当前位置:文档之家› 通信系统仿真报告

通信系统仿真报告

通信系统仿真报告
通信系统仿真报告

通信系统仿真

实验报告

——基于SystemView

姓名:

学号:

院系:

指导老师:

时间:

目录

实验一模拟调制系统设计分析 (3)

以振幅调制(AM)系统为例

实验二模拟信号的数字传输系统设计分析 (12)

以脉冲振幅调制(PAM)系统为例

实验三数字载波通信系统设计分析 (19)

以二进制频移键控(2FSK)系统为例

实验心得 (33)

参考文献 (33)

实验一 模拟调制系统设计分析

一、实验内容

振幅调制系统(常规AM )

二、实验要求

1、 根据设计要求应用软件搭建模拟调制、解调(相干)系统;

2、 运行系统观察各点波形并分析频谱;

3、 改变参数研究其抗噪特性。

三、实验原理

连续波调制是一正弦波为载波c(t)的调制方式,它分为线性调制和非线性调

制两大类。调制信号m(t)为模拟信号时,称为模拟调制。本次仿真实验以常规调

幅(AM )为例,通过System View 仿真软件搭建模拟调制系统进行分析,展开

讨论。

任意的AM 已调信号可以表示为

S ()()(),am t c t m t =

0()();m t A f t =+当0()cos()c c t w t θ=+且0A 不等于0时,称为常规调幅,其时

域表达式为:()[])cos()()()(000θω++==t t f A t m t c t S am

其中

0A 是外加直流分量,f(t)是调制信号,它可以是确知信号,也可以是随机信号。2c c w f π=为载波信号的角频率,0θ为载波信号的起始相位,为简便起

见,通常设为0。常规AM 通常可以用图1所示的系统来实现。

图 1 常规AM 调制系统框图

要使输出已调信号的幅度与输入调制信号f(t)呈线性对应关系,应满足

0max ()A f t ≥,否则会出现过调制现象。

对于AM 的解调既可以用非相干(非同步)解调的方法,如包络检波,也

可以用相干(同步)解调法。对于相干解调,由 20001sin S ()cos (())cos (())2am c c w t

t w t A f t w t A f t +=+=+

因此只需要用一个跟载波信号同频同相的正弦波跟已调信号相乘再通过低

通滤波器滤波即可将原信号解调出来。而对于非相干解调,从S ()am t 的表达式可

以看出只需要对它进行包络检波即可将原信号解调出来。当然,用非相干解调时

不可以过调制,而相干解调则可以。这两种方法相比而言,非相干解调更经济,

设备简单,而相干解调由于需要跟载波同频同相的信号,因此设备比较复杂。

四、实验步骤与结果

1、实验原理图

根据AM 已调信号的公式0S ()()()cos()()cos()am c c t c t m t A w t f t w t ==+,其中

0max ()A f t ≥。通过有噪声的信号后,接收并利用相干解调方法进行解调,原理

图如图2。图符0为载波信号,幅度为1v ,频率为2KHz 。图符2为输入调制信

号,幅度为1v ,频率为200Hz 。解调部分的本振源(图符12)与载波信号源的

设置相同,幅度为1v ,频率为2KHz 。低通滤波器的截止频率为300Hz ,保留正

弦信号源的频率200Hz ,并滤除了高频的分量,这样根据前面推导公式得到的输

出信号的幅值是输入信号的二分之一。

图 2 AM调制解调原理图

2、首先设置的总体的定时,如下图所示。采样的速率要相对高一些,否则无法呈现完整的信号波形,同样采样点的个数也要相对调整,在几次调整尝试后发现以下参数下最后的仿真波形较之最好。首先设置高斯噪声为0。

图 3 定时设置

4.外加直流分量A0的设置,在这里即为增益的设置,调整增益为3。

图 4 增益设置

4、实验波形及分析

(1)输入与载波波形

输入调制信号幅度为1v,频率为200Hz。载波信号幅度为1V,频率为2KHz。其波形和频谱如下图所示,可见输入频谱集中在200Hz附近,载波频谱集中在2KHz附近。

