铝合金车轮结构优化研究 译文
- 格式:docx
- 大小:56.45 KB
- 文档页数:5
《铝合金轮毂的力学性能及有限元分析》篇一一、引言随着汽车工业的快速发展,铝合金轮毂因其轻量化、高强度、耐腐蚀等优点,逐渐成为现代汽车的重要部件。
了解铝合金轮毂的力学性能及其在各种工况下的应力分布,对于提高轮毂的设计水平、保障行车安全具有重要意义。
本文将针对铝合金轮毂的力学性能进行探讨,并运用有限元分析方法对其力学行为进行深入研究。
二、铝合金轮毂的力学性能铝合金轮毂的力学性能主要表现在其抗拉强度、屈服强度、延伸率及硬度等方面。
这些性能参数决定了轮毂在承受外力时的变形程度和抗破坏能力。
1. 抗拉强度与屈服强度:铝合金轮毂的抗拉强度和屈服强度是评价其承载能力的重要指标。
抗拉强度表示轮毂在拉伸过程中能够承受的最大力,而屈服强度则反映了轮毂在应力作用下的塑性变形能力。
2. 延伸率:延伸率是衡量铝合金轮毂塑性变形能力的重要参数。
高延伸率的轮毂在受到冲击时能够更好地吸收能量,降低破坏风险。
3. 硬度:铝合金轮毂的硬度与其耐磨性、抗冲击性密切相关。
适当的硬度可以保证轮毂在使用过程中不易磨损、不易变形。
三、有限元分析方法在铝合金轮毂中的应用有限元分析是一种有效的数值模拟方法,可用于研究铝合金轮毂在各种工况下的应力分布、变形及破坏模式。
通过建立轮毂的有限元模型,可以对其进行分析和优化。
1. 建立有限元模型:根据铝合金轮毂的实际结构,建立精确的有限元模型。
模型中应包括轮毂的各部分结构、材料属性及边界条件等。
2. 施加载荷及约束:根据轮毂在实际使用中可能承受的载荷,如重力、刹车力、侧向力等,在有限元模型上施加相应的载荷及约束。
3. 求解及后处理:通过有限元软件进行求解,得到轮毂在各种工况下的应力分布、变形及破坏模式。
对结果进行后处理,提取所需的数据及图表。
四、铝合金轮毂的力学行为分析通过有限元分析,可以深入了解铝合金轮毂在各种工况下的力学行为。
例如,在高速行驶过程中,轮毂所受的应力分布情况;在刹车过程中,轮毂的变形及应力集中情况等。
《铝合金车轮双轴疲劳试验数值模拟研究》篇一一、引言随着汽车工业的飞速发展,铝合金车轮因其轻量化、耐腐蚀性及良好的铸造性能等特点,正被广泛应用在各类汽车中。
因此,铝合金车轮的性能、可靠性及寿命成为研究者们关注的重点。
而双轴疲劳试验作为一种有效评估车轮力学性能的方法,具有显著的研究价值。
鉴于此,本文以铝合金车轮为研究对象,开展双轴疲劳试验的数值模拟研究。
通过该方法,不仅可以有效地模拟真实工况下的车轮运行情况,而且能更加深入地理解和掌握车轮在各种工况下的疲劳性能。
二、铝合金车轮的特性和应用铝合金车轮因其轻量化、耐腐蚀性等特性,被广泛应用于现代汽车制造中。
其独特的物理和化学性质使得它成为汽车零部件制造的理想材料。
然而,由于使用环境复杂多变,铝合金车轮在长期使用过程中可能会产生疲劳损伤,甚至出现断裂等严重问题。
因此,对铝合金车轮的疲劳性能进行深入研究,对于提高其使用寿命和保证行车安全具有重要意义。
三、双轴疲劳试验及其数值模拟方法双轴疲劳试验是一种通过模拟车轮在实际行驶过程中所受的力,来评估车轮力学性能的试验方法。
这种方法能够真实地反映车轮在各种工况下的工作状态,包括纵向和横向的应力、应变等。
