数字图像处理基础知识image_process
- 格式:pdf
- 大小:459.65 KB
- 文档页数:17
第一章基本概念1、图像:是对客观存在物体的一种相似性的生动模仿与描述。
(图像是对客观存在的物体的某种属性的平面或空间描述)2、图像分为:物理图像、虚拟图像物理图像:物质和能量的实际分布。
虚拟图像:采用数学的方法,将由概念形成的物体(不是实物)进行表示的图像。
3、图像分为:数字图像(离散的)模拟图像(连续的)4、数字图像是用数字阵列表示的图像。
数字阵列中的每一个数字,表示数字图像的一个最小单位,称为像素。
像素是组成数字图像的基本元素。
5、数字图像的表示方法:(以黑白图像为例)黑白图像可用二维函数f(x,y)表示,其中x,y是平面的二维坐标,f(x,y)表示点(x,y)的亮度值(灰度值) 。
7、数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
8、低级图像处理、中级图像处理和高级图像处理。
(1)低级图像处理:主要对图象进行各种加工以改善图象的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。
特点:输入是图像,输出也是图像。
(2)中级图像处理:主要对图像中感兴趣的目标进行检测(或分割)和测量,以获得它们的客观信息从而建立对图像的描述。
特点:输入是图像,输出是特征(如边界、轮廓及物体标识)。
(3)高级图像处理:在中级图像处理的基础上,进一步研究图像中各目标的性质和它们之间相互的联系,并得出对图像内容含义的理解(对象识别)及对原来客观场景的解释(计算机视觉)。
特点:输入是数据,输出是理解。
9、根据你自己的理解,选择一个数字图像处理的应用实例,并简单说明其中涉及的具体技术。
在用手机软件修图时,照片由模糊变清晰用的是图像增强技术、放大缩小用的是图像的几何变换技术、把某个特征提取出来用的是图像分割技术。
第二章采样量化1、黑白图像是指图像的每个像素只能是黑或者白,没有中间的过渡,故又称为2值图像。
数字图像1 数字图像,又称数码图像或数位图像,是二维图像用有限数字数值像素的表示。
2 图像种类:二值图像(Binary Image): 图像中每个像素的亮度值(Intensity)仅可以取自0到1的图像。
灰度图像(Gray Scale Image),也称为灰阶图像: 图像中每个像素可以由0(黑)到255(白)的亮度值表示。
0-255之间表示不同的灰度级。
彩色图像(Color Image):每幅彩色图像是由三幅不同颜色的灰度图像组合而成,一个为红色,一个为绿色,另一个为蓝色。
伪彩色图像(false-color)multi-spectral thematic 立体图像(Stereo Image):立体图像是一物体由不同角度拍摄的一对图像,通常情况下我们可以用立体像计算出图像的深度信息。
三维图像(3D Image):三维图像是由一组堆栈的二位图像组成。
每一幅图像表示该物体的一个横截面。
数字图像也用于表示在一个三维空间分布点的数据,例如计算机断层扫描(:en:tomographic,CT)设备生成的图像,在这种情况下,每个数据都称作一个体素。
3 图像显示目前比较流行的图像格式包括光栅图像格式BMP、GIF、JPEG、PNG等,以及矢量图像格式WMF、SVG等。
大多数浏览器都支持GIF、JPG以及PNG图像的直接显示。
SVG格式作为W3C的标准格式在网络上的应用越来越广。
4 图像校准:数字图像与看到的现象之间关系的知识,也就是几何和光度学或者传感器校准。
图像的基本属性亮度:也称为灰度,它是颜色的明暗变化,常用0 %~100 %( 由黑到白) 表示。
对比度:是画面黑与白的比值,也就是从黑到白的渐变层次。
比值越大,从黑到白的渐变层次就越多,从而色彩表现越丰富。
直方图:表示图像中具有每种灰度级的象素的个数,反映图像中每种灰度出现的频率。