图5 调制信号及其频谱

图6 载波信号及其频谱

(2)调制与输出波形

调制后,波形如下图所示。波形的包络与输入调制信号一致,由于直流分量的存在,在信号的频谱中会出现三个尖顶。分别对应载波频率,载波频率与原始信号频率之差以及载波频率与原始信号频率之和。

图7 已调波及其频谱

图8 解调后的信号及其频谱

(3)输入信号与输出信号的对比

下图是输入的波形与输出的波形在时域与频域的比较,易见二者在幅度上相差两倍,即输出波形的幅度是输入波形的二分之一。这是因为在解调过程中,载波信号与本振信号相乘得到一个1/2,所以导致了幅度的变化。如果添加一个两倍的增益,则二者的幅度相同。但是由频谱对比来看,二者在波形上还有一些细微的差别,这是由于噪声的影响,后面会进一步分析。

图 9 输入与输出波的波形与频谱对比

5、抗噪声性能分析

上面加的高斯噪声为0,即信道无噪声,这里增加噪声,并观察输出波形与输入波形的差别。

(1)噪声为0.2时

(2)噪声为0.5时

(3)噪声为0.8时

(4)噪声为1时

图 13 噪声为1

6、频谱分析

理论上正弦信号的频谱为单一频率,但是由图中可见,该正弦的频率是一个范围,在特定的频率上有一个尖顶。而已调信号的频谱如前面所说,是由三个分

量构成,这可由公式推导出:

)]()()()([2

1)]()([]

cos )(cos [)]([00000000ωωωδωωωδωωωδωωωδπωωδωωδπωω--++-+-+++++

-++=+=C C C C c c AM A t t m t A F t s F

即调制信号与本振信号相成之后会有三个分量。而经过解调后得到频谱理论

上也是单一的频率,与输入信号的频率相同,但实际上也只是一个尖顶。上图是

输入频谱与输出频谱的对比,可见在高斯噪声为1V 时,输入与输出信号的频谱

大致相同,但是由于噪声较大,输出信号受噪声的影响较大,所以在波形和频谱

上都会出现一些较大的波动,

7、抗造性能分析

对于常规AM,其解调信号的信噪比增益始终小于1,这是因为已调信号中包

含有不携带信息的载波分量。由图9到图13可见,当输入信号一定时,随着高斯

噪声功率的加强,接收端输入信号被干扰得越严重,而相应的输出波形相对于发

送端的波形误差也越大。而当噪声过大时,信号几难分辨,这是由于信噪比变小

导致的。在实际的信号传输过程中,当信道噪声过大将会导致幅度相位等各种失

真,由于非线性元件如滤波器等的存在,非线性失真也会随噪声加大而变大。

另外,此次仿真采用的是相干解调的方式,不存在门限效应,原因是信号与

噪声可分别进行解调,解调器输出端总是单独存在有用信号项。若使用非相干解

调,则当输入信噪比过小,低于门限值时,将会出现门限效应,这时解调器的输

出信噪比将急剧恶化,系统无法正常工作。

实验二 模拟信号的数字传输系统设计分析

一、实验内容

脉冲振幅调制(PAM )系统

二、实验要求

1、根据设计要求应用软件搭建模拟信号的数字传输(调制、解调)系统;

2、运行系统观察各点波形并分析频谱等。

三、实验原理

脉冲振幅调制(PAM )是利用冲击函数对原始信号进行抽样,它是一种最基

本的模拟脉冲调制,它往往是模拟信号数字化过程中的必经之路。

设基带脉冲信号的波形为m (t ),其频谱为M(f);用这一信号对一个脉冲载

波s (t )调幅。s (t )的周期为s T ,其频谱为S(f);脉冲宽度为τ,幅度为A ;

