Aspen V9-塔内件设计Column internals,塔设计与校核
- 格式:pdf
- 大小:802.43 KB
- 文档页数:28
SO2吸收塔的设计计算矿石焙烧炉送出的气体冷却到25°C后送入填料塔中,用20°C淸水洗涤以除去英中的SO2o 入塔的炉气流量为2400/n3/A ,英中SO2摩尔分率为0.05,要求SO?的吸收率为95%。
吸收塔为常压操作。
试设计该填料吸收塔。
解(1)设计方案的确定用水吸收SO2属于中等溶解度的吸收过程,为提高传质效率,选用逆流吸收过程。
因用水作为吸收剂,且SO2不作为产品,故采用纯溶剂。
(2)填料的选择对于水吸收SO2的过程,操作过程及操作压力较低,工业上通常选用塑料散装填料。
在塑料散装填料中,塑料阶梯环填料的综合性能较好,故此选用聚丙烯阶梯环填料。
(3)工艺参数的计算步骤I:全局性参数设置。
计算类型为4Tlowsheef\选择il•量单位制,设置输岀格式。
单击“Next",进入组分输入窗口,假设炉气由空气(AIR〉和SO2组成。
在“Component ID”中依次输入H2O, AIR, SO20步骤2:选择物性方法。
选择NRTL方程。
步骤3:画流程图。
选用“RadFmc“严格计算模块里而的“ABSBR1"模型,连接好物料线。
结果如图3-1所示。
图3・1水吸收SO?流程图步骤4:设置流股信息。
按题目要求输入进料物料信息。
初始用水虽设泄为400kmol/h。
步骤5:吸收塔参数的输入。
在“BlocksQl|Setup“栏目,输入吸收塔参数。
吸收塔初始模块参数如表3-1所示。
其中塔底气相GASIN由第14块板上方进料,相当于第10块板下方。
表3・1吸收塔初始参数至此,在不考虑分离要求的情况下,本流程模拟信息初步设泄完毕,运行计算,结果如图3-2所示。
此时SO2吸收率为30&49/319.60 = 96.52%。
图3・2初步计算结果步骤6:分离要求的设左,塔板数固泄时,吸收剂用量的求解。
运用"Design Specifications"功能进行计算,在"Blocks|Bl〔Design Spec"下,建立分离要求T'。
Aspen Plus入门及DSTWU捷算介绍摘要: Aspen Plus是用来计算平衡态体系数据的软件,通过Aspen Plus的计算模拟,可以得出模拟系统中所有物流的PFD参数,比如物流的温度,压力,密度,流量等参数,通过这些参数,我们可以推断出操作工况是否合适,操作条件是否合理,成功地找出运行状况下生产装置的瓶颈之处,从而在保证产品质量的前提下,提高产品产量和降低能耗。
本文简要介绍Aspen Plus流程模拟软件的入门操作及注意事项,通过简捷法精馏计算DSTWU 举例说明。
关键词:Aspen Plus,DSTWU,精馏计算,流程模拟一、Aspen Plus入门关于什么是Aspen ,百度百科里面对aspen的解释是:Aspen Plus是一个生产装置设计、稳态模拟和优化的大型通用流程模拟系统。
Aspen Plus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会战,开发新型第三代流程模拟软件。
该项目称为“过程工程的先进系统”(Advanced System for Process Engineering,简称ASPEN),并于1981年底完成。
1982年为了将其商品化,成立了Aspen Tech公司,并称之为Aspen Plus。
该软件经过20多年来不断地改进、扩充和提高,已先后推出了十多个版本,成为举世公认的标准大型流程模拟软件,应用案例数以百万计。
全球各大化工、石化、炼油等过程工业制造企业及著名的工程公司都是Aspen Plus的用户。
软件的入门是一件很痛苦的事情,枯燥的英文界面,复杂的软件结构,安装的时候看到软件安装包是1.3G的时候,就感觉到一点痛苦了,首先对于软件的安装,第一次在家里安装的时候,自以为是地不看安装crack手册,一路next 至最后,然后发现安装到半路就无法安装了,卸载重新安装怎么也安装不上了。
于是重装windows系统继续安装,直至最后的安装成功。
TYPES OF DISTILLATION COLUMNS精馏塔种类There are many types of distillation columns, each designed to perform specific types of separations, and each design differs in terms of complexity.精馏塔有很多种,每种塔均设计用于进行特定种类的分离,每种设计的复杂程度均存在差异。
Batch and Continuous Columns间歇和连续精馏塔One way of classifying distillation column type is to look at how they are operated. Thus we have:精馏塔分类的方法之一是看精馏塔的操作方式。
据此可分为:batch and间歇精馏塔,和continuous columns.连续精馏塔。
Batch Columns间歇精馏塔In batch operation, the feed to the column is introduced batch-wise. That is, the column is charged with a 'batch' and then the distillation process is carried out. When the desired task is achieved, a next batch of feed is introduced.在间歇操作中,精馏塔进料是间歇进行的,即,先向塔内填充一批料,然后开始精馏过程。
当目标任务完成后,再进下一批物料。
Continuous Columns连续精馏塔In contrast, continuous columns process a continuous feed stream. No interruptions occur unless there is a problem with the column or surrounding process units. They are capable of handling high throughputs and are the most common of the two types. We shall concentrate only on this class of columns.相反,连续精馏塔处理连续进料。
1引言1.1ASPENPLUS概述AspenPlus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会战,开发新型第三代流程模拟软件。
该项目称为“过程工程的先进系统”(Advanc ed System for Proces s Engine ering,简称ASPE N),并于1981年底完成。
1982年为了将其商品化,成立了Asp enTec h公司,并称之为As pen Plus。
该软件经过20多年来不断地改进、扩充和提高,已先后推出了十多个版本,成为举世公认的标准大型流程模拟软件,应用案例数以百万计。
全球各大化工、石化、炼油等过程工业制造企业及著名的工程公司都是Aspen Plus 的用户。
1.2精馏塔概述精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。
有板式塔与填料塔两种主要类型。
根据操作方式又可分为连续精馏塔与间歇精馏塔。
蒸气由塔底进入。
蒸发出的气相与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向气相中转移,气相中的难挥发(高沸点)组分不断地向下降液中转移,气相愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,从而达到组分分离的目的。
由塔顶上升的气相进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。
塔底流出的液体,其中的一部分送入再沸器,加热蒸发成气相返回塔中,另一部分液体作为釜残液取出。
1.2.1 精馏塔的分类气-液传质设备主要分为板式塔和填料塔两大类。
精馏操作既可采用板式塔,也可采用填料塔,填料塔的设计将在其他分册中作详细介绍,故本书将只介绍板式塔。
板式塔为逐级接触型气-液传质设备,其种类繁多,根据塔板上气-液接触元件的不同,可分为泡罩塔、浮阀塔、筛板塔、穿流多孔板塔、舌形塔、浮动舌形塔和浮动喷射塔等多种。
Aspen plus精馏模拟实例教程1. Aspen Plus 简介进入Aspen Plus后,出现图1所示的Aspen Plus软件操作界面.图1操作界面构成·标题条:在该栏目中显示运行标识. 在你给出运行名字之前,Simulation1是缺省的标识. ·拉式菜单:Aspen Plus的功能菜单. 这些下拉式菜单与Windows的标准菜单类似.·工艺流程窗口:在该窗口中可以建立及连接所要模拟的工艺流程.·模式选择按钮:按下此按钮你可以关闭插入对象的插入模式,并返回到选择模式.·模型库:在这里列出建立模型可用的任何单元操作的模型..·状态域:显示当前有关运行的状态信息.·快速访问按钮:快速执行Aspen Plus相应的命令。
这些快捷按钮与其它Windows程序的快速访问按钮类似.·Next按钮(N->):设计过程的任意时刻点击它,系统都会自动跳转到当前应当进行的工作位置,这为我们输入数据提供了极大的方便.2 Aspen Plus模拟精馏简介(1)塔模型分类做塔新流程模拟分析必须先进行简捷塔计算--- 塔的初步设计. 计算结果为理论板数、进料位置、最小回流比、塔顶/釜热负荷. 然后进行塔精确模拟分析,简捷塔计算结果做为精确计算的输入依据. 本文以甲醇-水混合物系分离为例,首先介绍初步设计方法,然后介绍复杂塔模拟计算。
为初学者提供帮助。