而数值模拟则可以通过建立精确的数学模型,对双轴疲劳试验进行模拟和预测。
本文采用有限元法进行数值模拟。
首先,根据铝合金车轮的实际尺寸和结构,建立精确的三维模型。
然后,通过设定合理的材料属性、边界条件和载荷条件,对模型进行网格划分和求解。
最后,通过后处理程序对结果进行分析和可视化,从而得到车轮在双轴疲劳试验中的应力、应变等数据。
四、铝合金车轮双轴疲劳试验数值模拟研究在本研究中,我们通过数值模拟的方法,对铝合金车轮进行了双轴疲劳试验的模拟。
我们首先设定了多种不同的工况,包括不同的载荷、速度和温度等条件。
然后,通过有限元法对这些工况下的车轮进行了详细的模拟和分析。
我们的研究结果显示,铝合金车轮在双轴疲劳试验中,其应力、应变等数据呈现出明显的规律性。
铝合金车轮结构设计有限元分析与实验研究铝合金车轮结构设计有限元分析与实验研究摘要:随着汽车工业的发展,轻量化设计成为将来汽车工程的一个重要方向。
车轮作为汽车的重要组成部分之一,其结构设计直接关系到汽车的性能和安全。
本文旨在通过有限元分析与实验研究的方法,探索铝合金车轮结构设计的优化方案,以达到轻量化和高强度的目标。
关键词:铝合金车轮、有限元分析、实验研究、结构设计 1. 引言随着汽车工业的不断发展,节能减排、环境友好以及安全性能成为汽车设计的重要关注点。
由于铝合金材料具有轻质、高强度、抗腐蚀等优势,因此在汽车制造领域得到广泛应用。
车轮作为汽车的关键组成部分之一,其结构设计对车辆的操控性能、燃油经济性以及乘坐舒适性等方面有着重要影响。
2. 有限元分析有限元分析是一种通过将实际结构离散化为有限个单元,采用数值计算方法对结构进行力学分析的方法。
本文选择ANSYS软件进行有限元分析,模拟铝合金车轮在不同载荷情况下的应力、应变分布。
3. 实验研究为了验证有限元分析的结果,本文进行了一系列的实验研究。
首先,通过采用合适的材料与工艺条件,制备出铝合金车轮样品。
然后,在实验室环境下,模拟真实道路条件进行加载实验,测量并记录车轮在不同载荷情况下的应力、应变数据。
最后,将实验结果与有限元分析的结果进行对比,验证有限元分析的准确性。
4. 结果与讨论基于有限元分析和实验研究的结果,发现在铝合金车轮的结构设计中,提高轮辐与轮毂的连接方式对车轮的强度和刚度具有重要影响。
通过优化连接方式,可以提高车轮的整体强度和刚度,提高其承载能力和抗疲劳性能。
此外,选用合适的铝合金材料以及适当的加工工艺,也能够有效地提高车轮的强度和刚度。
5. 结论本研究通过有限元分析和实验研究的方法,探索了铝合金车轮结构设计的优化方案。
结果表明,在设计铝合金车轮时,合理选择轮辐与轮毂的连接方式、选用适当的铝合金材料以及优化加工工艺等因素都对车轮的强度和刚度具有重要影响。
《铝合金轮毂的有限元分析》篇一一、引言铝合金轮毂以其轻量化、耐腐蚀和良好的造型设计等特点,在现代汽车制造领域得到了广泛应用。
为了确保其设计、制造和使用的可靠性和安全性,有限元分析(FEA)技术被广泛应用于铝合金轮毂的力学性能评估。
本文将通过有限元分析的方法,对铝合金轮毂的力学性能进行深入研究。
二、铝合金轮毂的有限元模型建立1. 模型简化与假设在建立铝合金轮毂的有限元模型时,我们首先对实际结构进行适当的简化,忽略微小细节和次要因素。
同时,我们假设材料具有各向同性的特性,并遵循胡克定律。
