为-2.739 7和-1.622 1.20.(14分)设数列{}a n 的首项a 1=a ≠14,且a n +1=⎩⎪⎨⎪⎧ 12a n ,n 为偶数,a n +14,n 为奇数.记b n =a 2n -1-14,n =1,2,3,…. (1)求a 2,a 3,a 4,a 5;(2)判断数列{}b n 是否为等比数列,并证明你的判断.解析:(1)a 2=a 1+14=a +14,a 3=12a 2=12a +18, a 4=a 3+14=12a +38,a 5=12a 4=14a +316. (2)由(1)可得 b 1=a 1-14=a -14,b 2=a 3-14=12⎝ ⎛⎭⎪⎫a -14,b 3=a 5-14=14⎝ ⎛⎭⎪⎫a -14. 猜想:{}b n 是公比为12的等比数列. 证明如下:因为 b n +1=a 2n +1-14=12 a 2n -14=12⎝ ⎛⎭⎪⎫a 2n -1-14=12b n (n ∈N *),又 a ≠14, 所以 b 1=a -14≠0. 所以数列{}b n 是首项为a -14,公比为12的等比数列.。
模块综合评价(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2021·福建卷)若集合A={i,i2,i3,i4}(i是虚数单位),B={1,-1},则A∩B 等于()A.{-1}B.{1}C.{1,-1} D.∅解析:由已知得A={i,-1,-i,1},故A∩B={1,-1}.答案:C2.下面几种推理是合情推理的是()①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出全部三角形的内角和都是180°;③张军某次考试成果是100分,由此推出全班同学的成果都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n-2)·180°.A.①②B.①③C.①②④D.②④解析:①是类比推理;②是归纳推理;④是归纳推理.所以①、②、④是合情推理.答案:C3.某考察团对全国10大城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查发觉,y与x具有相关关系,回归方程为y^=0.66x+1.562.若某城市居民人均消费水平为7.675(千元),估量该城市人均消费额占人均工资收入的百分比约为()A.83% B.72%C.67% D.66%解析:由(x-,7.765)在回归直线y^=0.66x+1.562上.所以7.765=0.66x-+1.562,则x-≈9.4,所以该城市人均消费额占人均工资收入的百分比约为7.7659.4×100%≈83%.答案:A4.有一段演绎推理是这样的:“若直线平行于平面,则平行于平面内全部直线,已知直线b在平面α外,直线a在平面α内,直线b∥平面α,则直线b∥直线a”的结论明显是错误的,这是由于()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误解析:若直线平行平面α,则该直线与平面内的直线平行或异面,故大前提错误.答案:A5.执行如图所示的程序框图,如图输入的x,t均为2,则输出的S=()A .4B .5C .6D .7解析:x =2,t =2,M =1,S =3,k =1. k ≤t ,M =11×2=2,S =2+3=5,k =2;k ≤t ,M =22×2=2,S =2+5=7,k =3;3>2,不满足条件,输出S =7. 答案:D6.如图所示,在复平面内,OP →对应的复数是1-i ,将OP →向左平移一个单位后得到O 0P 0→,则P 0对应的复数为( )A .1-iB .1-2iC .-1-iD .-i解析:要求P 0对应的复数,依据题意,只需知道OP 0→,而OP 0→=OO 0→+O 0P 0→,从而可求P 0对应的复数.由于O 0P 0→=OP →,OO 0→对应的复数是-1, 所以P 0对应的复数,即OP 0→对应的复数是-1+(1-i )=-i . 答案:D7.给出下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好;③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型拟合效果越好.其中正确的是( ) A .①② B .②③ C .①③D .①②③解析:相关指数R 2越大,说明模型拟合效果越好,故②错误.①③正确. 答案:C8.图①、图②、图③、图④分别包含1、5、13和25个互不重叠的单位正方形,按同样的方式构造图形,则第n 个图包含的单位正方形的个数是( )图① 图② 图③ 图④A .n 2-2n +1B .2n 2-2n +1C .2n 2+2D .2n 2-n +1解析:观看题中给出的四个图形,图①共有12个正方形,图②共有12+22个正方形;图③共有22+32个正方形;图④共有32+42个正方形;则第n个图中共有(n-1)2+n2,即2n2-2n+1个正方形.答案:B9.