Aspen Plus塔模型分类如下表.模型简捷蒸馏 DSTWU、 Distl 、SCFrac严格蒸馏 RadFrac、 MultiFrac、 PetroFrac、 RateFrac(2)精馏塔的模拟类型精馏塔的模拟类型可以分为设计式和操作式模拟计算. 可以通过定义模型的回流比进行设计型计算,又可以定义塔板数进行操作型计算. 本章我们进行设计计算,在下一章中进行操作型计算.(3)设计实例常压操作连续筛板精馏塔设计,设计参数如下[1]:进料组份:水63.2%、甲醇38.6%(质量分率);处理量:水甲醇混合液55t/h;进料热状态:饱和液相进料;进料压力:125 kPa;操作压力:110 kPa;单板压降:≤0.7 kPa;塔顶馏出液:甲醇量大于99.5 %(质量分率)塔底釜液:水量大于99.5 %;(质量分率).回流比:自选;全塔效率:E T=52%热源:低压饱和水蒸汽;我们通过这个实例学习Aspen Plus精馏模拟应用.3. 精馏塔的简捷计算·设计任务确定理论塔板数 确定合适的回流比·DSTWU 精馏模型简介本例选择DSTWU 简捷精馏计算模型.DSTWU 可对一个带有分凝器或全凝器一股进料和两种产品的蒸馏塔进行简捷精馏 计算. DSTWU 假设恒定的摩尔溢流量和恒定的相对挥发度·DSTWU 规定与估算内容规 定目 的其它结果轻重关键组分的回收率 最小回流比和最小理论级数 理论级数 必需回流比回流比必需理论级数进料位置、冷凝器、再沸器的热负荷·DSTWU 计算结果浏览汇总结果、物料和能量平衡结果、回流比对级数曲线.3.1 定义模拟流程本节任务:·创建精馏塔模型 ·绘制物流·模块和物流命名1)创建精馏塔模块在模型库中选择塔设备column 标签,如图3.1-1.图3.1-1点击该DSTWU 模型的下拉箭头,弹出三个等效的模块,任选其一如图3.1-2所示.图3.1-2在空白流程图上单击,即可绘出一个精馏塔模型如图3.1-3所示.图3.1-32)绘制物流单击流股单元下拉箭头,选择流股类型,在这里我们选择 material 类型. 选择后得到图3.1-4所示.图3.1-4在箭头提示下我们可以根据需要来绘制流股,其中红色箭头表示必须定义的流股,蓝色箭头表示可选定义的流股,不同的模型根据设计任务绘制. 本例一股进料、塔顶和塔底两股出料,如图3.1-5.图3.1-53)模块和物流命名选择中流股/模块(单击流股/模块),点击鼠标右键,在弹出的菜单中选择 rename stream 或 rename block,在对话框中输入改后的名称,即可改变名称.在这里我们将入料改为FEED;塔顶出料改为D;塔底出料改为L;改变名称后的流程图如图3.1-6所示.图3.1-6至此,本节创建模拟流程任务完成,我们将在N-> 快捷键引导下进入下一步操作.3.2 模拟设置单击N-> 快捷键,进入初始化设置页面,如图3.2-1. 用户可以对Aspen Plus做全局设置、定义数据输入输出单位等.·定义数据输入输出单位Aspen plus提供了英制、公斤米秒制、国际单位制三种单位制. 输入数据可以在输入时改变单位,输出报告则按在此选择的单位制输出.系统自身有一套默认的设置。
1引言1.1ASPEN PLUS概述Aspen Plus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会战,开发新型第三代流程模拟软件。
该项目称为“过程工程的先进系统”(Advanced System for Process Engineering,简称ASPEN),并于1981年底完成。
1982年为了将其商品化,成立了AspenTech公司,并称之为Aspen Plus。
该软件经过20多年来不断地改进、扩充和提高,已先后推出了十多个版本,成为举世公认的标准大型流程模拟软件,应用案例数以百万计。
全球各大化工、石化、炼油等过程工业制造企业及著名的工程公司都是Aspen Plus 的用户。
1.2精馏塔概述精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。
有板式塔与填料塔两种主要类型。
根据操作方式又可分为连续精馏塔与间歇精馏塔。
蒸气由塔底进入。
蒸发出的气相与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向气相中转移,气相中的难挥发(高沸点)组分不断地向下降液中转移,气相愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,从而达到组分分离的目的。
由塔顶上升的气相进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。
塔底流出的液体,其中的一部分送入再沸器,加热蒸发成气相返回塔中,另一部分液体作为釜残液取出。
1.2.1 精馏塔的分类气-液传质设备主要分为板式塔和填料塔两大类。
精馏操作既可采用板式塔,也可采用填料塔,填料塔的设计将在其他分册中作详细介绍,故本书将只介绍板式塔。
板式塔为逐级接触型气-液传质设备,其种类繁多,根据塔板上气-液接触元件的不同,可分为泡罩塔、浮阀塔、筛板塔、穿流多孔板塔、舌形塔、浮动舌形塔和浮动喷射塔等多种。
板式塔在工业上最早使用的是泡罩塔(1813年)、筛板塔(1832年),其后,特别是在本世纪五十年代以后,随着石油、化学工业生产的迅速发展,相继出现了大批新型塔板,如S型板、浮阀塔板、多降液管筛板、舌形塔板、穿流式波纹塔板、浮动喷射塔板及角钢塔板等。
Aspen-Plus应用塔设备设计课件 (一)Aspen-Plus应用塔设备设计课件是针对化工专业的一门课程,由美国斯坦福大学开发并推广。
该课程主要讲解了Aspen-Plus软件的基本操作和应用以及塔设备设计的基本知识点。
下面我们来分别介绍。
Aspen-Plus软件是一款流程模拟软件,它可以模拟化工过程的各种反应、传质、传热等现象,以及调整反应条件、优化生产过程等。
通过使用Aspen-Plus软件,工程师可以更好地理解化工过程和产品,同时对实验进行预测和模拟。
这款软件广泛应用于石油、化工、能源等各个行业,是工程师必备的工具之一。
在Aspen-Plus应用塔设备设计课件中,学生将学习如何正确使用Aspen-Plus进行塔设备的设计。
在这个过程中,学生需要掌握如何运用软件模拟不同类型的塔,如提取塔、精馏塔、萃取塔和吸附塔等等。
为此,学生还需要掌握和了解一些化工工艺原理和塔设备的设计方法。
在这门课程中,学生将学习到以下基本的知识点:1.反向追踪法(反演法):这是一种求解化工过程的方法,旨在寻找完美的动态模型。
2.材料平衡原理和动态模型:通过学习材料平衡原理,学生可以更好地理解化工过程中的物质变换和传输。
此外,学生还将学习如何使用Aspen-Plus软件建立动态模型,以预测化工过程的性能和优化生产过程。
3.塔设备的设计:塔设备是化工过程中重要的组成部分,对生产过程的稳定和效率影响很大。
在这个课程中,学生将学习如何在Aspen-Plus软件中进行塔设备的设计和优化,以提高生产效率。
总的来说,Aspen-Plus应用塔设备设计课件不仅可以帮助学生更好地掌握Aspen-Plus软件的基本操作和应用,还可以让学生了解化工工艺和塔设备的设计和方法,为将来从事化工行业提供了有力的保障。
同时,这门课程对于工程师和专业人士也有一定的参考价值,可以帮助他们更好地应用Aspen-Plus软件进行化工过程的优化、建模和模拟。
SO 2吸收塔的设计计算矿石焙烧炉送出的气体冷却到25℃后送入填料塔中;用20℃清水洗涤以除去其中的SO 2..入塔的炉气流量为2400h m /3;其中SO 2摩尔分率为0.05;要求SO 2的吸收率为95%..吸收塔为常压操作..试设计该填料吸收塔..解 1设计方案的确定用水吸收SO 2属于中等溶解度的吸收过程;为提高传质效率;选用逆流吸收过程..因用水作为吸收剂;且SO 2不作为产品;故采用纯溶剂..2填料的选择对于水吸收SO 2的过程;操作过程及操作压力较低;工业上通常选用塑料散装填料..在塑料散装填料中;塑料阶梯环填料的综合性能较好;故此选用聚丙烯阶梯环填料..3工艺参数的计算步骤1:全局性参数设置..计算类型为“Flowsheet”;选择计量单位制;设置输出格式.. 单击“Next”;进入组分输入窗口;假设炉气由空气AIR 和SO 2组成..在“Component ID”中依次输入H 2O;AIR;SO 2..步骤2:选择物性方法..选择NRTL 方程..步骤3:画流程图..选用“R adFrac”严格计算模块里面的“ABSBR1”模型;连接好物料线..结果如图3-1所示..图3-1 水吸收SO 2流程图步骤4:设置流股信息..按题目要求输入进料物料信息..初始用水量设定为400kmol/h.. 步骤5:吸收塔参数的输入..在“Blocks|B1|Setup”栏目;输入吸收塔参数..吸收塔初始模块参数如表3-1所示..其中塔底气相GASIN 由第14块板上方进料;相当于第10块板下方.. Calculation typeEquilibrium Number of stages13 CondenserNone ReboilerNone Valid phasesVapor-Liquid ConvergenceStandard Feed stageWATER 1 GASIN 14 PressurekPa Stage 1 101.325表3-1 吸收塔初始参数至此;在不考虑分离要求的情况下;本流程模拟信息初步设定完毕;运行计算;结果如图3-2所示..此时SO 2 吸收率为%52.9660.319/49.308 ..图3-2 初步计算结果步骤6:分离要求的设定;塔板数固定时;吸收剂用量的求解..运用“Design Specifications”功能进行计算;在“Blocks|B1|D esign Spec”下;建立分离要求“1”..在“Blocks|B1|Design Spec|1| Specifications”页面;定义分离目标..按题目要求进行设定..结果如图3-3所示..在“Blocks|B1|Design Spec|1|Components”页面;选定“SO2”为目标组分;在“F eed/Product Streams”页面;选择“LOUT”为参考物流..图3-3 Design Spec-1的定义图3-4 Vary-1的定义在“Blocks|B1|Vary”下;定义变量“1”..在“Blocks|B1|Vary|1|Specifications”页面;设定进料流量“Feed rate”为变量;上下限分别为5、1000..结果如图3-4所示..至此;分离要求已设置完毕;运行计算;结果如图3-5所示..当塔板数为13时;要达到95%的吸收率;需用水386.44kmol/h..图3-5 吸收剂用量计算结果步骤6:吸收塔的优化;吸收剂用量对塔板数灵敏度分析..使用“Sensitivity”功能进行分析..在“Modle Analysis Tools|Sensitivity”目录;创建一个灵敏度分析文件“S-1”..在“S-1|Input|Define”页面;定义因变量“FLOW”;用于记录进塔水流量;结果如图3-6所示..图3-6 定义灵敏度分析参数在“S-1|Input|Vary”页面;设置自变量及其变化范围;这里假设塔板数变化;如图3-7所示..在“S-1|Input|Tabulate”页面;设置输出格式..设置“FLOW”为输出变量..图3-7 设置自变量变化范围本题为吸收塔;在塔板数变化的同时;塔底气体的进料位置也随之改变..运用Calculator功能;来实现这一过程..在“Flowsheeting Options|Calculator”目录;创建一个计算器文件“C-1”..在“C-1|Input|Define”页面;定义2个变量;如图3-8所示..其中;“FEED”记录塔底气体进料位置;“NS”记录吸收塔塔板数..图3-8 定义计算器变量在“C-1|Input|Calculate”页面;编写塔底气体进料位置的Fortran语言计算语句;如图3-9所示..