2. 材料属性定义铝合金轮毂的材料属性包括弹性模量、泊松比、屈服强度等。
这些参数将直接影响有限元分析的准确性。
因此,在分析前需准确获取这些材料属性。
3. 网格划分网格划分是有限元分析的关键步骤。
我们采用合适的网格尺寸和类型,对铝合金轮毂进行网格划分,确保模型的准确性和计算效率。
三、铝合金轮毂的有限元分析方法1. 边界条件设定在有限元分析中,我们需要设定合理的边界条件,包括约束、载荷等。
这些边界条件将直接影响分析结果的准确性。
2. 静力学分析静力学分析是评估铝合金轮毂在静态载荷下的力学性能的重要手段。
我们通过施加力、压力等载荷,分析轮毂的应力分布、变形等情况。
3. 动力学分析动力学分析则用于评估铝合金轮毂在动态载荷下的力学性能。
我们通过模拟不同工况下的振动、冲击等动态载荷,分析轮毂的动态响应和疲劳寿命。
四、结果与讨论1. 静力学分析结果静力学分析结果显示,铝合金轮毂在承受静态载荷时,应力主要集中在轮辐与轮盘的连接处以及轮辐与轮毂边缘的过渡区域。
通过对比不同设计方案的应力分布情况,我们可以找出最优设计方案,以提高轮毂的承载能力和使用寿命。
2. 动力学分析结果动力学分析表明,铝合金轮毂在受到动态载荷时,会产生一定的振动和变形。
通过分析轮毂的动态响应和疲劳寿命,我们可以评估其在实际使用过程中的可靠性和安全性。
同时,我们还可以通过优化设计,降低轮毂的振动和疲劳损伤,提高其使用寿命。
《铝合金车轮双轴疲劳试验数值模拟研究》篇一一、引言随着汽车工业的快速发展,铝合金车轮因其轻量化、高强度、耐腐蚀等优点,逐渐成为汽车制造领域的主流选择。
然而,铝合金车轮在实际使用过程中,特别是在复杂多变的道路条件下,会受到各种形式的应力与疲劳损伤。
因此,对铝合金车轮的疲劳性能进行深入研究,对于提高车轮的使用寿命和安全性具有重要意义。
本文旨在通过数值模拟的方法,对铝合金车轮双轴疲劳试验进行深入研究,以期为车轮的设计与制造提供理论支持。
二、铝合金车轮材料与结构特性铝合金车轮具有轻量化、高强度、耐腐蚀等优点,其材料特性主要表现在高弹性模量、低密度、良好的延展性和加工性。
此外,铝合金车轮的结构设计也对其性能有着重要影响。
在双轴疲劳试验中,车轮所受的应力分布、传递和扩散均与车轮的结构特性密切相关。
三、双轴疲劳试验原理及方法双轴疲劳试验是一种模拟车轮在实际使用过程中所受应力与变形的试验方法。
在试验中,通过施加双轴向的交变载荷,模拟车轮在道路行驶过程中的各种应力状态。
通过观察和分析试验过程中车轮的应力分布、变形情况以及疲劳损伤程度,可以评估车轮的疲劳性能。
四、数值模拟方法及模型建立数值模拟是研究铝合金车轮双轴疲劳试验的有效手段。
通过建立精确的有限元模型,可以模拟双轴疲劳试验过程中车轮的应力分布、变形情况以及疲劳损伤程度。
在模型建立过程中,需要考虑材料的非线性、弹塑性等特性,以及边界条件、接触关系等因素。
此外,还需要对模型进行验证和优化,以确保模拟结果的准确性。
五、数值模拟结果分析通过对铝合金车轮双轴疲劳试验的数值模拟,可以得到车轮在各种工况下的应力分布、变形情况以及疲劳损伤程度。
通过对模拟结果的分析,可以得出以下结论:1. 铝合金车轮在双轴疲劳试验中,应力主要集中在轮辐与轮盘的连接处以及轮盘的外缘部分。
