角的比较和运算1
- 格式:ppt
- 大小:1.16 MB
- 文档页数:9
4.3.2角的比较与运算1.会比较角的大小,理解两个角的和、差、倍、分的意义;(重点)2.掌握角平分线的概念,能够利用角平分线的定义解决相关计算问题,会用量角器画角的平分线;(难点)3.经历比较角的大小、用量角器画角平分线、用折纸法确定角平分线的过程,积累活动经验,培养动手操作能力.(重点)一、情境导入有一天聪聪和明明各带了一把折扇(状态如下).下面是他们的一段对话:聪聪:“我的折扇张开大一些,所以我的折扇的角也大一些”.明明:“我的折扇长一些,所以我的折扇的角也大一些”.同学们有办法帮他们进行判断吗?二、合作探究探究点一:角的比较如图,射线OC,OD分别在∠AOB的内部,外部,下列各式错误的是( )A.∠AOB<∠AOD B.∠BOC<∠AOBC.∠COD<∠AOD D.∠AOB<∠AOC解析:A.∠AOB与∠AOD的边OA重合,OB在∠AOD内,所以∠AOB<∠AOD,A正确;同理B、C正确;D.∠AOB和∠AOC的边AO重合,OC在∠AOB内,所以∠AOB>∠AOC.D错误,故选D.方法总结:此题主要考查了角的比较大小,解题的关键是掌握角比较大小的方法.探究点二:角度的有关计算【类型一】利用角平分线进行角度的计算如图,∠AOB=120°,OD平分∠BOC,OE平分∠AOC.(1)求∠EOD的度数;(2)若∠BOC=90°,求∠AOE的度数.解析:(1)根据OD 平分∠BOC ,OE 平分∠AOC 可知∠DOE =∠DOC +∠EOC =12(∠BOC +∠AOC )=12∠AOB ,由此即可得出结论; (2)先根据∠BOC =90°求出∠AOC 的度数,再根据角平分线的定义即可得出结论. 解:(1)∵∠AOB =120°,OD 平分∠BOC ,OE 平分∠AOC ,∴∠EOD =∠DOC +∠EOC =12(∠BOC +∠AOC )=12∠AOB =12×120°=60°; (2)∵∠AOB =120°,∠BOC =90°,∴∠AOC =120°-90°=30°,∵OE 平分∠AOC ,∴∠AOE =12∠AOC =12×30°=15°. 方法总结:能够根据图形正确找到角之间的和差关系,理解角平分线的概念是解题的关键.【类型二】 利用三角板叠合进行角度的计算如图,将一副三角板折叠放在一起,使直角的顶点重合于点O ,则∠AOC +∠DOB =( )A .120°B .180°C .150°D .135°解析:由图可得∠AOC +∠DOB =∠AOB +∠COD =90°+90°=180°.故选B.方法总结:此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.【类型三】 折叠问题中角的计算如图,将矩形ABCD 沿EF 折叠,C 点落在C ′,D 点落在D ′处.若∠EFC =119°,则∠BFC ′为( )A .58°B .45°C .60°D .42°解析:∵将矩形ABCD 沿EF 折叠,C 点落在C ′,D 点落在D ′处,∠EFC =119°,∴∠EFC ′=∠EFC =119°,∠EFB =180°-∠EFC =61°,∴∠BFC ′=∠EFC ′-∠EFB =119°-61°=58°,故选A.方法总结:掌握折叠的性质,要善于发现题中的隐含条件:折叠前后两图形是完全重合的,其角不变.探究点三:角度的换算计算:(1)153°29′42″+26°40′32″;(2)110°36′-90°37′28″;(3)62°24′17″×4;(4)102°43′21″÷3.解析:(1)相同单位相加,超过60向上一位进1即可;(2)先借1°化为分和秒,然后同一单位分别相减即可得解;(3)每一个单位分别乘以4,分、秒超出60的部分向上一个单位进1即可;(4)从度开始计算,余数乘以60继续除以3进行计算即可得解.解:(1)153°29′42″+26°40′32″=179°69′74″=180°10′14″;(2)110°36′-90°37′28″=109°95′60″-90°37′28″=19°58′32″;(3)62°24′17″×4=248°96′68″=249°37′8″;(4)102°43′21″÷3=102°42′81″÷3=34°14′27″.