图3-9 编写Fortran计算语句在“C-1|Input|Sequence”页面;定义计算器计算顺序;如图3-10所示..在塔B1前计算..图3-10 定义计算器顺序至此;吸收塔灵敏度分析计算所需要的信息已经全部设置完毕;运行计算;结果如图3-11、图3-12所示..图3-12为利用Aspen内Plot功能;吸收剂用量对塔板数作图结果..图3-11 灵敏度分析计算结果图图3-12 同塔板数所需吸收剂用量步骤7:吸收塔的工艺参数..由图3-12可得;当塔板数为大于10时;随着塔板数的增加;吸收剂用量减少不太明显;因此选择塔板数为10..在“Blocks|B1|Setup”栏目;将塔板数改为10;塔底气体进料位置为11;隐藏“C-1”和“S-1”;运行计算..结果如图3-13所示..此时;水用量为399.75kmol/h;7200kg/h..图3-13 填料塔最终工艺计算结果4填料塔设计首先进行塔径计算..在“B locks|B1|Pack Sizing”文件夹中;建立一个填料计算文件“1”..在“Pack Sizing|1|Specifications”页面;填写填料位置、选用的填料型号、等板高度等信息;如图3-14所示..其中填料为塑料阶梯环PLASTIC CMR;等板高度设定为0.45m..KOCH公司的塑料阶梯环;在Aspen Plus7.2数据中有三种尺寸1A;2A;3A..由于填料尺寸越小;分离效率越高;但阻力增加;通量减少;填料费用也增多..而大尺寸的填料应用于小直径塔中;又会产生液体分布不良及严重的壁流;使塔的分离效率降低..因此初始选择2A型号;其湿填料因子为103.361/m..运行计算;结果如图3-15所示..图3-14 填料塔信息设置图3-15 填料塔计算结果由图3-15可知;填料塔塔径为752mm;最大液相负荷分率0.62;最大负荷因子0.0537m/s;塔压降0.0093bar;平均压降1.73mmHg/m;液体最大表观流速0.0046m/s;比表面积为164㎡/m³..本例题填料塔初步计算塔径为752mm;此时最大负荷分率为0.62;相对保守;可以用塔径700mm进一步核核算..在“Blocks|B1|Pack Rating”文件夹下;建立一个填料核算文件“1”; 在“Pack Rating|1|Specifications”页面;填写填料位置、选用的填料型号、等板高度等信息;如图3-16所示..运行计算;结果如图3-17所示..图3-16 填料塔核算参数设置图3-17 填料塔核算参数设置由图3-17可知;当填料塔塔径为0.7m;最大液相负荷分率0.716;在0.6~0.8之间;最大负荷因子0.062m/s;塔压降0.0142bar;平均压降2.63mmHg/m;液体最大表观流速0.00535m/s..因为一般填料塔的操作空塔气速低于泛点气速;对于一般不易发泡物系;液泛率为60%~80%;因此塔径选择0.7m是合理的..。
1. Overview:Use this form to specify tray and/or packing configurations for sizing and rating.Each column internals object represents a complete configuration of trays and/or packing for the column along with specifications for sizing or rating. You can specify a combination or trays and packing in the same configuration.Create multiple internals configurations when you wish to quickly evaluate the performance of column with different internals types. For example, you might wish to compare/evaluate the feasibility of using different tray types (Valve or Sieve) or compare the benefits of using a packed column versus a trayed column.The table displays the following information for each configuration:Each column internals object contains these forms:In the Column Design tab of the ribbon, when results are available you can click Reports to generate a PDF report for the column design, or Export to Vendor to generate files of the column design for vendor packages.2. RadFrac Column Internals sections Form2.1 OverviewRadFrac Column Internals Sections Sections SheetUse this sheet to divide the column into sections. You may use one section for the entire column or split the column into multiple sections, but your sections must not overlap or leave gaps. A complete configuration of column internals must include all stages except the condenser and reboiler, if the column is equipped with these.At the top of the form, the Column description lets you specify a description of up to 128 characters for the entire internals configuration; this is the same description that appears in the Column Internals form. Below this are the following buttons:Specifying SectionsFor each section, specify:∙The start and end stages∙The mode: Interactive sizing or Rating∙Type of internals in this section: Trayed or Packed∙The type of trays or packing∙The number of passes for trays, or the packing vendor, material, and dimension for packing ∙For trays, the spacing between trays, or for packing, the height of packing in the section∙The diameter of the sectionAll of these specifications except the start and end stages can also be made on the Geometry sheet for that section. You must always specify the start and end stages; most other values have defaults:∙In Interactive Sizing mode, defaults are available for all fields except section packed height.∙In Rating mode, defaults are available for all fields except diameter, section packed height (for packing), and downcomer widths and locations (for trays; these must be specified on the Geometry sheet).Overall Column ConfigurationA diagram displays the layout of the column with adjacent sections in alternating colors, showing the locations of feeds, products, pumparounds, and gaps and overlaps between sections. A message at the top right of the sheet indicates where any gaps are located. If the column sections are of different diameters, the sections are depicted with widths proportional to those diameters.Above this diagram, a label indicates whether this column configuration is active (i.e. is selected as the design basis on the Column Internals form).In large columns, when there are multiple feeds, draws, and/or pumparound returns on the same or near stages such that the arrows would overlap, you can hover the mouse over the arrow to see information about the connections there.Pressure Drop SpecificationsIn Rating mode, in the active configuration, you can choose to calculate the pressure drops across the column while material and energy balances are being solved. Below the grid, select:∙Don't update pressure drop: Do not calculate pressure drop. RadFrac uses the pressure specified on the Specifications | Setup | Pressure sheet for all stages.