这些区域的应力集中现象会导致车轮的疲劳损伤加速。
2. 在不同的工况下,铝合金车轮的应力分布和变形情况有所不同。
《铝合金车轮弯曲疲劳实验失效分析及工艺的研究》篇一一、引言随着汽车工业的飞速发展,车轮作为车辆重要的承载与运动部件,其质量和性能直接影响着汽车的安全性、稳定性和使用寿命。
铝合金车轮以其轻质、高强、耐腐蚀等特性,逐渐成为现代汽车车轮的首选材料。
然而,在实际使用过程中,铝合金车轮可能会遭受弯曲疲劳等复杂工况的考验,导致其出现失效现象。
因此,对铝合金车轮的弯曲疲劳实验失效分析以及工艺研究显得尤为重要。
二、铝合金车轮弯曲疲劳实验失效分析1. 实验设计与实施为研究铝合金车轮在弯曲疲劳工况下的失效模式和机理,我们设计了一套系统的弯曲疲劳实验方案。
该方案包括设定合理的实验参数,如加载方式、加载频率、加载幅度等,以模拟车轮在实际使用中可能遭遇的工况。
2. 失效模式分析通过一系列的弯曲疲劳实验,我们发现铝合金车轮的失效模式主要包括轮辐裂纹、轮毂松动、轮缘变形等。
其中,轮辐裂纹是铝合金车轮最常见的失效模式,其产生的原因主要是材料内部缺陷、应力集中等因素。
3. 失效机理研究针对铝合金车轮的失效机理,我们进行了深入的研究。
研究发现,铝合金车轮在弯曲疲劳过程中,由于交变应力的作用,材料内部会产生微裂纹,这些微裂纹随着循环次数的增加而扩展,最终导致车轮失效。
此外,材料的不均匀性、热处理工艺等因素也会影响车轮的疲劳性能。
三、铝合金车轮工艺研究针对铝合金车轮的弯曲疲劳失效问题,我们提出了一系列的工艺改进措施。
1. 材料选择与优化选择高强度、高韧性的铝合金材料,并通过合理的合金成分设计,提高材料的抗疲劳性能。
此外,通过细化晶粒、优化热处理工艺等手段,进一步提高材料的综合性能。
2. 优化车轮结构针对铝合金车轮的失效模式,优化车轮结构,如增加轮辐的厚度、改变轮辐的形状等,以改善应力分布,提高车轮的抗疲劳性能。
3. 改进制造工艺采用先进的制造工艺,如精密铸造、挤压成型等,确保车轮的尺寸精度和表面质量。
同时,通过优化热处理工艺,提高材料的硬度和耐磨性。
浅谈铝合金汽车轮毂结构性性能优化摘要:轮毂是车辆承载最重要的安全部件之一,其内在质量的可靠性不但关系到车辆和车上人员物资的安全,还影响到车辆在行驶过程中的平稳性、操控性和舒适性等。
这就要求轮毂的尺寸精度高、动平衡好、疲劳强度高、有好的刚性和弹性。
其中,对轮毂的疲劳强度有着特别严格要求。
在国际上每个国家根据自身地理环境、天气、路况等条件都制定有一套相应的判定标准。
例如欧美国家采用SAE标准,德国采用TUV标准,日本采用JWL\JWL-T标准等。
而根据轮型适用的车型等特定条件,还有单独的ATV标准等等。
可见轮毂性能是否达标,是判定轮毂质量是否合格的重要依据.1.铝合金汽车轮毂的常规实验项目一个质量合格的轮毂必须通过13度冲击实验、弯曲疲劳实验和径向疲劳实验三大实验。
其中冲击实验必需对筋条(180度)和窗口(0度)分别进行测试。
1.1 13度冲击实验 G=0.6*W+180(KG) G=锤重 W=最大负载(查表可得)13度冲击实验主要针对轮毂轮辐的强度进行测试。
将轮毂沿Z轴倾斜13度摆放,在230mm的高度施加一个锤重垂直落下对轮毂轮缘的接触面进行冲击,冲击过程结束后轮毂轮辐各部位没有出现裂纹即为通过实验。