图像在计算机中的存储形式,就像是有很多点组成一个矩阵,这些点按照行列整齐排列,每个点上的值就是图像的灰度值,直方图就是每种灰度在这个点矩阵中出现的次数。
数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真.2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。
3.图像处理:对图像进行一系列操作,以到达预期目的的技术。
4.图像处理三个层次:狭义图像处理、图像分析和图像理解。
5.图像处理五个模块:采集、显示、存储、通信、处理和分析。
第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0< i(x,y)< ∞ ,反射分量0 <r(x,y)〈1.7.图像数字化:将一幅画面转化成计算机能处理的形式——数字图像的过程。
它包括采样和量化两个过程。
像素的位置和灰度就是像素的属性。
8.将空间上连续的图像变换成离散点的操作称为采样。
采样间隔和采样孔径的大小是两个很重要的参数。
采样方式:有缝、无缝和重叠。
9.将像素灰度转换成离散的整数值的过程叫量化。
10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。
11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。
12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。
13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。
例如对细节比较丰富的图像数字化.14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。
2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。
数字图像处理知识点课程重点:图像数字化,图像变换,图像增强,图像的恢复与重建,图像的编码,图像的分割与特征提取,图像识别。
数字图像处理的基本内容:1、图像获取。
举例:摄像机+图像采集卡、数码相机等。
2、图像增强。
显示图像中被模糊的细节,或是突出图像中感兴趣的特征。
3、图像复原。
以图像退化的数学模型为基础,来改善图像质量。
4、图像压缩。
减小图像的存储量,或者在图像传输时降低带宽。
5、图像分割。
将一幅图像划分为几个组成部分或分割出目标物体。
6、图像的表达与描述。
图像分割后,输出分割标记或目标特征参数。
7、目标识别。
把目标进行分类的过程。
8、彩色图像处理。
9、形态学处理。
10、图像的重建。
第一章导论图像按照描述模型可以分为:模拟图像和数字图像。
1)模拟图像,模拟图像可用连续函数来描述。
其特点:光照位置和光照强度均为连续变化的。
2)数字图像,数字图像是图像的数字表示,像素是其最小的单位,用矩阵或数组来描述图像处理:对图像进行一系列的操作,以达到预期的目的的技术。
内容:研究图像信息的获取、传输、存储,变换、显示、理解与综合利用”的一门崭新学科。
三个层次:狭义图像处理,图像分析,图像理解。
狭义图像处理主要指对图像进行各种操作以改善图像的视觉效果,或对图像进行压缩编码以减少所需存储空间或传输时间、传输通路的要求。
图像分析主要是对图像中感兴趣的目标进行检测和测量,从而建立对图像的描述。
图像分析是一个从图像到数值或符号的过程。
图像理解则是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解译,从而指导和规划行动;图像分析主要是以观察者为中心研究客观世界,图像理解在一定程度上是以客观世界为中心,借助知识、经验等来把握整个客观世界。
图像处理的三个层次:低级图像处理内容:主要对图像进行各种加工以改善图像的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。