∙Update pressure drop from top stage: The pressure specified for the condenser or top stage is used, and other stage pressures are calculated relative to it.∙Update pressure drop from bottom stage: The pressure specified for the reboiler or bottom stage is used, and other stage pressures are calculated relative to it.By default, the calculated pressure drop across each stage includes the contribution due to static vaporhead, ρv gh where ρv is the vapor mass density, g is gravitational acceleration, and h is the tray spacing (for trays) or the packed height per stage (for packing). Uncheck Include static vapor head in pressure drop calculations to ignore this contribution.SumpRadFrac can optionally calculate the pressure drop across the sump. To do so, specify the diameter of the sump (which defaults to the diameter of the bottom stage) and either the liquid level in the sump or the residence time in the sump.Other FormsEach section has two forms on which you can make detailed specifications and view results:The Hydraulic Plots form also displays plots of results for the entire column configuration, and the ColumnHydraulic Results form displays tabular results for the whole column.2.2 Import Template Dialog BoxSee AlsoUse this dialog box to import previously saved templates (XML files) for column sections.In the Import from box, click and select a template file.Then either click Create new section from imported template, or click Import to section and check the boxes to indicate which existing sections should load the template. All specifications in the existing sections, except for the start and end stages, will be overwritten by the data from the template.Click Import to complete the import.2.3 Export as Template Dialog BoxUse this dialog box to save specifications for a column section as a template (XML file) which can be loaded into other column sections in this or another Aspen Plus file.In the Export section field, select the section to export.In the to File box, click to select a folder for the exported file and type a file name.Click Export to export the file3 RadFrac Column Internals Sections Geometry Form3.1 OverviewUse this form to specify the geometry of a column internals section. This form contains the following sheets (though some of them only appear when certain options are selected):3.2 RadFrac Column Internals Sections Geometry Geometry SheetUse this sheet to specify:∙Section type: Trayed or Packed∙Mode: Interactive sizing or Rating∙Tray or packing geometryMost fields have default values, though the availability and method of determining defaults depends on mode and section type.At the top, information displayed includes the name of the section, its start and end stages, and whether the column configuration this section is part of is active (i.e. is the selected design basis on the Column Internals form).When you change units for a field on this sheet, the value is updated to display in the new units.Interactive Sizing ModeDefaults for geometry fields are calculated using the design criteria specified on the Design Parameters sheet. Sizing results are based on the stage or tray with the largest liquid volume flow rate; see the Results | By Stage/ByTray sheet to check these flows, if needed.Trays∙Diameter is calculated using the % Jet flood for design (default 80%), the Minimum downcomer area / Total tray area (default 0.1), and the Maximum downcomer loading calculated by the specified method. All of theseare specified on the Design Parameters sheet. Note that weeping is not accounted for in the sizing calculation.See Tray and Downcomer Area Calculations for details about this calculation.∙The number of passes is adjusted to satisfy the Maximum weir loading specified onthe Design Parameters sheet. If you specified the diameter, this heuristic is used to determine if an increase inthe number of passes is justified:o Columns of at least 5 foot diameter require at least 2 passes.o Columns of at least 8 foot diameter require at least 3 passes.o Columns of at least 10 foot diameter require 4 passes.∙For multi-pass trays, the downcomer locations are adjusted based on an equal flow path length design.Packing∙Diameter is calculated using the selected sizing criterion (either % Approach to maximum capacity (L/V) or Design capacity factor) specified on the Design Parameters sheet. The default is an approach tomaximum capacity of 80%Notes:∙In Interactive Sizing mode, calculated defaults for values such as diameter will change when the vapor-liquid traffic in the column changes. If you overwrite calculated defaults for geometry parameters, those values will NOT change when vapor-liquid traffic in the column changes.