(课件)4.5利用三角形全等测距离
- 格式:ppt
- 大小:3.22 MB
- 文档页数:19
4.5利用三角形全等测距离【例1】在一次战役中,我军阵地与敌军碉堡隔河相望.为了炸掉这个碉堡,需要知道碉堡与我军阵地的距离.在不能过河测量又没有任何测量工具的情况下,如何估测这个距离呢?一位战士想出来这样一个办法:他面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部.然后,他转过一个角度,保持刚才的姿态,这时视线落在了自己所在岸的某一点上.接着,他用步测的办法量出自己与那个点的距离,这个距离就是他与碉堡间的距离.分析:由战士所讲述的方法可知:战士的身高AD不变,战士与地面是垂直的(AD⊥BC);视角∠DAC=∠DAB.战士要测的是敌碉堡(B)与我军阵地(D)的距离,战士的结论是只要按要求测得DC的长度即可.(即BD=DC)探索新知合作探究【例2】如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B 间的距离,但绳子不够长.他叔叔帮他出了一个这样的主意:先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=AC;连接BC并延长到E,使CE=CB;连接DE并测量出它的长度.(1)DE=AB吗?请说明理由;(2)如果DE的长度是8 m,则AB的长度是多少?教师指导1.易错点在构建全等三角形的时候,需要考虑的就是三角形全等的条件,然后再结合实际条件进行考虑.2.归纳小结能利用三角形的全等解决实际问题,能在解决问题的过程中进行有条理的思考和表达.3.方法规律根据三角形全等测距离,主要是根据三角形全等的性质,对应边相等进行求解.只需要去构建全等的三角形就能够解决问题.当堂训练1.如图所示,要测量河岸相对的两点A,B之间的距离,先从B处出发与AB成90°角方向,向前走50米到C处立一根标杆,然后方向不变继续朝前走50米到D处,在D处转90°沿DE方向再走17米,到达E处,使A,C与E在同一直线上,那么测得A,B的距离为.2.如图,两根长12 m的绳子,一端系在旗杆上的同一位置,另一端分别固定在地面上的两个木桩上(绳结处的误差忽略不计),现在只有一把卷尺,如何来检验旗杆是否垂直于地面?请说明理由.。
4.4&4.5用尺规作三角形、用三角形全等测距离尺规作图的定义利用直尺(没有刻度)和圆规完成基本作图,称之为尺规作图.常见基本作图常见并经常使用的基本作图有:1.作一条线段等于已知线段;2.作一个角等于已知角;3.作角的平分线;4.作线段的垂直平分线;5.作三角形.注意:尺规作图时使用的直尺是不能用来进行测量长度的操作,它一般用来将两个点连在一起.圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度或一个任意的长度.题型1:基础尺规作图1.作图:已知线段a、b,画一条线段使它等于2a﹣b.(要求:用尺规作图,并写出已知、求作、结论,保留作图痕迹,不写作法)已知:求作:结论:【变式1-1】如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧【变式1-2】作图题(尺规作图,不写作法,但保留作图痕迹)如图,已知,∠α、∠β.求作∠AOB,使∠AOB=∠α+2∠β.已知两边及其夹角作三角形已知三角形的两边及其夹角,求作这个三角形是利用三角形全等的条件"边角边"来作图的,具体作图的方法、步骤如下∶题型2:已知两边及夹角做三角形2.已知∠α和线段a和b,作一个三角形,使其中一个角等于∠α,且这个角的两边长分别为a和b.(要求:用尺规作图,并写出已知、求作、保留作图痕迹)已知:求作:【变式2-1】如图,已知线段a和b,a>b,求作直角三角形ABC,使直角三角形的斜边AB=a,直角边AC=b.