并设抽样信号()s m t 是m (t )和s (t )的乘积。则抽样信号()s m t 的频谱就是二者

频谱的卷积:

0000()()*()sin ()(2)s H H s n A M f M f S f c n f M f nf T τπτ+=-==-∑

其中 sin ()sin()/()H H H c n f n f n f πτπτπτ=

图1中示出PAM 调制过程的波形与频谱。s (t )的频谱包络|S (f )|的包络

呈|sinx/x|形,并且PAM 信号()s m t 的频谱()s M f 包络|()s M f |的包络也呈

|sinx/x|形。若s (t )的周期T ≤(1/2)H f ,则采用一个截止频率H f 的低通滤波

器就可以分离原模拟信号。

图 1 脉冲振幅调制

实验总体的电路如下图图2所示,把输入信号与脉冲信号通过相乘器相乘,

这样在频域就达到了卷积的效果。通过信道传输后再通过低通滤波器,只要低通

滤波器的截止频率H c f πω2=就可以实现解调。

图 2 PAM 原理

四、实验步骤与结果

1、电路原理图

如下图所示,图中采用的是高斯信号源(图符3),其幅值为1V 。两个低通

滤波器(图符6与图符11)的截止频率均为300Hz ,脉冲(图符13)的频率为5KHz ,而脉冲宽度为周期的一半,即1/2s T τ

=。增益(图符10)的大小为2,与s

T τ相乘后幅值为1,即与输入相同,信道噪声(图符9)先设置为0。

图 3 PAM 调制系统原理图

2.定时设置。

仿真中发现因为信号源为高斯信号,采样频率和采样点个数必须设置的相对脉冲频率大很多。若采样点个数较小,则已调波的频谱不能显示完全,若采样频率较小,则滤波后的高斯信号仍然较为杂乱无序,难以做后续工作,最终确定的参数如下。

图 4 定时设置

3.低通滤波器设置。

这里使用巴特沃斯滤波器,其特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻带则逐渐下降为零。这里我们选择滤波器的极点个数为3,极点个数越大阶数越高,在阻频带振幅衰减速度越快,但相应地时延会增加。

图5 低通滤波器设置

4、各点信号与频谱

(1)输入的高斯信号

这个实验是以高斯信号为蓝本,滤波后作为输入信号进行实验。高斯信号幅值为1V。

图 6 高斯信号与滤波后的输入信号

图 7 输入的高斯信号滤波后频谱

高斯信号通过低通滤波器后信号变化趋于平缓,这是因为高频的分量大致被滤除,如图6所示,可见,虽然频率较高的分量被抑制,但是由于低通滤波器并不理想,所以高频分量依然存在,表现为在滤波后的波形上会有跳变。同时取脉冲信号的频率为5KHz,满足T (1/2)H f的条件。

(2)调制后信号

经调制后,信号的波形如图8所示。调制信号的包络与原信号一致。

图 8 已调波及其频谱 放大已调波的频谱,可以看到相邻的频谱几乎不重叠,除了应该被滤除的高

频分量有些重叠,因此调制后的信号可以经过低通滤波器进行恢复。

(3)输出信号

如图9所示,是经过信道传播后再通过低通滤波器恢复信号获得波形,可见

其波形大致与原信号相同,其频谱是已调信号频谱经低通滤波得到的,大致与原

信号的频谱相同。

图9 输出信号及其频谱

3、波形分析与频谱分析

(1)波形分析

经过低通滤波器恢复的信号与原信号对比如图10所示,可见波形在时间上有一定的延时,这是由于采用滤波器的缘故。此外细看上去,在一些部分波形出现不一致,输出的波形较为平缓,这是因为低通滤波器的非理想造成的,经LPF

后的高斯信号高频分量不能完全的被滤除,而输出信号再次经过LPF进行滤波,波形会比输入信号更为平缓。

图 10 高斯滤波后信号与输出信号波形与频谱对比

(2)频谱分析

高斯信号经低通滤波后频率被带限在300Hz 以内,如图7所示。而后经过与

脉冲信号相乘进行PAM 调制。由之前的分析可知,抽样信号()s m t 是m(t)和s(t)