∙Interactive Sizing mode cannot be used if the column is specified as Rate-Based. To calculate the internals geometry for a Rate-Based Column, please do the following:1.Set the Calculation Type to Equilibrium on the Setup | Configuration sheet2.Create Column Internals and calculate geometry in Interactive Sizing mode.3.Change the internals mode to Rating.4.Change the Calculation Type to Rate-Based on the Setup | Configuration sheet.∙When you switch from Interactive Sizing to Rating, the calculated values of Diameter, Downcomer Widths, and Downcomer Locations will be retained and appear as defaults (blue italics). If you clear or delete these values in Rating mode, the simulation will become incomplete. You can specify your own values, or switch back to Interactive Sizing and back to Rating again to populate these fields and make the simulation complete.Rating ModeDefaults are available for all fields except diameter and (for trays) the downcomer width and locations.Note: In Rating mode, diameter and other geometry will NOT change when vapor-liquid traffic in the column changes. Deleting the diameter and other geometry-related fields will cause the simulation to becomeincomplete.Trayed SectionsFor each tray section, the following specifications are available:Calculated by Aspen Plus for sieve trays. To achieve a desired number of holes, set the Hole area/active area to where active areais the cross-sectional area of the column () minus the areas at the top and bottom of all downcomers (or just minus the top areas of downcomers if Active area under downcomer is checked). To compute downcomer areas, see Tray and Downcomer Area Calculations.Packed SectionsSpecify packing geometry in three steps, as labeled in the diagram:1.Choose the packing type. The options available in the Packing characteristics section update based on theselected packing type.2.Specify the specific packing by choosing a Vendor, Material, and Dimension. Also specify the diameter ofthe packed section. If the packing factor for the selected packing is available in the database, it is filled in. Forsome vendors, it is locked and cannot be changed. If you choose a GPDC-based Pressure drop calculationmethod on the Design Parameters sheet, and Packing factor is missing for the selected packing, you mustspecify it.If you have loaded a simulation from a past version, you can use Update Parameters to compare the packingparameters in the current version with those used when you saved your simulation.3.Specify either the height equivalent to a theoretical plate (HETP) or the height of the entire section. If youspecify the height of the entire section, Aspen Plus divides that equally over the stages to determine the HETP.3.3 Update Packing Parameters Dialog BoxSee AlsoPacking Types and Packing FactorsUse this dialog box to selectively update packing parameters from past simulations to the values from the newpacking database.At the top of the dialog box are the packing specifications for the packed column section from which you launchedthis dialog box. Below this, the parameters for this packing appear in three columns. The Current Value columnshows the value now used in your simulation, regardless of its source. The Database Value column shows the valuein the selected database (usually the latest one; you can select the database on the Setup | Calculation Options |Calculations sheet), or blank if there is no value in the database for this parameter.You can select the checkboxes in the Update column to indicate that you want to use the database value instead ofthe current value. For the Stichlmair C1, C2, and C3 parameters there is a single Update checkbox that applies to allthree parameters. You can click Select All to automatically mark all checkboxes, Clear All to clear all of them,or Select Valid Database Values to automatically mark all checkboxes for parameters where the database has avalue.Select Save database values as user entered if you want to preserve the values you update as if you had enteredthem. If this option is not selected, values updated from the database are not saved with the simulation; if the selected database is Latest, this will cause the parameters to be automatically updated in future versions of Aspen Plus.When you click OK, the database values for parameters where you have marked Update overwrite the onespreviously specified.Note: In Aspen Plus 2006 and previous versions, the packing parameters were always saved with the simulation,and it