在△ABC中,tan A·tan B>1,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析:由于tan A·tan B>1,所以A,B只能都是锐角,所以tan A>0,tan B>0,1-tan A·tan B<0.所以tan(A+B)=tan A+tan B1-tan A·tan B<0.所以A+B是钝角,所以角C为锐角.答案:A10.在复平面内,若复数z满足|z+1|=|1+i z|,则z在复平面内对应点的轨迹是()A.直线B.圆C.椭圆D.抛物线解析:设z=x+y i(x、y∈R),|x+1+y i|=(x+1)2+y2,|1+i z|=|1+i(x+y i)|=(y-1)2+x2,则(x+1)2+y2=(y-1)2+x2,得y=-x.所以复数z=x+y i对应点(x,y)的轨迹为到点(-1,0)和(0,1)距离相等的直线y=-x.答案:A11.若P=a+a+7,Q=a+3+a+4(a≥0),则P,Q的大小关系为() A.P>Q B.P=QC.P<Q D.由a的取值确定解析:要比较P与Q的大小,只需比较P2与Q2的大小,只需比较2a+7+2a(a+7)与2a+7+2(a+3)(a+4)的大小,只需比较a2+7a与a2+7a +12的大小,即比较0与12的大小,而0<12,故P<Q.答案:C12.依据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.a n=2n B.a n=2(n-1)C.a n=2n D.a n=2n-1解析:由程序框图知第一次运行:i=1,a1=2,S=2;其次次运行:i=2,a2=4,S=4;第三次运行:i=3,a3=8,S=8;第四次运行:i =4,a 4=16,S =16. ……第n 次运行,a n =2a n -1, 因此输出数列的通项公式为a n =2n . 答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.某学校的组织结构图如图所示:则教研处的直接领导是________.解析:由结构图知,教研处的直接领导为副校长甲. 答案:副校长甲14.若复数z =1+2i ,其中i 是虚数单位,则⎝⎛⎭⎪⎪⎫z +1z -·z -=________。
高二数学文科选修1-2模块训练题一、选择题(每题4分)1、在回归直线方程表示回归系数中b bx a y,ˆ+=( ) A .当0x =时,y 的平均值 B.当x 变动一个单位时,y 的实际变动量C .当y 变动一个单位时,x 的平均变动量 D.当x 变动一个单位时,y 的平均变动量 2、复数534i--的共轭复数是( )A .34-iB .3455i -+ C .34+iD .3455i -- 3.经过对2K 的统计量的研究,得到了若干个临界值,当23.841K >时,我们( )A .有95%的把握认为A 与B 有关 B .有99%的把握认为A 与B 有关C .没有充分理由说明事件A 与B 有关系D .有97.5%的把握认为A 与B 有关4、下列说法正确的个数是( )①若()()213x i y y i -+=--,其中,,I x R y C R I ∈∈为复数集。
则必有()2113x yy -=⎧⎪⎨=--⎪⎩②21i i +>+ ③虚轴上的点表示的数都是纯虚数 ④若一个数是实数,则其虚部不存在A .0B . 1C .2D .35.在一次实验中,测得(),x y 的四组值分别是()1,2A ,()2,3B ,()3,4C ,()4,5D ,则y 与x 之间的回归直线方程为( )A .1y x =+B .2y x =+C .21y x =+D .1y x =-6、根据右边程序框图,当输入10时,输出的是( ) A .12 B .19 C .14.1 D .-307、若z C ∈且221z i +-=,则12z i --的最小值是: A 2B 3C 4D 58、在复平面内,复数2(13)1ii i+++对应的点位于( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限9. 给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集) ①“若a,b ∈R,则0a b a b -=⇒=”类比推出“a,b ∈C,则0a b a b ->⇒=”②“若a,b,c,d ∈R ,则复数,a bi c di a c b d +=+⇒==”类比推出“若,,,a b c d Q ∈,则2=2,a b c d a c b d ++⇐==”;③若“a,b ∈R,则0a b a b -=⇒>”类比推出“a,b ∈C,则0a b a b -=⇒>” 其中类比结论正确的个数 ( ) A .0 B .1 C .2 D .310、把正整数按下图所示的规律排序,则从2003到2005的箭头方向依次为( )二、填空题(每题4分)11、221(1)(4),.z m m m m i m R =++++-∈232.z i =-则1m =是12z z =的_____________条件 12、已知111()1()23f n n N n +=+++⋅⋅⋅+∈,经计算: 35(2),(4)2,(8),22f f f =>> (16)3,f >7(32)2f >,推测当2n ≥时,有__________________________. 13、由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据 “三段论”推理出一个结论,则这个结论是 。