的乘积。则抽样信号()s m t 的频谱就是二者频谱的卷积:

0000()()*()sin ()(2)s H H s n A M f M f S f c n f M f nf T τπτ+=-==-∑

理论上信号的频谱是Sa 函数的波形,由于采样频率较大,这里显示了在正

半轴的Sa 函数波形。同时我们看到最后的输出波形的频谱与输入波形的频谱在

幅值上有些出入,是因为低通滤波器在滤去高频分量的同时也会滤去一小部分能

量,可以忽略。

实验三数字载波通信系统设计分析

一、实验内容

二进制频移键控(2FSK)系统

二、实验要求

1、根据设计要求应用软件搭建数字载波通信系统(调制、解调);

2、运行系统观察各点波形并分析频谱、眼图等;

3、改变参数研究其抗噪特性;

4、分析BER曲线等。

三、实验原理

数字调频又称移频键控,简记为FSK,它是载波频率随数字信号而变化的一种调制方式。利用基带数字信号离散取值特点去键控载波频率以传递信息的一种数字调制技术。除具有两个符号的二进制频移键控之外,尚有代表多个符号的多进制频移键控,简称多频调制。一种用多个载波频率承载数字信息的调制类型。最常见的是用两个频率承载二进制1和0的双频FSK系统。本实验采用2FSK调制,利用键控法产生2FSK信号。其实验原理图如图1所示,即通过二进制数据的0值与1值控制开关与哪一路频率信号接通,这样0值与1值对应不同的频率,达到调制的目的。

图 1 2FSK信号键控法产生的原理框图

FSK信号的解调方法有相干解调,非相干解调等。在高斯白噪声信道环境下FSK 滤波非相干解调性能较相干FSK 的性能要差,但在无线衰落环境下,FSK 滤波非相干解调却表现出较好的稳健性。在这个实验里我们采用的是高斯信道,故而用相干解调方法。

FSK相干解调要求恢复出传号频率与空号频率,恢复出的载波信号分别与接收的FSK调制信号相乘,然后通过低通滤波器滤除相乘后得到的高频分量,保留低频近乎直流的分量。相干FSK解调框图如图2所示。

图 2 2FSK信号相干解调的原理框图

四、实验步骤与结果

1、实验原理图

原理图如下图3,利用键控法产生2FSK信号FSK相干解调恢复信号。其中低频正弦信号1为100Hz,高频正弦信号2为200Hz,随机码为10Hz。上支路带通滤波器为80Hz到120Hz,下支路带通滤波器为180Hz到220Hz,上下支路的低通滤波器均为100Hz。

图 3 实验原理图

2.定时设置

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

MATLAB通信系统仿真实验报告1

MATLAB通信系统仿真实验报告

实验一、MATLAB的基本使用与数学运算 目的:学习MATLAB的基本操作,实现简单的数学运算程序。 内容: 1-1要求在闭区间[0,2π]上产生具有10个等间距采样点的一维数组。试用两种不同的指令实现。 运行代码:x=[0:2*pi/9:2*pi] 运行结果: 1-2用M文件建立大矩阵x x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] 代码:x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] m_mat 运行结果: 1-3已知A=[5,6;7,8],B=[9,10;11,12],试用MATLAB分别计算 A+B,A*B,A.*B,A^3,A.^3,A/B,A\B. 代码:A=[56;78]B=[910;1112]x1=A+B X2=A-B X3=A*B X4=A.*B X5=A^3 X6=A.^3X7=A/B X8=A\B