数字图像处理Digital Image Processing版权所有:Mao Y.B & Xiang W.BOutline of Lecture 2•取样与量化•图像灰度直方图•光度学•色度学与彩色模型•人眼视觉特性•噪声与图像质量评价•应用举例采样与量化取样与量化•采样是指将在空间上连续的图像转换成离散的采样点(即像素)集的操作。
由于图像是二维分布的信息,所以采样是在x轴和y轴两个方向上进行。
一般情况下,x轴方向与y轴方向的采样间隔相同取样与量化采样时注意:采样间隔的选取,以及采样保持方式的选取。
•采样间隔太小,则增大数据量;太大,则会发生频率的混叠现象。
•采样保持,一般不做特殊说明都是采用0阶保持的方式,即一个像素的值是其局部区域亮度(颜色)的均值。
采样间隔太大分辨率分辨率是指映射到图像平面上的单个像素的景物元素的尺寸。
单位:像素/英寸,像素/厘米(如:扫描仪的指标300dpi)或者是指要精确测量和再现一定尺寸的图像所必需的像素个数。
单位:像素*像素(如:数码相机指标30万像素(640*480))以多大的采样间隔进行采样为好?取样与量化•点阵采样的数学描述∑∑+∞−∞=+∞−∞=∆−∆−δ=i j )y j y ,x i x ()y ,x (S ∑∑+∞∞−+∞−∞=∆−∆−δ=⋅=j I I P )y j y ,x i x ()y ,x (f )y ,x (S )y ,x (f )y ,x (f ∑∑+∞∞−+∞−∞=∆−∆−δ⋅∆∆=j )y j y ,x i x ()y j ,x i (fc c量化过程取样与量化•量化是将各个像素所含的明暗信息离散化后,用数字来表示。
一般的量化值为整数。
•充分考虑到人眼的识别能力之后,目前非特殊用途的图像均为8bit量化,即用[0 255]描述“从黑到白”。
•量化阶太低,会出现假轮廓现象。
取样与量化量化不足,出现假轮廓取样与量化量化可分为均匀量化和非均匀量化。
数字图像处理基本知识1、数字图像:数字图像,⼜称为数码图像或数位图像,是⼆维图像⽤有限数字数值像素的表⽰。
数字图像是由模拟图像数字化得到的、以像素为基本元素的、可以⽤数字计算机或数字电路存储和处理的图像。
2、数字图像处理包括内容:图像数字化;图像变换;图像增强;图像恢复;图像压缩编码;图像分割;图像分析与描述;图像的识别分类。
3、数字图像处理系统包括部分:输⼊(采集);存储;输出(显⽰);通信;图像处理与分析。
4、从“模拟图像”到“数字图像”要经过的步骤有:图像信息的获取;图像信息的存储;图像信息处理;图像信息的传输;图像信息的输出和显⽰。
5、数字图像1600x1200什么意思?灰度⼀般取值范围0~255,其含义是什么?数字图像1600x1200表⽰空间分辨率为1600x1200像素;灰度范围0~255指⽰图像的256阶灰阶,就是通过不同程度的灰⾊来来表⽰图像的明暗关系,8bit的灰度分辨率。
6、图像的数字化包括哪两个过程?它们对数字化图像质量有何影响?采样;量化采样是将空间上连续的图像变换成离散的点,采样频率越⾼,还原的图像越真实。
量化是将采样出来的像素点转换成离散的数量值,⼀幅数字图像中不同灰度值得个数称为灰度等级,级数越⼤,图像越是清晰。
7、数字化图像的数据量与哪些因素有关?图像分辨率;采样率;采样值8、什么是灰度直⽅图?它有哪些应⽤?从灰度直⽅图中你可可以获得哪些信息?灰度直⽅图反映的是⼀幅图像中各灰度级像素出现的频率之间的关系它可以⽤于:判断图像量化是否恰当;确定图像⼆值化的阈值;计算图像中物体的⾯积;计算图像信息量。
从灰度直⽅图中你可可以获得:暗图像对应的直⽅图组成成分⼏种在灰度值较⼩的左边⼀侧明亮的图像的直⽅图则倾向于灰度值较⼤的右边⼀侧对⽐度较低的图像对应的直⽅图窄⽽集中于灰度级的中部对⽐度⾼的图像对应的直⽅图分布范围很宽⽽且分布均匀9、什么是点处理?你所学算法中哪些属于点处理?在局部处理中,输出值仅与像素灰度有关的处理称为点处理。