方法总结:角度的运算规律为:(1)加减法时将同一单位进行加减,加法够60进1,减法不够减要借1当60;(2)乘法时将数与度、分、秒分别相乘,然后从小到大逢60进1;(3)除法时用度先除,把余数化为分,再加上原来的分,用这个数除以除数,把余数化成秒,再加上原来的秒,再用这个数除以除数,如果除不尽,就按题意要求,进行四舍五入.三、板书设计1.角的比较方法(1)度量法;(2)叠合法.2.角的计算(1)角平分线;(2)角的折叠.3.角度的换算本节课的教学内容是角的大小的比较、角的和差关系,角的平分线.可利用类比线段的学习方法引出角的大小的比较的两种方法:度量法、叠合法.对于本节教学要把握以下几点:1.首先在讲授知识的过程中,必须对旧的知识进行适当的复习,使学生能对角的知识有一个更深的记忆.2.在角的形象比较中,要努力引导学生的思维方向.3.重叠法是一个难点,但此法比较适用于实际中的比较.对于角度的计算要设计各个类型的教学.3.2 解一元一次方程(一)——合并同类项与移项第1课时用合并同类项的方法解一元一次方程教学目标:1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.2.学会合并同类项,会解“ax+bx=c”类型的一元一次方程.3.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程.教学重点:建立方程解决实际问题,会解“ax+bx=c”类型的一元一次方程.教学难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程.教学过程:一、设置情境,提出问题(出示背景资料)约公元820年,中亚细亚的数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.出示课本P86问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台计算机?二、探索分析,解决问题引导学生回忆:实际问题一元一次方程设问1:如何列方程?分哪些步骤?师生讨论分析:(1)设未知数:前年这个学校购买计算机x台;(2)找相等关系:前年购买量+去年购买量+今年购买量=140台.(3)列方程:x+2x+4x=140.设问2:怎样解这个方程?如何将这个方程转化为“x=a”的形式?学生观察、思考:根据分配律,可以把含x的项合并,即x+2x+4x=(1+2+4)x=7x老师板演解方程过程:略.为帮助有困难的学生理解,可以在上述过程中标上箭头和框图.设问3:在以上解方程的过程中“合并”起了什么作用?每一步的根据是什么?学生讨论回答,师生共同整理:“合并”是一种恒等变形,它使方程变得简单,更接近“x=a”的形式.三、拓广探索,比较分析学生思考回答:若设去年购买计算机x台,得方程+x+2x=140.若设今年购买计算机x台,得方程++x=140.课本P87例2.问题:①每相邻两个数之间有什么关系?②用x表示其中任意一个数,那么与x相邻的两个数怎样表示?③根据题意列方程解答.四、综合应用,巩固提高1.课本P88练习第1,2题.2.一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?(学生思考、讨论出多种解法,师生共同讲评.)3.有一列数按一定规律排成-1,2,-4,8,-16,32,……,其中某三个相邻数的和是-960.求这三个数.五、课时小结1.你今天学习的解方程有哪些步骤,每一步的依据是什么?2.今天讨论的问题中的相等关系有何共同特点?学生思考后回答、整理:解方程的步骤及依据分别是:合并和系数化为1;总量=各部分量的和.。
凤州初级中学高效课堂教改实验集体备课电子教案(第十五周)七年级数学备课组 主备人 范超科 成员 王东田 陈斌 范超科 王伟琼 崔刚 李琴课题 4.3.2角的比较与运算(1)【学习目标】:1、会比较两个角的大小,能分析图中角的和差关系;2、理解角平分线的概念,会画角平分线。
【教学重点】:角的大小比较和角平分线的概念; 【重点难点】从图形中观察角的和差关系是难点。
【课前导读】1、回顾线段大小的比较,,怎样比较图中线段AB 、BC 、CA 的长短?2、写出用量角器度量一个角的大小的方法,并量出下面的角的大小。
【探究新知】 1、比较角的大小角的大小比较与线段的长短比较向类似,也有两种方法: (1)度量法:用量角器量出角的度数,然后比较它们的大小。
(2)叠合法:把两个角叠合在一起比较大小。
教师演示:B ABACABB ′AOBB ′AOB (B ′)(1)(2)(3)(1)∠AOB <∠AOB ′;(2)∠AOB=∠AOB ′;(3)∠AOB >∠AOB ′。