运行结果: 1-4任意建立矩阵A,然后找出在[10,20]区间的元素位置。 程序代码及运行结果: 代码:A=[1252221417;111024030;552315865]c=A>=10&A<=20运行结果: 1-5总结:实验过程中,因为对软件太过生疏遇到了些许困难,不过最后通过查书与同学交流都解决了。例如第二题中,将文件保存在了D盘,而导致频频出错,最后发现必须保存在MATLAB文件之下才可以。第四题中,逻辑语言运用到了ij,也出现问题,虽然自己纠正了问题,却也不明白错在哪了,在老师的讲解下知道位置定位上不能用ij而应该用具体的整数。总之第一节实验收获颇多。

通信系统仿真经典.doc

题目基于SIMULINK的通信系统仿真 摘要 在模拟通信系统中,由模拟信源产生的携带信息的消息经过传感器转换成电信号,模拟基带信号在经过调制将低通频谱搬移到载波频率上适应信道,最终解调还原成电信号;在数字传输系统中,数字信号对高频载波进行调制,变为频带信号,通过信道传输,在接收端解调后恢复成数字信号。本文应用了幅度调制以及键控法产生调制与解调信号。 本论文中主要通过对SIMULINK工具箱的学习和使用,利用其丰富的模板以及本科对通信原理知识的掌握,完成了AM、DSB、SSB、2ASK、2FSK、2PSK三种模拟信号和三种数字信号的调制与解调,以及用SIMULINK进行设计和仿真。首先我进行了两种通信系统的建模以及不同信号系统的原理研究,然后将学习总结出的相应理论与SIMULINK中丰富的模块相结合实现仿真系统的建模,并且调整参数直到仿真波形输出,观察效果,最终对设计结论进行总结。 关键词通信系统调制 SIMULINK

目录 1. 前言 (1) 1.1选题的意义和目的 (1) 1.2通信系统及其仿真技术 (2) 3. 现代通信系统的介绍 (7) 3.1通信系统的一般模型 (7) 3.2模拟通信系统模型和数字通信系统模型 (7) 3.2.1 模拟通信系统模型 (7) 3.2.2 数字通信系统模型 (8) 3.3模拟通信和数字通信的区别和优缺点 (9) 4. 通信系统的仿真原理及框图 (12) 4.1模拟通信系统的仿真原理 (12) 4.1.1 DSB信号的调制解调原理 (12) 4.2数字通信系统的仿真原理 (16) 4.2.1 ASK信号的调制解调原理 (16) 5. 通信系统仿真结果及分析 (21) 5.1模拟通信系统结果分析 (21) 5.1.1 DSB模拟通信系统 (21) 5.2仿真结果框图 (24) 5.2.1 DSB模拟系统仿真结果 (24) 5.3数字通信系统结果分析 (28) 5.3.1 ASK数字通信系统 (28) 5.4仿真结果框图 (35) 5.4.1 ASK数字系统仿真结果 (35)

基于matlab的直接序列扩频通信系统仿真

基于MATLAB的直接序列扩频通信系统仿真 1.实验原理:直接序列扩频(DSSS)是直接利用具有高码率的扩频码系列采用各种调 制方式在发端与扩展信号的频谱,而在收端,用相同的扩频码序去进行解扩,把扩展宽的扩频信号还原成原始的信息。它是一种数字调制方法,具体说,就是将信源与一定的PN码(伪噪声码)进行摸二加。例如说在发射端将"1"用11000100110,而将"0"用00110010110去代替,这个过程就实现了扩频,而在接收机处只要把收到的序列是11000100110就恢复成"1"是00110010110就恢复成"0",这就是解扩。这样信源速率就被提高了11倍,同时也使处理增益达到10DB以上,从而有效地提高了整机倍噪比。 1.1 直扩系统模型 直接序列扩频系统是将要发送的信息用伪随机码(PN码)扩展到一个很宽的频带上去,在接收端用与发送端相同的伪随机码对接收到的扩频信号进行相关处理,恢复出发送的信号。对干扰信号而言,与伪随机码不相关,在接收端被扩展,使落入信号通频带的干扰信号功率大大降低,从而提高了相关的输出信噪比,达到了抗干扰的目的。直扩系统一般采用频率调制或相位调制的方式来进行数据调制,在码分多址通信中,其调制多采用BPSK、DPSK、QPSK、MPSK等方式,本实验中采取BPSK方式。 直扩系统的组成如图1所示,与信源输出的信号a(t)是码元持续时间为Ta的信息流,伪随机码产生器产生伪随机码c(t),每个伪随机码的码元宽度为Tc (Tc<