《数字图像处理》知识点汇总1.什么是图像?“图”是物体投射或反射光的分布,“像”是⼈的视觉系统对图的接受在⼤脑中形成的印象或反映。
图像是客观和主观的结合。
2.数字图像是指由被称作象素的⼩块区域组成的⼆维矩阵。
将物理图象⾏列划分后,每个⼩块区域称为像素(pixel)。
对于单⾊即灰度图像⽽⾔,每个像素包括两个属性:位置和灰度。
灰度⼜称为亮度,灰度⽤⼀个数值来表⽰,通常数值范围在0到255之间,即可⽤⼀个字节来表⽰。
0表⽰⿊、255表⽰⽩。
3.彩⾊图象可以⽤红、绿、蓝三元组的⼆维矩阵来表⽰。
通常,三元组的每个数值也是在0到255之间,0表⽰相应的基⾊在该象素中没有,⽽255则代表相应的基⾊在该象素中取得最⼤值,这种情况下每个象素可⽤三个字节来表⽰。
4.数字图像处理就是利⽤计算机系统对数字图像进⾏各种⽬的的处理。
5.对连续图像f(x,y)进⾏数字化需要在空间域和值域进⾏离散化。
空间上通过图像抽样进⾏空间离散,得到像素。
像素亮度需要通过灰度级量化实现灰度值离散。
数字图像常⽤矩阵来表⽰。
6.从计算机处理的⾓度可以由⾼到低将数字图像分为三个层次,分别为图像处理、图像分析和图像理解。
这三个层次覆盖了图像处理的所有应⽤领域。
(1). 图像处理指对图像进⾏各种加⼯,以改善图像的视觉效果;强调图像之间进⾏的变换。
图像处理是⼀个从图像到图像的过程。
(2). 图像分析指对图像中感兴趣的⽬标进⾏提取和分割,获得⽬标的客观信息(特点或性质),建⽴对图像的描述;图像分析以观察者为中⼼研究客观世界,它是⼀个从图像到数据的过程。
(3). 图像理解指研究图像中各⽬标的性质和它们之间的相互联系,得出对图像内容含义的理解及原来客观场景的解释;图像理解以客观世界为中⼼,借助知识、经验来推理、认识客观世界,属于⾼层操作(符号运算)。
7.图像处理、图像分析和图像理解是处在三个抽象程度和数据量各有特点的不同层次上。
图像处理是⽐较低层的操作,它主要在图像像素级上进⾏处理,处理的数据量⾮常⼤。
image-process使用方法1. 介绍image-process(图像处理)是一种基于计算机技术的图像处理方法,广泛应用于数字摄影、医学影像、人工智能等领域。
本文将对image-process的使用方法进行深入探讨,以帮助读者更好地理解和应用这一技术。
2. 图像处理的基本概念图像处理是指利用计算机对图像进行处理和分析的技术。
它主要包括图像获取、预处理、特征提取和图像识别等步骤。
在图像处理中,常用的工具包括OpenCV、PIL、Matplotlib等,这些工具提供了丰富的图像处理函数和算法,可用于实现图像的滤波、边缘检测、分割、特征提取等操作。
3. 图像处理的应用领域图像处理技术在许多领域都有着重要的应用价值。
在数字摄影领域,图像处理可以用于图像增强、去噪、图像融合等操作,从而提高图像的质量和清晰度。
在医学影像领域,图像处理可以帮助医生对影像进行分析和诊断,提高疾病的诊断准确度。
在人工智能领域,图像处理可以用于目标检测、图像识别、图像分割等任务,为机器学习和深度学习提供数据支持。
4. 图像处理的基本方法图像处理的基本方法包括线性滤波、非线性滤波、边缘检测、图像分割、特征提取和图像识别等。
其中,线性滤波包括均值滤波、高斯滤波等,用于去除图像中的噪声和平滑图像。
非线性滤波包括中值滤波、双边滤波等,能够更好地保留图像的细节信息。
边缘检测可以帮助找出图像中的边缘信息,用于物体检测和识别。
图像分割可以将图像分成若干个区域,用于识别和分析不同的物体。
特征提取和图像识别则是更高级的图像处理方法,用于从图像中提取特征信息,并对物体进行识别和分类。
5. image-process的使用方法在使用image-process进行图像处理时,首先需要导入相应的图像处理库,如OpenCV或PIL。
可以利用这些库提供的函数和算法对图像进行处理和分析。
可以利用OpenCV进行图像的读取、显示、保存等操作,同时还可以利用OpenCV进行图像的滤波、边缘检测、图像分割等高级处理操作。