一、辐条的整体走势遵循由轮缘向中心PCD结构逐渐加厚原则。
二、图中1所示部位结构强调轮辋与轮辐的连接部位,此部位承载轮辋与辐条之间的连接关系,设计时应尽量做厚,做宽从而达到在轮毂受到外力冲击时连接部位不出现失效断裂。
三、图中2所示部位结构为辐条中段。
该部位可起到卸载图1结构受到冲击时的冲击力,因此可将该部位适当设计的薄一点,主动吸引并卸载一部份轮毂承受到的冲击力,来达到保证轮毂整体性能的目的。
四、图中3所示部位结构为辐条的中心部位。
该部位除了要承载车轮的外部冲击,还起到连接车轴与轮子的作用,因此在设计该部位时,一定要适当增加肉厚,务必保证轮子在受到外力冲击时性能不会失效而造成轮子与汽车连接部位脱落。
《铝合金车轮双轴疲劳试验数值模拟研究》篇一一、引言在汽车工业中,铝合金车轮以其轻量化、耐腐蚀性以及高强度等特点得到了广泛的应用。
然而,随着汽车工业的快速发展,对车轮的耐久性和可靠性提出了更高的要求。
双轴疲劳试验是评估车轮在复杂工况下性能的重要手段。
传统的双轴疲劳试验通常依赖于物理试验,不仅成本高昂,而且耗时较长。
因此,通过数值模拟技术对铝合金车轮双轴疲劳试验进行研究,既能够节省成本,又能够快速得到结果,为实际的车轮设计和制造提供有力支持。
二、铝合金车轮的材料与结构特点铝合金车轮通常采用轻质铝合金材料制造,其具有较高的比强度和良好的塑性。
车轮的结构设计也经过了精细的优化,以适应不同的使用需求。
铝合金车轮的这些特点使其在汽车工业中得到了广泛的应用。
三、双轴疲劳试验原理及重要性双轴疲劳试验是一种模拟车轮在实际使用中受到的复杂应力状态的试验方法。
通过双轴疲劳试验,可以评估车轮在多种工况下的耐久性和可靠性。
该试验对于预测车轮的使用寿命、优化设计以及提高产品质量具有重要意义。
四、数值模拟方法及模型建立1. 有限元分析方法:采用有限元分析软件对铝合金车轮进行建模和数值模拟。
通过建立精确的几何模型和材料模型,可以模拟车轮在双轴疲劳试验中的应力分布和变形情况。
2. 模型建立:根据铝合金车轮的实际尺寸和结构特点,建立精确的有限元模型。
在模型中考虑材料的非线性、塑性以及蠕变等特性,以更准确地反映实际工况下的车轮性能。
五、数值模拟结果与分析1. 应力分布:通过数值模拟,可以获得车轮在不同工况下的应力分布情况。
这包括车轮在不同角度下的弯曲、扭转以及剪切等应力状态。
2. 疲劳寿命预测:根据数值模拟结果,可以预测车轮的疲劳寿命。
通过分析不同区域的应力集中情况以及材料的疲劳性能,可以评估车轮在不同工况下的使用寿命。
3. 结果分析:将数值模拟结果与实际双轴疲劳试验结果进行对比,验证数值模拟方法的准确性和可靠性。
通过对模拟结果进行深入分析,可以优化车轮的设计和制造工艺,提高产品的性能和寿命。
探究铝合金汽车轮毂的结构设计及优化措施摘要:随着社会的发展,汽车已经走向了千家万户。
汽车的轮毂类型很多,而铝合金汽车轮毂因具有重量轻、散热快等优点,深受广大车主的青睐。
本文以铝合金轮毂的发展现状为着手点,分析了铝合金轮毂结构设计的技术优点和存在的问题,针对存在的问题提出个性化的优化措施。
关键词:铝合金;汽车轮毂;结构设计;优化措施一部汽车的轮子由轮毂和轮胎两个部分组成,汽车轮子支撑着整部汽车的重量,对汽车的正常行驶起着决定性的作用。