高二数学选修1-2模块测试题(文科)一、选择题:(本大题共14小题,每小题5分,共70分) 1.若复数3i z =-,则z 在复平面内对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限D .第四象限2.按流程图的程序计算,若开始输入的值为3x =,则输出的x 的值是 ( ) A .6B .21C .156D .2318.若=++==+)5()6()3()4()1()2(,2)1()()()(f f f f f f f b f a f b a f 则且( ) A .512 B .537 C .6 D .8 4.用火柴棒摆“金鱼”,如图所示:( )按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为 ( ) A .62n - B .82n - C .62n + D .82n + 5.计算1i1i -+的结果是 ( ) A .i B .i -C .2D .2-6.已知x 与y 之间的一组数据:则a bx y+=ˆ必过点 ( )A .(2,2)B .(1,2)C .(1.5,0)D .(1.5,4) 7.求135101S =++++的流程图程序如右图所示, 其中①应为 ( ) A.101?A = B .101?A ≤ C .101?A >…① ② ③D .101?A ≥7.已知a +b +c =0,则ab +bc +ca 的值( )A .大于0B .小于0C .不小于0D .不大于09.对相关系数r ,下列说法正确的是 ( ) A .||r 越大,线性相关程度越大 B .||r 越小,线性相关程度越大C .||r 越大,线性相关程度越小,||r 越接近0,线性相关程度越大D .||1r ≤且||r 越接近1,线性相关程度越大,||r 越近0,线性相关程度越小 10.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①9090180A B C C ++=︒+︒+>︒,这与三角形内角和为180︒相矛盾,90A B ==︒不成立;②所以一个三角形中不能有两个直角;③假设三角形的三个内角A 、B 、C 中有两个直角,不妨设90A B ==︒,正确顺序的序号为 ( ) A .①②③B .③①②C .①③②D .②③①11.在独立性检验中,统计量2K 有两个临界值:3.841和6.635;当2K >3.841时,有95%的把握说明两个事件有关,当2K >6.635时,有99%的把握说明两个事件有关,当2K ≤3.841时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算的2K =20.87,根据这一数据分析,认为打鼾与患心脏病之间 ( ) A .有95%的把握认为两者有关B .约有95%的打鼾者患心脏病C .有99%的把握认为两者有关D .约有99%的打鼾者患心脏病 12.类比平面内 “垂直于同一条直线的两条直线互相平行”的性质,可推出空间下列结论:( )①垂直于同一条直线的两条直线互相平行 ②垂直于同一个平面的两条直线互相平行 ③垂直于同一条直线的两个平面互相平行④垂直于同一个平面的两个平面互相平行则正确的结论是 ( )A .①②B .②③C .③④D .①④13.若定义运算:()()a a b a b b a b ≥⎧⊗=⎨<⎩,例如233⊗=,则下列等式不能成立....的是 ( )A .a b b a ⊗=⊗ B .()()a b c a b c ⊗⊗=⊗⊗ C .222()a b a b ⊗=⊗D ()()()c a b c a c b ⋅⊗=⋅⊗⋅(0c >)14.已知数列{}n a 的前n 项和为n S ,且11a =,2n n S n a =*()n ∈N ,可归纳猜想出n S 的表达式为 ( )A .21nn + B .311n n -+ C .212n n ++ D .22nn + 二、填空题:(本大题共4小题,每小题5分,共20分)1.现有爬行、哺乳、飞行三类动物,其中蛇、地龟属于爬行动物;河狸、狗属于哺乳动物;鹰、长尾雀属于飞行动物,请你把下列结构图补充完整.2.已知,x y ∈R ,若i 2i x y +=-,则x y -= . 3.在等比数列{}n a 中,若91a =,则有121217(17n n a a a a a a n -⋅⋅⋅=⋅⋅⋅<,且)n *∈N 成立,类比上述性质,在等差数列{}n b 中,若70b =,则有 . 4.观察下列式子:212311+=,313422+=,414533+=,515644+=,,归纳得出一般规律为 . 三、解答题:(本大题共3小题,共28分)1.(12分)(1)已知方程03)12(2=-+--i m x i x 有实数根,求实数m 的值。
