圆的基本性质复习
- 格式:pptx
- 大小:1.41 MB
- 文档页数:12
圆的基本性质复习教案第一章:圆的定义与性质1.1 圆的定义:一个平面内,到定点距离等于定长的点的集合。
1.2 圆的性质:1.2.1 圆心到圆上任意一点的距离相等。
1.2.2 圆上任意两点间的弧长相等。
1.2.3 圆的半径与直径互为一半。
1.2.4 圆的周长与直径的比值为圆周率π。
第二章:圆的方程2.1 圆的标准方程:(x-a)²+ (y-b)²= r²,其中(a,b)为圆心坐标,r为半径。
2.2 圆的一般方程:x²+ y²+ Dx + Ey + F = 0,其中D²+ E²4F > 0。
第三章:圆的弧与弦3.1 弧:圆上两点间的部分。
3.2 弦:圆上任意两点间的线段。
3.3 弦心距:弦与圆心的连线。
3.4 圆的劣弧与优弧:劣弧为圆心角小于180°的弧,优弧为圆心角大于180°的弧。
第四章:圆的相交弦与切线4.1 相交弦:两条相交的弦。
4.2 直径所对的圆周角为直角。
4.3 切线:与圆只有一个交点的直线。
4.4 切线的性质:切线与半径垂直,切线长度等于半径。
第五章:圆的面积与周长5.1 圆的面积公式:S = πr²。
5.2 圆的周长公式:C = 2πr。
5.3 圆的直径与半径的关系:d = 2r。
5.4 圆的周长与直径的关系:C = πd。
第六章:圆的复合性质6.1 圆的相交弦定理:圆内接于四边形时,对角互补,即任意一对对角的和为180°。
6.2 圆的内接四边形对角互补定理:圆内接四边形的对角互补。
6.3 圆的内接多边形内角和定理:圆内接多边形的内角和为(n-2)×180°,其中n 为多边形的边数。
第七章:圆与直线的位置关系7.1 直线与圆相交:直线与圆有两个交点。
7.2 直线与圆相切:直线与圆有一个交点,且交点为切点。
7.3 直线与圆相离:直线与圆没有交点。
7.4 直线与圆的交点性质:交点与圆心的连线与直线垂直。
圆的有关性质基础复习一、知识要点:1.垂直于弦的直径圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推理(1):平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。
推理2:圆两条平行弦所夹的弧相等。
2.圆心角、弧、弦、弦心距之间的关系圆是以圆心为对称中心的中心对称图形。
实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。
顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。
定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。
推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。
3.圆周角顶点在圆上,并且两边都和圆相交的角叫圆周角。
推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。
4.圆的内接四边形多边形的所有顶点都在同一个圆上,这个多边形叫圆内接多边形,这个圆叫这个多边形的外接圆定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
例如图1,连EF后,可得:∠DEF=∠B,∠DEF+∠A=180°∴∠A+∠B=180°∴BC∥DA二、典型例题:D.5例题4图A.30°B.60°C.30°或150°D.60°或120°例5. AB 是⊙O 的直径,弦CD⊥AB 于点E ,∠CDB=30°,⊙O 的半径为cm 3,则弦CD 的长为( )A .3cm 2B .3cmC .D .9cm 例 6.如图,BC 是以线段AB 为直径的O ⊙的切线,AC 交O ⊙于点D ,过点D 作弦DE AB ⊥,垂足为点F ,连接BD BE 、.. (1)仔细观察图形并写出四个不同的正确结论:①___ ___,②___ _____ ,③_____ _,④____(不添加其它字母和辅助线);(2)A ∠=30°,CD ,求O ⊙的半径r .例7. 如图,在锐角△ABC 中,AC 是最短边;以AC 中点O 为圆心,AC 长为半径作⊙O ,交BC 于E ,过O 作OD ∥BC 交⊙O 于D ,连接AE 、AD 、DC .(1)求证:D 是的中点; (2)求证:∠DAO=∠B+∠BAD ;(3)若,且AC=4,求CF 的长.三、巩固提高:1.矩形ABCD 中,AB =8,BC =3 5,点P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( )A. 