随着铝合金轮毂技术逐渐成熟,铝合金轮毂已经逐渐成为衡量一部汽车好坏的重要标志。
同时,轮毂的寿命对汽车的安全性发挥着至关重要的作用,铝合金轮毂以优良的品质在汽车轮毂领域独占鳌头,对汽车轮毂的发展产生了深远的影响。
一、铝合金汽车轮毂概述铝合金汽车轮毂是1980年以后发展起来的一种新型的轮毂品种,它的一体化功能强,造型美观。
在20世纪90年代以后在轿车行业已经得到了广泛的应用。
如今,铝合金汽车轮毂已经成为了衡量汽车质量的重要标志,在能源紧张和环境问题日益严重的今天,铝合金轮毂还因具有节能环保的优点在汽车行业也被充分利用,铝合金轮毂所用的铝合金是能被回收利用的,可以有效节约能源。
另外,铝合金轮毂还有具有重量轻、强度大和散热快的优点。
调查发现每只铝合金轮毂的重量要比钢轮毂轻2公斤左右,重量轻就意味着汽车在行驶的过程中惯性小,速度快。
铝合金轮胎还具有散热快的优点,汽车即使长时间行驶,车轮的温度也不会太高,有效减少了爆胎率。
铝合金轮毂的强度大,同样重量的轮毂放在一起,铝合金轮毂的耐用度要高很多。
二、铝合金轮毂的结构设计要点一个完整的轮毂由轮辋和轮辐两个部分组成。
在轮毂结构设计的过程中要注意以下几个方面的要点:(1)在轮胎的暗转个过程中一定要注意中心孔、螺栓孔和螺母座等轮胎与轮毂连接部位之间的关系,通常情况下将拧紧的螺栓均匀传递至安装面部位。
螺栓孔一定要做成锥形的,中心孔一定要设计好间隙,防止轮毂锈死。
2010信息工程国际学术会议
铝合金车轮结构优化研究
Zhihua Zhu, Jinhua Hu, 孙红梅
Xiaoming Yuan, Huixue Sun 钱江学院
机械工程学院杭州师范大学
燕山大学中国杭州
中国秦皇岛Email:
Email:
文摘-车轮的优化设计实施摘要.环刚度有限元模型,首先建立车轮13-度冲击强度有限元模型和弯曲有限元分析模型。
综合考虑车轮冲击强度和弯曲疲劳强度对环刚度的影响。
将约束变量法优化程序OPT III基于检测技术应用于优化计算。
结果表明,OPT III 有高的收敛速率及轻量化设计车轮可以实现基于优化设计方法。
关键词-最优化;车轮;有限元
I概述
优化设计是一种设计方法,即:在给定载荷的影响或环境条件,选择设计变量。
建立目标函数,得到在约束范围内性质最优的产品状态,几何尺寸之间的关系或其它状态。
设计变量、约束条件和目标函数构成了优化设计的三个基本要素。
数学模型编程的方法成功用于优化设计始于1960年。
一些基本的程序已被用于优化铝合金车轮。
2003年H.Akbulut 在土耳其研究结构优化的车轮冲击试验条件,他选择关键节点位移作为设计变量,观察设计变量如何随着结构应力变化而变化,应用分析结果来指导设计结构安全的车轮。
在2007年,孙红梅建立了汽车轮基于约束变量指标优化算法的结构优化设计模型,综合考虑了边缘环刚度、弯曲应力和车轮振动模式。
该结构优化设计的铝合金车轮研究将轮毂厚度作为设计变量,车轮轻量化作为目标函数。
2009年,周家福在ANSYS中利用零级优化方法,在弯曲饰演的条件下以车轮为对象,采用复合材料优化轻质结构尺寸设计车轮轮缘厚度,安装法兰厚度和轮廓的车轮,已达到轻量化设计的目的。
经优化设计的复合材料的车轮弯曲疲劳试验,应力、应变和位移变化不大但重量减少了10.436%。