MATLAB实现通信系统仿真实例

补充内容:模拟调制系统的MATLAB 仿真 1.抽样定理 为了用实验的手段对连续信号分析,需要先对信号进行抽样(时间上的离散化),把连续数据转变为离散数据分析。抽样(时间离散化)是模拟信号数字化的第一步。 Nyquist 抽样定律:要无失真地恢复出抽样前的信号,要求抽样频率要大于等于两倍基带信号带宽。 抽样定理建立了模拟信号和离散信号之间的关系,在Matlab 中对模拟信号的实验仿真都是通过先抽样,转变成离散信号,然后用该离散信号近似替代原来的模拟信号进行分析的。 【例1】用图形表示DSB 调制波形)4cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%%一般选取的抽样频率要远大于基带信号频率,即抽样时间间隔要尽可能短。 ts=1/fs; %%根据抽样时间间隔进行抽样,并计算出信号和包络 t=(0:ts:pi/2)';%抽样时间间隔要足够小,要满足抽样定理。 envelop=cos(2*pi*t);%%DSB 信号包络 y=cos(2*pi*t).*cos(4*pi*t);%已调信号 %画出已调信号包络线 plot(t,envelop,'r:','LineWidth',3); hold on plot(t,-envelop,'r:','LineWidth',3); %画出已调信号波形 plot(t,y,'b','LineWidth',3); axis([0,pi/2,-1,1])% hold off% xlabel('t'); %写出图例 【例2】用图形表示DSB 调制波形)6cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%抽样时间间隔要足够小,要满足抽样定理。 ts=1/fs; %%根据抽样时间间隔进行抽样

扩频通信及matlab仿真

扩 频 通 信 及Matlab 仿 真 江西师范大学 物理与通信电子学院2009级通信工程(2)班姓名xxx 学号xxxxxxxx

目录 一、摘要 (3) 二、数字通信原理 (4) 三、衰落信道与抗衰落技术 (5) 四、多址通行 (6) 五、扩频通信原理 (6) 六、直接序列扩频通信 (8) 七、基于matlab的直接序列扩频仿真 (10) 八、结束语 (13) 九、参考书目 (14) 十、致谢 (15)

摘要 扩频通信即扩展频谱通信,它与光纤通信、卫星通信一同被誉为信息时代的三大高技术通信传输方式。扩频通信技术自50年代中期美国军方开始研究,一直为军事通信所独占,广泛应用于军事通信、电子对抗以及导航、测量等各个领域,直到80年代初才被应用于民用通信领域。为了满足日益增长的民用通信容量的需求和有效地利用频谱资源,各国都纷纷提出在数字峰窝移动通信、卫星移动通信和未来的个人通信中采用扩频技术,扩频技术现已广泛应用于蜂窝电话、无绳电话、微波通信、无线数据通信、遥测、监控、报警等系统中。本文根据扩频通信的原理,利用MATALB对扩频通信中最常用的直扩通信系统进行了仿真。

数字通信原理: 1)所谓数字通信就是利用数字传输技术来进行的通信。它包括对模拟信号的编码和调制,传输媒介以及对数字信号的解调和解码。 2)典型的数字通信系统模型如图1-1: 图1-1 信源:信息的来源一般是模拟信号。 信源编码:模拟信号转变为数字信号; 信号压缩处理;信号的高效率编码。 信道编码:检错、纠错编码,提高信号抗干扰能力;