2、认识角的和差思考:如图,图中共有几个角?它们之间有什么关系?图中共有3个角:∠AOB 、∠AOC 、∠BOC 。
它们的关系是:∠AOC=∠AOB+∠BOC ; ∠BOC=∠AOC -∠AOB ; ∠AOB=∠AOC -∠BOC 3、用三角板拼角一副三角板的各个角分别是多少度?___________________________________ 学生尝试画出这些角。
探究:借助三角尺画出15o ,75o 的角。
你还能画出哪些角?有什么规律吗?还能画出___________________________________ 规律是:凡是 15o 的倍数的角都能画出。
4、角平分线动手做一做:在一张纸上画出一个角并剪下,将这个角对折,使其两边重合.想想看,折痕与角两边所成的两个角的大小有什么关系? 如图(1)角的平分线:从一个角的顶点出发,把这个角分成_相等_的两个角的射线,叫做这个角的平分线。
C B A 4.3.2 角的比较与运算(1)中江县继光实验学校:梁斌教学内容角的比较与和差及角平分线.教学目标1.知识与技能(1)在现实情境中,运用类比的方法,学会比较两个角的大小,会分析图中角的和差关系.(2)通过动手操作,学会借助三角板拼出不同度数的角,•认识角的平分线及角的等分线。
2.过程与方法进一步培养和提高学生的识图能力和动手操作的能力,认识类比的数学思想方法.3.情感态度与价值观能在动手操作、拼图的数学活动过程中发挥积极作用,体验数学活动的成功经验,激发学生的学习热情.重、难点与关键1.重点:比较角的大小,认识角的大小关系,分析角的和差关系,•认识角平分线及画角平分线是本节课的重点.2.难点:认识复杂图形中角的和差关系,比较两个角的大小是难点.3.关键:从动手操作过程中,认识角的大小关系,•认识角的和差关系及认识角平分线,也是学好本节课知识的关键.教具准备量角器、三角板、多媒体设备. 教学过程一、引入新课教师活动:在黑板上画出一个三角形.(如右图所示) 1.提出问题:比较图中线段AB 、BC 、CD 的长短.学生活动:回顾线段长短的比较方法.小组交流,得出适当的比较线段长短的方法. 教师活动:归纳学生的讨论结果,并演示用圆规比较AB 、BC 、CD 三条线段长短的过程,并写出结论:AB>AC>BC .2.提出问题:怎样比较图中∠A 、∠B 、∠C 的大小?学生活动:小组交流比较方法,得出结论:可用量角器先量出角的度数,然后比较它们的大小.教师活动:(1)肯定评价学生提出的方法,并动手测量度数,•比较它们的大小,板书结论:∠C>∠B>∠A .(2)启发引导学生,类比线段长短的比较方法,•也可以把它们叠合在一起比较大小.二、新授1.提出问题:如何用叠合的方法比较角的大小?学生活动:进行小组交流讨论,动手操作:每个学生都在透明纸上画一个角,然后剪下这个角,并与小组中其它同学所画的角进行比较后归纳出比较方法和比较结果,然后观看多媒体演示角的比较过程.教师活动:巡视并指导学生进行角的比较活动过程,打开多媒体演示角的比较过程:把一个角移到另一个角上,顶点与一条边重合;两个角的另一边都在重合边的同侧.(两“重”一“同”)观察这两边的位置关系,就能得出两个角的大小关系.注:讲解过程应强调操作过程,让学生掌握角的比较的操作过程.2.认识角的和差.观察找出图中有哪些角,各角之间的和差关系.(如下图)∠AOC=∠AOB+∠BOC,∠AOB=∠AOC-∠BOC.提出问题:∠AOC-∠AOB=________.完成《校本》P137 思考3.动手操作:用三角板拼出特殊角.学生活动:每个学生都用三角板进行尝试拼出15°、75°的角,并讲出其中的理由.提出问题:利用一副三角板还能拼出多少度的角?学生活动:小组交流后说出这些角的度数,各小组之间互相补充.教师活动:评价学生的结论,对学生的答案进行归纳补充.4.认识角的平分线.教师活动:在透明纸上画一个角,沿着顶点对折,使角的两边重合.学生活动:观察老师演示过程,并思考下面问题.(如下图)提出问题:∠AOC被折痕OB分成的两个角有什么关系?在图中,射线OB把∠AOC分成相等的两个角,即∠AOB=∠BOC,∠AOC与∠AOC•和∠BOC有什么关系?这个关系怎样用式子来表示?射线OB叫做什么?教师活动:讲解角平分线定义,几何语言表达.三、课堂小结1.角的大小比较方法和角的大小关系有哪些?2.角平分线的定义是什么?四、作业布置1.课本习题4.3:4、6. 2.选用《校本》作业.。