综上所述、由于复杂的铝合金车轮结构,车轮优化设计研究在海内外都比较少,
近年来,车轮结构优化设计研究显着增加。
车轮轻量化设计的优化设计已经成为研究热点。
本文综合考虑了车轮的刚度,冲击强度,和车轮的弯曲应力,建立了车轮边缘刚度的有限元模型,13度冲击强度有限元模型和单独的有限元分析模型。
选择轮辋1
w和轮辐2
w的厚度作为设计变量,上述轮辋刚度KR,最大主应力max
S的最
1
S和轮辐max
V作为目标函数。
在约束变尺度法优化程大应力计算模型作为约束变量,车轮体积
TOT
序OPT III的基础上对检测技术的应用进行了论述。
II基于OPT III的优化设计
A.模型
(1) 环刚度有限元模型计算
环刚度有限元模型计算如图1所示;该模型共有68765个单元和115931个节点
图1. 车轮的刚度分析有限元模型
(2) 13度冲击强度实验的有限元模型
图2 车轮冲击力分析的有限元模型
图3 车轮弯曲疲劳分析的有限元模型
13度冲击强实验有限元模型如图2所示。
该模型是对真实模型的简化。
(3)弯曲疲劳强度分析的有限元模型
弯曲疲劳强度分析的有限元模型如图3所示;该模型有41017个单元,69641个节点。
B. 边界条件和载荷
优化计算这部分综合介绍了三种分析模型,即:刚度计算模型,13°冲击强度计算模型和弯曲疲劳强度计算模型,这三种分析模型有不同的边界条件和加载方式,分别描述如下:
(1)刚度计算模型的边界条件和载荷
在法兰联轴节内圆加载固定约束、向车轮外轮缘加载1000N的载荷
(2)13°冲击强度计算模型的边界条件
内法兰表面固定约束,和冲击力影响区域。
(3)弯曲疲劳强度计算模型的边界条件和载荷
利用车轮的对称性,对称面加对称的约束,车轮外轮缘加固定约束,在轴上加1565N 的径向载荷。
C. 优化过程
首先分析环刚度,建立模型如图1所示:考虑弹性变形的情况,使用1000N 的力,得到外缘受力方向的最大位移,然后乘以5可得到最大位移方向边缘载荷5000N ,代入
(1)式可以得到边缘刚度,使它成为第一约束变量的优化计算。
刚度计算公式如下:1
52δδ-⨯=F L K R (1) 其中,R K —轮辋刚度
L —轮辋宽度
F —负载变化从1000N 到5000N
1δ—边缘载荷1000N 时最大变形位移
5δ—边缘载荷5000N 时最大变形位移
第二步是分析13°冲击强度测试,删除约束和载荷的刚度计算步骤。
然后在轮辐和冲击影响区加固定约束,分析冲击强度下得到车轮最大主应力,设置该值为第二个约束变量的优化。
第三步是弯曲分析,首先将两个以前的模型参数保存,然后删除两个计算模型,之后调用保存的参数建立弯曲模型,如图3所示;通过计算,对轮辐的等效应力在给定的最大弯曲应力范围内,使用这个值为第三约束变量的优化
最后进入优化分析模块,指定设计变量和约束变量,设计变量包括轮辋厚度1w 和轮辐厚度2w ,从上述模型中计算出轮辋刚度R K ,最大主应力max 1S 和轮辐max S 的最大应力计算模型作为约束变量,车轮体积TOT V 作为目标函数,选择二次编程方法子问题运算法则进行优化计算,其它优化计算的实例可以参考文献【6】
约束变量设置如下,R K 大于或等于100KNm,max 1S 小于或等于230MPa ,max S 弯曲应力小于或等于80MPa .