点B 、C 均在圆P 外B. 点B 在圆P 外、点C 在圆P 内C. 点B 在圆P 内、点C 在圆P 外 D .点B 、C 均在圆P 内2.如图,∠AOB =100°,点C 在⊙O 上,且点C 不与A 、B 重合,则∠ACB的度数为( )A .50° B .80°或50°C .130° D .50° 或130°3.如图,⊙O 是△ABC 的外接圆,∠OCB =40°,则∠A 的度数等于( )A .60°B .50°C .40°D .30°4.一条排水管的截面如图所示.已知排水管的截面圆半径OB =10,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( )A .16B .10C .8D .65.在半径为10的⊙O 中,弦AB 的长为16,则这条弦的弦心距为( )A .6B .8C .10D .126.如图,⊙O 的弦CD 与直径AB 相交,若∠BAD =50°,则∠ACD =______度.7.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是_____________.8.如图,点A 、B 、C 、D 都在⊙O 上,DC 的度数等于84°,CA 是∠OCD 的平分线,则∠ABD +∠CAO =________.9.如图,⊙O 的直径AB 与弦CD 相交于点E ,若AE =5,BE =1,CD =4 2,则∠AED =___________.10.如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连接CD 、OD ,给出以下四个结论:①AC ∥OD ;②CE =OE ;③△ODE ∽△ADO ;④2CD 2=CE ·AB .其中正确结论的序号是_______.11.如图,点C 、D 分别在扇形AOB 的半径OA 、OB 的延长线上,且OA =3,AC =2, CD 平行于AB ,并与AB 相交于点M 、N .(1)求线段OD 的长;(2)若tan ∠C =12,求弦MN 的长.12.如图,已知⊙O 的半径为2,弦BC 的长为2 3,点A 为弦BC 所对优弧上任意一点(B 、C 两点除外).(1)求∠BAC 的度数;(2)求△ABC 面积的最大值.13.●观察计算当a =5,b =3时, a +b 2与ab 的大小关系是__________________; 当a =4,b =4时, a +b 2与ab 的大小关系是__________________. ●探究证明如图所示,△ABC 为圆O 的内接三角形,AB 为直径,过C 作CD ⊥AB 于D ,设AD =a ,BD =b .(1)分别用a 、b 表示线段OC 、CD ;(2)探求OC 与CD 表达式之间存在的关系(用含a 、b 的式子表示).●归纳结论根据上面的观察计算、探究证明,你能得出a +b 2与ab 的大小关系是:_________________. ●实践应用要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.14.已知:如图,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连接AD.(1)求证:∠DAC =∠DBA ;(2)求证:P 是线段AF 的中点;(3)若⊙O 的半径为5,AF =152,求tan ∠ABF 的值. .15.如图1,⊙O 中AB 是直径,C 是⊙O 上一点,∠ABC =45°,等腰直角三角形DCE 中∠DCE 是直角,点D 在线段AC 上.(1)证明:B 、C 、E 三点共线;(2)若M 是线段BE 的中点,N 是线段AD 的中点,证明:MN =2OM ;(3)将△DCE 绕点C 逆时针旋转α(00<α<900)后,记为△D 1CE 1(图2),若M 1是线段BE 1的中点,N 1是线段AD 1的中点,M 1N 1=2OM 1是否成立?若成立,请证明;若不成立,说明理由.四、课外作业:。
圆的基本性质复习课教案seek; pursue; go/search/hanker after; crave; court; woo; go/run after第三章圆的性质1班级__________ 姓名___________复习内容:圆、圆的对称性、圆周角、确定圆的条件.复习要求:1.进一步理解圆及有关概念,了解弧、弦、圆心角的关系,探索并了解点与圆的位置关系;2.探索圆的性质,了解圆心角与圆周角的关系、直径所对的圆周角的特征.复习重点:圆的有关性质的应用复习过程:一.梳理有关知识点:基本概念:弧、弦、圆心角、圆周角确定圆的条件:对称性:基本性质垂径定理:圆圆心角、弧、弦的关系定理:圆周角定理:同弧或等弧所对的圆心角是它所对的圆周角的推论:1同弧或等弧所的圆周角290°的圆周角所对弦是 ,二.