(用尺规作图,保留作图痕迹,不要求写作法)已知两角及其夹边作三角形已知三角形的两角及其夹边,求作这个三角形是利用三角形全等的条件“角边角”来作图的,具体作图的方法、步骤如下∶题型3:已知两角及夹边做三角形3.已知:线段a,∠α,∠β.求作:△ABC,使BC=a,∠B=∠α,∠C=∠β.【变式3-1】已知∠α及线段b,作一个三角形,使得它的两内角分别为α和,且两角的夹边为b.(要求:用尺规作图,并写出已知、求作和结论,保留作图痕迹,不写作法)已知:求作:结论:题型4:已知三边做三角形4.已知线段a、b、c,如图,求作△ABC,使AB=c,BC=a,AC=b.(不写作法,保留作图痕迹)【变式4-1】如图所示,已知线段a、b、h(h<b).求作△ABC,使BC=a,AB=b,BC边上的高AD=h.(要求:写出作法,并保留作图痕迹)题型5:利用尺规作图做全等三角形5.已知△ABC,求作一个三角形,使其与已知△ABC全等,并写出作图全等的依据.(用尺规画图,保留必要的画图痕迹)【变式5-1】已知△ABC,(1)请用直尺和圆规作一个三角形,使所画三角形与△ABC全等;(2)请简要说明你所作的三角形与△ABC全等依据.利用三角形全等测两点之间的距离原理由于两个全等三角形的对应边相等,因此,利用三角形全等可以测量难以直接测量或不能直接测量的两点之间的距离,其关键是构造两个全等三角形,根据是全等三角形的对应边相等.方法(1)构造两边及其夹角分别相等的两个全等三角形;(2)构造两角及其夹边分别相等的两个全等三角形;(3)构造三边分别相等的两个全等三角形.注意:利用三角形全等测两地之间的距离,关键是构建全等三角形、利用全等三角形的对应边相等间接计算两地之间的距离题型6:利用三角形全等测两点之间的距离6.如图,为了测量出池塘两端A、B之间的距离,小明先在地面上取一点C,分别连接AC,BC并延长至E,D,使CE=AC,CD=BC.这时,他测量出DE的长度是82米,就知道了A,B两点之间的距离.点A,B之间的距离是多少?请说明其中的道理.【变式6-1】要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角【变式6-2】我国的纸伞工艺十分巧妙,如图,伞不论张开还是缩拢,△AED与△AFD始终保持全等,因此伞柄AP始终平分同一平面内两条伞骨所成的角∠BAC,从而保证伞圈D能沿着伞柄滑动.你知道△AED≌△AFD的理由吗?()A.边角边B.角边角C.边边边D.角角边【变式6-3】如图所示,公园里有一条“Z”字形道路ABCD,其中AB∥CD,在AB、BC、CD三段路旁各有一只小石凳E、M、F,M恰好为BC的中点,且E、F、M在同一直线上,在BE道路上停放着一排小汽车,从而无法直接测量B、E之间的距离,你能想出解决的方法吗?请说明其中的道理.题型7:利用建立三角形全等的模型解实际问题7.为了测量一幢高楼高AB,在旗杆CD与楼之间选定一点P.测得旗杆顶C视线PC与地面夹角∠DPC=38°,测楼顶A视线PA与地面夹角∠APB=52°,量得P到楼底距离PB与旗杆高度相等,等于8米,量得旗杆与楼之间距离为DB=33米,计算楼高AB是多少米?【变式7-1】小明不慎将一块三角形的玻璃摔碎成如右图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第4块B. 第3块C.第2块D.第1块【变式7-2】如图为紫舞公园中的揽月湖,现在测量揽月湖两旁A、B两棵大树间的距离(不得直接量得).请你根据三角形全等的知识,用几根足够长的绳子及标杆为工具,设计一种测量方案.要求:(1)画出设计的测量示意图;(2)写出测量方案的理由.【变式7-3】如图,小明和小华住在同一个小区不同单元楼,他们想要测量小明家所在单元楼AB的高度,首先他们在两栋单元楼之间选定一点E,然后小华在自己家阳台C处测得E处的俯角为∠1,小明站在E 处测得眼睛F到AB楼端点A的仰角为∠2,发现∠1与∠2互余,已知EF=1米,BE=CD=20米,BD=58米,试求单元楼AB的高.。