is impossible to distinguish these from user-entered values.3.4 RadFrac Column Internals Sections Geometry Picketed/Swept-Back Weirs SheetSee AlsoWhen Picketed or Swept-back weirs are selected as Weir Modifications on the Geometry sheet, use this sheet to specify geometry parameters specific to those weir types. This sheet only appears in tray sections with picketed or swept-back weirs.Picketed WeirsUse picketed weirs increase the weir loading for 1-pass trays, or balance the weir loading for multi-pass trays. Picketed weirs have "pickets" which rise up above the top of the weir, effectively blocking part of the weir length. The picketing fraction represents the fraction of the weir length which is blocked in this way. The effective weir length which liquid flows over is reduced by the picketing fraction, which increases the weir loading.In Rating mode, the default picketing fraction is 0 for all weirs.In Interactive Sizing mode, the default picketing fraction is calculated in one of these ways:∙For 1-pass trays, if the weir loading for the unpicketed weir is greater than the Minimum weirloading specified on the Design Parameters sheet, the default picketing fraction is 0. Otherwise, the default picketing fraction is calculated based on the extent of picketing required to raise the minimum weir loading to the specified weir loading:∙For multi-pass trays, the default picketing fractions for center and off-center weirs are calculated based on the extent of picketing required to make the weir loading equal across all weirs. The side weir defaults to 0 picketing fraction.The weir length and weir loading for each section are also shown, for reference.Swept-Back WeirsUse swept-back weirs to increase the effective length of the side weirs and decrease the weir loading.Three different shapes for swept-back weirs are available, corresponding with designs offered in vendor programs SulCol, KG-Tower, and FRI. Choose one of these shapes, and then specify the geometry parameters in the diagram.∙SulCol: Specify lengths A, B, and S, which define the size and shape of the swept-back portion of the weir.In Interactive sizing mode, if the loading of the side weir exceeds the Maximum weir loading specified onthe Design Parameters sheet, S is calculated to ensure that the effective weir loading of the swept back weirequals the maximum weir loading. This effective weir loading is calculated as:The default for A is 2/3 of the width of the side downcomer, and the default for B is 2/3 of A.∙KG-Tower: Specify the depth from the main part of the weir at the point where it is most swept back. Theother geometry parameters are defined relative to this.The default for this depth is calculated in the same way as the default for S in the Sulcol weir.∙FRI: Specify the lengths of the three different segments of the weir.The defaults are calculated in the same was as the default for S in the Sulcol weir.The following results are displayed on this sheet:∙The tray with maximum weir loading∙The maximum weir loading for this tray∙The maximum allowable weir loading (from the Design Parameters sheet)∙Actual side weir length of swept-back weir∙Effective (or projected) side weir length of the swept-back weir∙The percentage of tray active area lost due to the swept-back weirs3.5 RadFrac Column Internals Sections Geometry Design Parameters SheetUse this sheet to specify design parameters in Rating mode for both tray and packing sections. The parametersavailable are different for tray and packing sections, but include pressure drop and flooding parameters in both cases.Tray ParametersSizing CriterionHydraulic plots / LimitsThese parameters are only used in the user interface for determining the limits in hydraulic plots. They are not available in the engine and cannot be accessed by design specs, calculators, and the like.Design factorsCalculation methodsPacking ParametersSizing criterionDesign factorsHydraulic plot / Pressure dropThese parameters are only used in the user interface for determining the limits in hydraulic plots. They are not available in the engine and cannot be accessed by design specs, calculators, and the like.Hydraulic limits for column targetingReferencesResetarits, M.R. and Ogundeji, A.Y. "On Distillation Tray Weir Loading." AIChE Spring National Meeting, Tampa, FL (April 26-30, 2009).3.6 RadFrac Column Internals Sections Geometry Packing Constants SheetThis sheet only appears in packed sections.Use this sheet to specify Specific surface area and Void fraction for packings. These parameters are used in many pressure drop/flood correlations for packings.In addition, you can specify other parameters needed to calculate pressure drop and liquid holdup only when