高二数学选修1-2测试题一、选择题:1、在回归直线方程表回归系数中b bx a y ,ˆ+=( )A .当0x =时,y 的平均值 B.当x 变动一个单位时,y 的实际变动量C .当y 变动一个单位时,x 的平均变动量 D.当x 变动一个单位时,y 的平均变动量2.按流程图的程序计算,若开始输入的值为3x =,则输出的x 的值是 ( )A .6B .21C .156D .2313.已知ABC 中,30,60A B ∠=∠=,求证a b <.证明:30,60A B ∠=∠=,A B∴∠<∠,a b ∴<,画线部分是演绎推理的是( ). A.大前提 B.小前提 C.结论 D.三段论4.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为 ( ) A .62n - B .82n - C .62n + D .82n + 5.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面直径与高度之间的关系,其中有相关关系的是 ( ) A .①②③ B .①② C .②③6.求135101S =++++ 的流程图程序如右图所示,其中①应为 ( )A .101?A =B .101?A ≤C .101?A >D .101?A ≥7.在线性回归模型y bx a e =++中,下列说法正确的是A .y b x a e =++是一次函数B .因变量y 是由自变量x 唯一确定的C .因变量y 除了受自变量x 的影响外,…①②③致随机误差e 的产生D .随机误差e 是由于计算不准确造成的,可以通过精确计算避免随机误差e 的产生 8.对相关系数r ,下列说法正确的是 ( )A .||r 越大,线性相关程度越大B .||r 越小,线性相关程度越大C .||r 越大,线性相关程度越小,||r 越接近0,线性相关程度越大D .||1r ≤且||r 越接近1,线性相关程度越大,||r 越接近0,线性相关程度越小 9.若定义运算:()()a ab a b ba b ≥⎧⊗=⎨<⎩,例如233⊗=,则下列等式不能成立....的是( ) A .a b b a⊗=⊗ B .()()ab ca bc ⊗⊗=⊗⊗ C .222()a b a b ⊗=⊗D ()()()c a b c a c b ⋅⊗=⋅⊗⋅(0c >) 10.已知数列{}n a 的前n 项和为n S ,且11a =,2n n S n a =*()n ∈N ,可归纳猜想出n S 的表达式为 ( ) A .21n n + B .311n n -+ C .212n n ++ D .22n n +二、填空题:11必过点 . 12.在数列{}n a 中,11a =,1112n n n a a a +⎛⎫=+⎪⎝⎭,试猜想出这个数列的通项公式为 .13. 由“以点()00,x y 为圆心,r 为半径的圆的方程为()()22200x x y y r -+-=”可以类比推出球的类似属性是 .14.由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据 “三段论”推理出一个结论,则这个结论是 。
同官高级中学高二数学选修1-2模块测试班级: 姓名: 成绩:一、选择题(10×5)1则y 与x 的线性回归方程为y=bx+a 必过( )A 、(2,2)点B 、(1.5,0)点C 、(1,2)点D 、(1.5,4)点2. 用反证法证明命题:“a,b∈N,ab 可被5整除,那么a ,b 中至少有一个能被5整除”时,假设的内容应为( )A 、a ,b 都能被5整除B 、a ,b 都不能被5整除C 、a ,b 不都能被5整除D 、a 不能被5整除 3、独立性检验中的统计假设就是假设相关事件A ,B ( )A.互斥B.不互斥C.相互独立D.不独立4、由数列1,10,100,1000,……猜测该数列的第n 项可能是( )A 、n 10B 、110-n C 、110+n D 、n 11. 5、复数3)2321(i +的值是( ) A 、i B 、-i C 、1 D 、-16、根据右边程序框图,当输入10时,输出的是( )A 、12B 、19C 、14.1D 、-307、对于ab b a R b a 2,,≥+∈+对……大前提xx x x 121⋅≥+……小前提 所以21≥+xx ……结论 以上推理过程中的错误为( ) A .大前提 B .小前提C .结论D .无错误 8、下面框图属于( )A 、流程图B 、结构图C 、程序框图D 、工序流程图9、根据右边的结构图,总经理的直接下属是( )A 、总工程师和专家办公室B 、开发部C 、总工程师、专家办公室和开发部D 、总工程师、专家办公室和所有七个部10、对于任意的两个实数对(a ,b )和(c,d),规定(a ,b )=(c,d)当且仅当a =c,b =d; 运算“⊗”为:),(),(),(ad bc bd ac d c b a +-=⊗,运算“⊕”为:),(),(),(d b c a d c b a ++=⊕,设R q p ∈,,若)0,5(),()2,1(=⊗q p 则=⊕),()2,1(q p ( )A 、)0,2(B 、)0,4(C 、)2,0(D 、)4,0(-二、填空题(5×5)11、观察(1)tan10tan 20tan 20tan60tan60tan101;++=(2)tan5tan10tan10tan 75tan 75tan51++=由以上两式成立,推广到一般结论,写出你的推论。