基础练习训练:1. 小红的衣服被一个铁钉划了一个呈直角三角形的一个洞,其中三角形两边长分别为1cm和2cm,若用同色圆形布将此洞全部覆盖,那么这个圆布的直径最小应等于 .2.⊙O的半径为6㎝,OA、OB、OC的长分别为5㎝、6㎝、7㎝,则点A、B、C 与⊙O的位置关系是:点A在⊙O_____,点B在⊙O_______.OACB3. 如图,△ABC 的三个顶点都在⊙O 上,∠ACB=40°,则∠AOB=____,∠OAB=_____.4. 如图,方格纸上一圆经过2,5、-2,2、2,-3、6,2四点,则该圆圆心的坐标为A .2,-1B .2,2C .2,1D .3,1 三、典型例:例1:如图,要把破残的圆片复制完整, 已知弧上的三点A 、B 、C, 1用尺规作图法,找出弧ABC 所在圆的圆心O 保留作图痕迹,不写作法; 2设△ABC 是等腰三角形,底边BC = 10cm,腰AB = 6 cm,求圆片的半径R 结果保留根号;3若在2题中的R 的值满足n 〈R 〈mm 、n 为正整数,试估算m 和n 的值.例2 、1如图,在半径为5cm 的⊙O 中,圆心O 到弦AB 的距离为3cm,则弦AB 的长是_______ ; 弦AB 所对的圆心角的度数为___________. 2如图,在⊙O 中,弦AB =60,弓高CD =9,求圆的半径.3已知点P 是半径为5的⊙Ο内一定点,且PO=4,则过点P 的OA D BCOA D BCABC所有弦中,弦长可取到的整数值共有的条数是 . 例3 、如图所示,AB 是⊙O 的弦,半径OC 、OD 分别交AB 于点E 、F,•且AE=BF,请你找出弧AC 与弧BD 的数量关系,并给予证明.例4:如图,在⊙O 中,直径AB=10,弦AC=6,∠ACB 的平分线交⊙O 于点D.求BC 和AD 的长.例5 、如图,ABC △是⊙O 的内接三角形,AC BC =,D 为⊙O 弧AB 上一点,延长DA 至点E ,使CE CD =.1求证:AE BD =;2若AC BC ⊥,求证:2AD BD CD +=.O ACEAOD B四、达标检:1.如图,BD 为⊙O 的直径,∠A=30°,则∠CBD 的度数为A .30°B .60°C .80°D .120°2.如图,AB 是⊙O 的直径,BC,CD,DA 是⊙O 的弦,且BC=CD=DA,则∠BCD 等于 A .100° B .110° C .120° D .130°3.如图,⊙O 的直径CD 过弦EF 的中点G,∠EOD=40°,则∠DCF 等于 A .80° B .50° C .40° D .20°4、如图,点A 、B 、C 是⊙O 上的三点,∠BAC=40°,则∠OBC 的度数是________5.如图,已知圆心角∠AOB 的度数为100°,则圆周角∠ACB 等于____________º.OAC BAB O COBACO BA CE D6.在半径为2的⊙O 中,弦AB 的长为22,则弦AB 所对的圆心角∠AOB 的度数是__________7.如图,已知AB 是⊙O 的直径,点C,D 在⊙O 上,且AB=6,BC=3. 1求∠BAC 的度数;2如果OE ⊥AC,垂足为E,求OE 的长;3求∠ADC 的度数.课后作业: 一、选择题:1、半径为6的圆中,圆心角α为60°,则角α所对弦长等于• A .42 B .10 C .8 D .62、若一个直角三角形的两边分别为6和8,则这个直角三角形外接圆直径是B.10或4或83.在同圆中,圆心角∠AOB=2∠COD,则两条弧AB 与CD 关系是 A .AB =2CD B .AB >CD C .AB <2CD D .不能确定 4.如图,⊙O 中,如果AB =2AC ,那么 .A .AB=2ACB .AB=AC C .AB<2ACD .AB>2AC 5.如图,AB 和DE 是⊙O 的直径,弦AC ∥DE,若弦BE=3,则弦CE=________.二、填空1.⊙O 的直径为10,弦AB =8,P 是弦AB 上一动点,那么OP 长的取值范围是____.第四题第五题2.如图,△ABC 为⊙O 的内接三角形,O 为圆心,OD ⊥AB,垂足为D,OE ⊥AC,•垂足为E,•若DE=3,则BC=________.3.如图,矩形ABCD 与圆心在AB 上的⊙O 交于点G,B,F,E,GB=8cm,AG=1cm,DE=2cm,则EF=_______cm .4.如图,在⊙O 中,∠ACB=∠D=60°,AC=3,则△ABC 的周长为________. 5.在半径为1的⊙O 中,弦AB 、AC 分别是2、3,则∠BAC 的度数为_______________.6. 