youspecify the Stichlmair method on the Design Parameters or Sizing Parameters sheet.These parameters apply only to sections with Packing. The databank contains defaults for these parameters for many packings, which are filled in automatically when available. Use this sheet to override the databank values or supply missing values.3.7 RadFrac Column Internals Sections Geometry Tray Geometry Summary SheetThis sheet only appears in tray sections.Use this sheet to view a summary of the dimensions of each tray, including the active area and area for eachdowncomer (for tray sections only). The first table displays properties which apply to entire trays, such as trayspacing and deck thickness. The second table displays weir and downcomer properties which may be set differently for downcomers in different positions on multiple-pass trays.For details about these calculations, see Tray and Downcomer Area Calculations.4 RadFrac Column Internals Sections Results Form4.1 OverviewUse this form to view the results for a section. This form contains the following sheets:4.2 RadFrac Column Internals Sections Results Summary SheetUse this sheet to view overall tray or packing rating results for a section. For detailed results for individual stages, see the By Stage/By Tray sheet.Trayed SectionsThe following results are shown for a trayed section:∙Starting and ending stages of the section∙Tray type∙Number of tray passes∙Tray spacing∙Diameter of the section∙Height of the section∙Pressure drop across the section. Includes static vapor head if the option to do so is selected.∙Head loss across the section, in inches of hot liquid∙List of trays affected by weepingThe Limiting conditions table shows key results that can help to identify trays in the column that might be operating close to or outside acceptable limits. The following results are shown. For each condition, in addition to the value, the tray where the maximum occurs is listed. For loadings, the downcomer or weir where the maximum occurs isalso listed.∙Maximum % jet flood∙Maximum % downcomer backup (aerated)∙Maximum downcomer loading∙Maximum weir loading∙Maximum aerated height over weir∙Maximum % approach to system limit∙Maximum Cs based on bubbling (active) areaPacked SectionsThe following results are shown for a packed section:∙Starting and ending stages of the section∙Diameter of the section∙Packed height per stage∙Total height of the section∙Maximum % capacity (at constant L/V) in the section∙Maximum capacity factor in the section∙Pressure drop across the section. Includes static vapor head if the option to do so is selected.∙Average pressure drop / Height∙Average pressure drop / Height (Frictional). This is the average pressure drop per unit packing height excluding the contribution from static vapor head.∙Maximum stage liquid holdup∙Maximum stage superficial velocity in the section∙Surface area of the packing∙V oid fraction of the packing∙Stichlmair constants for the packingFor information about the methods used to calculate some of these packing results, see Packed Columns.Rate-Based designFor both trays and packing, the Calculated diameter appears if the column is Rate-Based (Calculationtype on Specifications | Setup | Configuration sheet) and Design mode to calculate column diameter is checked on the Rate-Based Modeling | Rate-based Setup | Design sheet, showing the result of that design calculation.4.3 RadFrac Column Internals Sections Results By Stage/By Tray SheetThis is called the By Stage sheet for packed sections and the By Tray sheet for tray sections.Use this sheet to view stage-by-stage results for tray and packing rating calculations. For each stage in this section, many results are shown. Use the View field to select which results are shown (selecting All shows all of theseresults):Hydraulic resultsFor trays, these results are shown.∙Percent Jet flood∙Total pressure drop: The sum of dry pressure drop, clear liquid height on the tray, and any residual pressuredrop terms that might apply.∙Percent Downcomer backup (Aerated): Downcomer backup (aerated liquid) divided by the total of trayspacing and weir height, expressed as a percentage∙Dry pressure drop: Average pressure drop for a tray when the liquid flow is zero. This is reported in bothpressure drop units and equivalent liquid head units.∙Total pressure drop (Head loss): Same as Total pressure drop, reported in head units.∙Downcomer backup: Average height of aerated liquid and of unaerated liquid in the downcomers.