MATLABImageProcessing图像处理入门教程MATLAB图像处理入门教程第一章:图像处理基础知识图像处理是指对于数字图像进行各种操作和处理的过程。
在本章中,我们将介绍一些基础的图像处理知识。
1.1 数字图像表示数字图像是由像素组成的二维数组,每个像素表示图像中的一个点。
每个像素的值表示该点的亮度或颜色。
1.2 MATLAB中的图像表示在MATLAB中,图像可以用二维矩阵表示,其中每个元素对应一个像素的亮度或颜色值。
常见的图像格式包括灰度图像和彩色图像。
1.3 图像读取和显示使用MATLAB的imread函数可以读取图像文件,imshow函数可以显示图像。
第二章:图像预处理在进行实际的图像处理之前,通常需要对图像进行预处理,以提取感兴趣的信息或减少噪声。
2.1 图像平滑平滑操作可以减少图像中的噪声。
常见的平滑方法包括均值滤波和高斯滤波。
2.2 边缘检测边缘检测可以找到图像中的边缘区域。
常用的边缘检测算法包括Sobel算子和Canny算子。
2.3 图像分割图像分割可以将图像划分为不同的区域,以便后续的处理。
常见的图像分割算法包括阈值分割和区域生长算法。
第三章:图像增强图像增强可以提高图像的质量和清晰度,使图像更易于理解和分析。
3.1 直方图均衡化直方图均衡化可以增强图像的对比度,使图像的灰度值分布更均匀。
3.2 锐化锐化操作可以增强图像的边缘和细节。
常见的锐化算法包括拉普拉斯算子和Sobel算子。
3.3 噪声去除噪声去除可以降低图像中的噪声,使图像更清晰。
常见的噪声去除方法包括中值滤波和小波去噪。
第四章:图像分析图像分析可以从图像中提取出感兴趣的特征或对象。
4.1 特征提取特征提取可以从图像中提取出具有代表性的特征,可以用于图像分类和识别。
4.2 图像匹配图像匹配可以找到图像中相似的区域或对象。
常见的图像匹配方法包括模板匹配和特征点匹配。
4.3 图像识别图像识别可以根据图像的特征和模式来判断图像中的对象或场景。
数字图像处理数字图像基础数字图像处理是将数字图像进行分析、处理和理解的过程,它的目标是提高数字图像的质量、抽取图像的特征、提取图像的信息和实现图像的应用。
数字图像处理技术已经渗透到几乎所有领域,如医学、电影、远程通讯、安全监控等。
数字图像处理基础知识包括采集、压缩、存储、预处理、增强、分割、特征提取、分类和应用。
图像采集采集是数字图像处理中最基础的环节,它将物理光学信号转化为数字信号。
常见的图像采集设备包括CCD、CMOS和磁介质等。
图像压缩图像压缩是将图像文件从原始大小减小,并通过各种手段来减少文件大小和传输时间的过程。
图像压缩通常有两种方式,一种是有损压缩,一种是无损压缩。
图像存储图像存储是将数字图像保存在计算机或外部储存设备中。
常用的图像存储格式包括BMP、PNG、JPEG和GIF。
图像预处理图像预处理是在进行其他数字图像处理操作之前,对原始图像进行预处理以去除噪声、平滑、增强、锐化等。
常见的预处理方法包括空间域滤波、频率域滤波、直方图均衡化、形态学操作等。
图像增强图像增强是为了改善图像的质量、提高图像的视觉效果和增强图像的细节而进行的操作。
常见的图像增强方法包括灰度拉伸、对数变换、伽马变换、直方图规定化等。
图像分割图像分割是将数字图像分成不同的区域并对这些区域进行分析和理解的过程。
图像分割可以有多种方法,包括阈值分割、区域分割、边缘分割等。
特征提取图像特征提取是从原始图像中提取一些相关的特征以便于后续的分类和识别。
特征提取的常见方法包括边缘检测、角点检测、纹理描述等。
图像分类图像分类是将数字图像按照其特征划分为不同的类别。
常见的图像分类算法有SVM、KNN、神经网络等。
应用数字图像处理在很多领域都有广泛的应用,如医学影像处理、智能交通、虚拟现实等。
最近,随着深度学习的兴起,数字图像处理技术也被广泛应用于计算机视觉、自然语言处理等领域。
以上是数字图像处理的基础知识,数字图像处理应用广泛,研究数字图像处理可以掌握现代图像处理的基本技能,有利于提高计算机视觉,图像识别和其他领域的研究水平。