如图,已知△ABC 的一个外角∠CAM =120°,AD 是∠CAM 的平分线,且AD 的反向延长线与△ABC 的外接圆交于点F ,连接FB 、FC ,且FC 与AB 交于E , 1判断△FBC 的形状,并说明理由;2请探索线段AB 、AC 与AF 之间满足条件的关系式并说明理由.7.已知:⊿ABC 中,AB=AC,以AB 为直径的⊙O 交BC 于D,交AC 于E,1如图1,当∠A 为锐角时,连接BE,试判断∠BAC 与∠CBE 的关系,并证明你的结论;2如图1中的边AB 不动,边AC 绕点A 按逆时针旋转,当∠BAC 为钝角时,如图2CA 的延长线与⊙O 相交于E,请问:∠BAC 与∠CBE 的关系是否与1中你所得出的关系相同 若相同加以证明;若不同,请说明理由.FBCDMA E(2)(1)C。
圆(二十四章)一、圆的基本性质1.圆的定义(两种):平面上到定点的距离等于定长的点的集合叫圆;平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理:不在同一条直线上的三点确定一个圆。
4.垂径定理及其推论:垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
推论1:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧。
推论2:弦的垂直平分线经过圆心,并且平分这条弦所对的弧。
推论3:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧。
推论4:在同圆或者等圆中,两条平行弦所夹的弧相等。
5.“等对等”定理及其推论在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.6.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系):圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半;圆周角的度数等于它所对的弧的度数的一半。
推论1:同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90º的圆周角所对的弧是半圆。
⑶弦切角定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
(弦切角就是切线与弦所夹的角)。
弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半。
推论:若两弦切角所夹的弧相等,则这两个弦切角也相等。
二、直线和圆的位置关系1.三种位置及判定与性质:d>R d=Rd<R 直线与圆相离 直线与圆相切 直线与圆相交 B C A O2.切线的性质(重点)切线的性质定理:圆的切线垂直于经过切点的半径。
Ⅱ、教学内容:圆的基本性质一、认识圆1、圆的定义 在一个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 随之旋转所 形成的图形叫圆,固定的端点 O 叫圆心,线段 OA 叫半径。
由圆的定义可知: 各点到定点(圆心 O)的距离等于定长的点都在圆上。
d = r 就是说:圆是到定点的距离等于定长的点的集合 圆的内部可以看作是到圆心的距离小于半径的点的集合。
d < r 圆的外部可以看作是到圆心的距离大于半径的点的集合。
d > r (d 为任意一点到圆心 O 的 距离,r 为圆 O 半径) 连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。
圆上任意两点间的部分叫圆弧,简称弧。
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆; 圆上任意一条弦(不是直径)的两个端点分圆成大小不同的两条弧, 大于半圆的弧叫优弧;小于半圆的弧叫劣弧。
一个优弧对应一个劣弧! 圆心相同,半径不相等的两个圆叫同心圆 ; 能够重合的两个圆叫等圆 ; 两个面积相等的圆叫等圆 ; 周长相等的两个圆是等圆 ; 半径相等的两圆能重合,所以是等圆。
同圆指的是在同一个圆中。
显然,同圆或等圆的半径相等。
圆心和半径都确定了,那么这个圆就确定了。
在同圆或等圆中,能够互相重合的弧叫等弧。