∙Percent Downcomer backup (Unaerated): Downcomer backup (unaerated liquid) divided by the total of tray spacing and weir height, expressed as a percentage∙Liquid mass rate/Column area∙Liquid volume rate/Column area∙Fs (net area):∙Fs (bubbling or active area):∙Cs (net area):∙Cs (bubbling or active area):∙Downcomer exit velocity for each downcomer type (depending on number of tray passes)∙Approach to system limit (as a percentage)∙Height over weir (of aerated and unaerated liquid)∙For each downcomer type (depending on number of tray passes):o Volumeo Residence timeo Velocity from topo Velocity from bottomFor packed sections, the results are:∙Packed height∙Percent capacity (based on constant L/V ratio or constant liquid rate)∙Pressure drop (includes static head if this option is selected)∙Pressure drop per height (Frictional). Does not include static head contribution.∙Liquid holdup∙Liquid velocity∙Fs∙Cs∙Approach to system limitHydraulic results-ShortThis provides a summary of just the key results for each tray/stage. The results include:∙Percent jet flood (trays only)∙Total pressure drop (trays only)∙Percent downcomer backup (aerated) (trays only)∙Percent capacity at constant L/V (packing only)∙Pressure drop per height (Frictional) (packing only)∙Liquid mass flow (liquid from stage, including any liquid draw from the stage)∙Vapor mass flow (vapor to stage)∙Liquid mass density∙Vapor mass density∙Liquid viscosity∙Vapor viscosity∙Surface tensionState conditionsAll liquid results apply to the liquid leaving a stage/tray and include any liquid draw from the stage/tray. All vapor results apply to vapor entering a stage/tray.∙Liquid temperature∙Vapor temperature∙Liquid mass flow∙Vapor mass flow∙Liquid volume flow∙Vapor volume flowPhysical propertiesAll liquid results apply to the liquid leaving a stage/tray. All vapor results apply to vapor entering a stage/tray.∙Liquid molecular weight∙Vapor molecular weight∙Liquid mass density∙Vapor mass density∙Liquid viscosity∙Vapor viscosity∙Surface tension (for liquid leaving a stage/tray)4.4 RadFrac Column Internals Sections Results Messages SheetSee AlsoThis sheet displays messages related to column behavior. These messages appear next to an icon indicating theseverity of the message:∙Message: This indicates potentially useful information, such as general design guidelines which are violated, which do not necessarily indicate a problem.∙Warning: This indicates a problem which may cause operational issues with the column.∙Error: This indicates a problem which will almost certainly prevent proper operation of the column.5 RadFrac Column Internals Hydraulic Plots FormUse this form to view hydraulic operating diagrams for the column. These results are only available for trays; inmixed tray/packed columns, blanks will appear for stages in packed sections. Hydraulic plots are also not available for sections where jet flooding or pressure drop is calculated by a user subroutine.Column DiagramAt the left, a column diagram appears. There are three different views of the column available through tabs at the top.∙Stages depicts the sections in proportion to their diameter, and indicates the locations of feeds and products.You can hover the mouse over any of these arrows to see a tooltip indicating the connected stream(s).∙Vapor depicts the stages as bars indicating the stable range for the vapor flow rate on each stage. This bar is colored blue if the flow rate is in the stable region, yellow if it is near a stability limit (within a range specified by Warning status (% to limit) on the Design Parameters sheet), and red if the flow is outside the stable region (using other limits defined on that sheet). A dot indicates the current operating point.∙Liquid does the same for the liquid flow rates, including the colors.On this diagram, five stages are surrounded by a box; small diagrams for each of these stages are shown at the bottom of the form in the Carousel. You can also click any stage to center the carousel on the stage and display the stability diagram for that stage.Downcomer Loading and Weir LoadingIf the selected stage is a tray, these diagrams appear below the column diagram. The Downcomer Loading diagram shows a bar chart of the downcomer loadings (for each downcomer in multiple-pass trays). Downcomer loading is volumetric flow per time per cross-sectional downcomer area. The Weir Loading shows a bar chart of the weir loadings (for each weir in multiple-pass trays). The minimum and maximum acceptable weir loadings, taken either from specified values or Aspen Plus defaults, are shown as horizontal lines across the bar chart. Weir loading is volumetric flow of liquid over the weir per time per length of weir. For 3 and 4 pass trays, thelabels OCIn and OCOut stand for the off-center inside weir (the weir on the off-center downcomer for the panel toward the center of the column) and the off-center outside weir.Stability DiagramTrays。