D. 分析结果
优化数学模型
80230
1100
..min max max ≤≤≥S S K t s V R TOT
(2)
优化结果显示在表1,其中R K 单位是KNm,max 1S 和max S 的单位是MPa ,1w 和轮辐2w 的单位是mm ,TOT V 单位是3mm ,SV 表示设计变量,OBJ 表示目标函数。
TABLE I 基于OPT III 的优化过程
SET
1
114.4 186.9 60.7 5.00 25.00 3.75e6 2
98.5 256 75.3 4.87 22.61 3.52e6 3
99.9 226.6 74.7 4.73 23.56 3.58e6 4
100.1 230.2 76.5 4.76 23.41 3.58e6 5
95.95 231.9 78.5 4.76 23.42 3.57e6 *6* 100 229.5 76.5 4.75 23.43 3.57e6
在表I 中,第2组,3组、4组和5组是不可行的解决方案,拿第2组来说,max 1S 是256MPa 并不满足条件小于等于230MPa ,R K 同样如此,98.5MPa 不满足要求的大于等于100MPa ,其余解决方案是可行的,其中第6组是最优方案。
表1表明约束变量优化程序OPT III 需要6个迭代收敛域,ANSYS 子问题最优算法也一样,需要8个迭代结果都是一样。
由于文章篇幅的限制,ANSYS 所得结果的详细信息被省略。
因此III OPT 高度收敛。
第6组最优解收益率是:%55.4%10037484
.035777.037484.0181=⨯-=-=TOT TOT TOT V V V δ 因此基于优化设计可实现轻量化设计车轮,
III .结论
本文中环刚度有限元模型,首先建立了车轮13-degree 冲击强度有限元模型和弯曲分析的有限元模型。
对环刚度的影响,综合考虑冲击强度和弯曲疲劳强度对车轮的影响,然后进入优化分析模块,建立优化分析模型。
基于检测技术的约束变量法程序
III OPT 在优化设计中有做介绍。
结果表明,III OPT 有很高的收敛速度和基于优化设计可以实现轻量化设计车轮。
参考文献
【1】工程结构优化设计基础 程耿东 北京 水利水电出版社 1984,1~123.
【2】基于有限元分析的汽车轮结构优化设计 崔胜民 杨占春 机械工业出版 2001 (9): 41~43
【3】铝合金车轮轻度分析和优化设计 Tieli Qi, Lihui Chun, Haipeng Li, Zhige Zhou. 河北科技大学 2002,31(5):95~98
【4】铝合金汽车车轮的优化设计 cad/cam Haipeng Li, Lihui Wang.2003(8):37~35
【5】基于FEA 的车轮结构形状优化设计 阎胜昝 童水光 钟翠霞 朱训明 王树山 期刊:机械设计 2009, 26 (1): 53~55
【6】基于ANSYS 的低压铸造铝合金轮毂的优化设计 曲文君 期刊:制造业自动化 2009,31 (9): 199~200
【7】轮缘优化的有限元法 Akbulut H.期刊:有限元分析设计 2003, 39:433~443
【8】轿车铝合金车轮模态计算和优化设计 孙红梅 燕山大学图书馆 2007
【9】复合材料车轮结构轻量化研究 周家付 期刊:现代机械 2009(4):64~66
【10】一种基于收紧式监控技术的工艺优化算法 聂绍珉 胡金华
期刊:塑料工程学报 2005, 12(4):1~4。