随堂练习:1.下列结论正确的是( ) B.半圆是弧 C.一条弦把圆分成的两段弧中,至少有一段是优 A.长度相等的两条弧是等弧 弧 D.弧是半圆2.过已知点 A 且半径为 3 厘米的圆的圆心的轨迹是_________________________.3.过圆上一点可以作出圆的最长弦的条数为( A.1 定 4.下列说法正确的是( A.弦是直径 B.优弧一定大于劣弧 C.不同的圆中不可能有相等的弦 D.直径是弦且同一个圆中最长的弦 B.2) C.3 D.无法确)5.下列命题中是真命题的有( ) ① 两个端点能够重合的弧是等弧; ② 圆的任意一条弦把圆分成优弧和劣弧两部分; ③ 过圆中一个定点可以有无数条弦,但直径只能有一条; ④ 半径相等的圆是等圆; ⑤ 直径是最大的弦; ⑥ 半圆所对的弦是直径; ⑦ 两条半径组成一条直径; ⑧ 圆上两点之间的部分叫做弦; ⑨ 过圆心的线段叫做圆的直径; ⑩ 直径的长度是半径的 2 倍. A.3 个 B.4 个 C.5 个 D.6 个6.下列说法中,不正确的是( A.直径是弦,弦是直径 B.半圆是弧 C.圆上的点到圆心的距离都相等)D.同圆或等圆中,优弧一定比劣弧长7.矩形 ABCD 中,AB=8,BC=3 5 ,点 P 在边 AB 上,且 BP=3AP,如果圆 P 是以点 P 为圆心,PD 为半径的圆,那么下列判断正确的是( A.点 B、C 均在圆 P 外 B.点 B 在圆 P 外、点 C 在圆 P 内 C.点 B 在圆 P 内、点 C 在圆 P 外 D.点 B、C 均在圆 P 内 )8.如图,铁路 MN 和公路 PQ 在点 O 处交汇,∠ QON=30° ,公路 PQ 上 A 处距离 O 点 240 米,如果火车行驶时,周围 200 米以内会受到噪音的影响,那么火车在铁路 MN 上沿 MN 方向以 72 千米/小时的速度行驶时,A 处受到噪音影响的时间为( )A.12 秒B.16 秒C.20 秒D.24 秒9.已知矩形 ABCD 的边 AB=6,AD=8.如果以点 A 为圆心作⊙ A,使 B,C,D 三点中在圆 内和在圆外都至少有一个点,那么⊙ 的半径 r 的取值范围是( A ) A.6<r<10 B.8<r<10 C.6<r 8 D.8<r 1010.如图,在 Rt△ABC 中∠ ACB=90° ,AC=6,AB=10,CD 是斜边 AB 上的中线,以 AC 为 直径作⊙ O,设线段 CD 的中点为 P,则点 P 与⊙ 的位置关系是( O )A.点 P 在⊙ 内 OB.点 P 在⊙ 上 OC.点 P 在⊙ 外 OD.无法确定11.一个点到圆的最大距离为 11cm,最小距离为 5cm,则圆的半径为( A.16cm 或 6cm B.3cm 或 8cm C.3cm) D.8cm能力提升:12.如图,点 A、D、G、M 在半圆 O 上,四边形 ABOC、DEOF、HMNO 均为矩形,设 BC=a,EF=b, NH=c,则 a、b、c 的大小是 _____________________.二、过三点的圆由圆的定义可知:圆心到圆上任意一点的距离都相等(长度为该圆的半径) 。
圆的基本性质复习课教案(市公开课)第一章:圆的定义与性质1.1 圆的定义:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆。
1.2 圆心:圆的中心点称为圆心。
1.3 半径:从圆心到圆上任意一点的线段称为半径。
1.4 直径:通过圆心,并且两端都在圆上的线段称为直径。
1.5 圆的性质:(1)圆是对称图形,圆心是对称中心。
(2)圆上任意一点到圆心的距离相等,即半径相等。
(3)直径是半径的两倍。
第二章:圆的周长与面积2.1 圆的周长:圆的周长称为圆周率,用符号π表示。
2.2 圆的面积:圆的面积等于圆周率乘以半径的平方。
2.3 圆周率π的值:π约等于3.14159。
第三章:圆的方程3.1 圆的标准方程:圆的方程为(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。
3.2 圆的一般方程:圆的方程也可以表示为x²+y²+Dx+Ey+F=0,其中D、E、F为常数。
第四章:圆的弧与弦4.1 弧:圆上两点间的部分称为弧。
4.2 弦:圆上任意两点间的线段称为弦。
4.3 直径所对的圆周角是直角。
4.4 圆心角与所对弧的关系:圆心角等于所对弧的两倍。
第五章:圆的相交与切线5.1 圆与圆的相交:两个圆的边界相交称为圆与圆的相交。
5.2 圆与圆的切线:与圆相切的直线称为圆的切线。
5.3 切线的性质:切线与半径垂直,切点处的切线斜率等于半径的斜率的负倒数。
第六章:圆的相切与内切6.1 圆的相切:两个圆仅有一个公共点时,称为相切。
6.2 内切:一个圆内含于另一个圆时,称为内切。
6.3 相切关系的应用:相切圆的半径之和等于两圆心距离。
第七章:圆的方程应用7.1 圆的方程求解:通过给定的条件,求解圆的方程中的未知数。
7.2 圆的方程应用实例:求解圆与直线、圆与圆的交点坐标。
第八章:圆的弧长与角度8.1 弧长:圆周上的一段弧的长度称为弧长。
8.2 圆心角与弧长的关系:圆心角的大小等于所对弧的长度与半径的比值。