高二数学选修1-2模块测试题一
参考公式或数据:
11
2
2211
()()ˆ()ˆˆn
n
i i i i
i i n n
i i i i x x y y x y nx y
b x x x nx
a
y bx ====⎧
---⎪
⎪==⎪⎨--⎪⎪
=-⎪⎩∑∑∑∑
一、选择题:每题4分,共64分。
1、由数列1,10,100,1000,……猜测该数列的第n 项可能是( )。
A .10n ;
B .10n-1;
C .10n+1;
D .11n
. 2.数列2,5,11,20,,47,x …中的x 等于 ( )
A .28
B .32
C .33
D .27
3. 设1234,23z i z i =-=-+,则12z z -在复平面内对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限 4.复数
5
34+i
的共轭复数是( ) A .34-i B .354
5
+i C .34+i
D .
3545
-i 5.0=a 是复数)(R b a bi a z ∈+=,为纯虚数的( )
A .充分但不必要条件
B .必要但不充分条件
C .充要条件
D .既不充分也不必要条件 6
则A .(2,2) B .(1,2) C .(1.5,0)
D .(1.5,4)
7.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是 ( ) A .假设三内角都不大于60度; B .假设三内角都大于60度; C .假设三内角至多有一个大于60度; D .假设三内角至多有两个大于60度 8.下列表述正确的是( )
①归纳推理是由部分到整体的推理; ②归纳推理是由一般到一般的推理; ③演绎推
理是由一般到特殊的推理; ④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理。
A .①②③;
B .②③④;
C .②④⑤;
D .①③⑤。
9.下面几种推理是类比推理的是( )
A..两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线的同旁内角,则∠A +∠B =1800
B .由平面三角形的性质,推测空间四边形的性质
C .某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.
D .一切偶数都能被2整除,1002是偶数,所以1002能被2整除.
10、若大前提是:任何实数的平方都大于0,小前提是:a R ∈,结论是:2
0a >,那么这个演绎推理出错在:
A 、大前提
B 、小前提
C 、推理过程
D 、没有出错
11.已知数列
1121231234
,,,,2334445555
++++++ 则这个数列的第100项为: A 、49 B 、49.5 C 、50 D 、50.5 12.黑白两种颜色的正六形地面砖块按如图的规律拼成若干个图案,则第五个图案中有白色地面砖( )块.
A.21
B.22
C.20
D.23
13.根据右边程序框图,当输入10时,输出的是( ) A .12 B .19 C .14.1 D .-30
14、若(m 2-m )+(m 2-3m +2)i 是纯虚数,则实数m 的值为( ) (A )1 (B )1或2 (C )0 (D )-1, 1, 2 二、填空题:每题4分,共24分。
15.复数)1)(3(i i z -+=虚部是 16.计算
3223i
i
+=- 17.已知(2x -1)+i =y -(3-y )i ,其中x , y ∈R ,则x + y .=
18.回归直线方程为81.05.0ˆ-=x y
,则25=x 时,y 的估计值为_____________ 19.若在研究身高和体重的关系时,求得相关指数≈2R ___________,可以叙 述为“身高解释了64%的体重变化,而随机误差贡献了剩余的36%”所
以身高对体重的效应比随机误差的效应大得多 20. 已知x 与y 之间的一组数据:
则y 与x 的线性回归方程为y = . 三、解答题(共12分)
21、实数m 取什么值时,复数z=(m 2-5m+6)+(m 2-3m)i 是实数? (6分)
22.在数列{a n }中,)(22,111++∈+=
=N n a a a a n
n n ,试猜想数列的通项公式。
(6分)
23.已知a ,b ,c 是全不相等的正实数,求证3>-++-++-+c
c
b a b b
c a a a c b 。