信息加密,防止信息被窃取。 调制变换:波形编码,信号调制,使基带信号适合在特定的 道中传输。 传输媒介:有线、无线信道,网络交互设备。 解调、信道译码、信源译码:对信号作上述处理相反对变换。 信宿:信息的最终传输目的地 衰落信道与抗衰落技术: 1)衰落信道的产生:无线通信是基于电磁波在空间中的传播来实现信息的传递的。无线信道的电波传播特性与电波传播的环境密切相关。电波环境主要包括:地形地貌、各种建筑物、气候气象、电磁干扰、移动体的运动速度和工作频段等。因此在实际应用中不可避免的产生衰落信道。 2)衰落信道主要包括:阴影衰落和多径衰落。 3)抗衰落技术主要包括:①空间分集技术 ②Rake接收方式 ③信道交织技术 ④多载波传输技术 ⑤信道均衡技术 ⑥扩频通信技术等等

MIMO-OFDM通信系统仿真报告

目录 目录 (i) 摘要: (1) 1,系统总论 (1) 2,OFDM调制和解调 (2) 3,循坏前缀 (4) 4,信道估计 (6) 5,OFDM误码率分析 (8) 6,总结与感想 (9) 7,主要程序附录 (10)

MIMO-OFDM 通信系统仿真 摘要 MIMO-OFDM 是第四代通信系统中的核心技术,是结合OFDM 和MIMO 而得到的一种新技术。OFDM (正交频分复用技术)的核心能力就是将信道分成许多正交子信道,在每个子信道上进行窄带调制和传输,这样既减少了子信道之间的相互干扰,同时又提高了频率利用率。其实,就是指OFDM 的抗多径衰落的能力。MIMO (多输入多输出)技术是目前最常见的无线技术之一,最早是由Marconi 于1908年提出的,利用多天线来抑制信道衰落。本文的主要内容是涉及MIMO 和OFDM 的部分,讨论了它是实现原理和在瑞利信道中的MATLAB 仿真效果。最后,给出了同时存在加性高斯白噪声下的误码率随着信噪比变化的仿真曲线。 关键词:MIMO-OFDM ,瑞利信道,QPSK 调制,信道估计,MATLAB 仿真。 1,系统总论 下图给出的是整个MIMO-OFDM 通信系统的流程图: 信源比特流QPSK 调制MIMO-OFDM 瑞利信道信道估计 解MIMO- OFDM 解QPSK 信宿误码率 (BER )计算 AWGN 图1,系统总体流程图 从图中可以看到,这个通信系统大概包括信源编码、比特流形成、QPSK 调制、MIMO-OFDM 信号形成、瑞利信道和加性高斯白噪声、解MIMO-OFDM 信号、解QPSK 调制、信宿解码。 其中信源编码部分主要是把信源要发送的字符串转换成ASCII 码,比如我们要发送字符串'Hello',则其对应输出为‘0100100001100101011011000110110001101111’。QPSK 和解QPSK 部分是两个对应的模块,QPSK 又叫4QAM 它是信号星座调制中一种最简单的形式。QPSK 调制后一个符号可以携带2个比特的信息,频带利用率可以将近提高1倍。 MIMO(Multiple-Input Multiple-Output)技术指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,从而改善通信质量。它能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍的提高系统信道容量,显示出明显的优势、被视为下一代移动通信的核心技术。

扩频通信系统仿真论文

扩频信号处理仿真技术 摘要 本文阐述了扩展信号处理过程的基本原理、主要性能指标及其工作特点,然后根据香农定理,利用MATLAB提供的可视化工具Simulink,建立了扩频通信系统仿真模型,详细讲述了各个模块的设计,并指出了仿真建模过程中所需注意的问题。通过建模深入理解MATLAB/Simulink基本建模仿真方法的实质性,掌握通信系统仿真的思维方法,增强系统建模和设计的自主能力和创造力。并根据给定的参数设置,仿真出结果,证明了所建仿真模型的正确性

Simulation Technology of spread-spectrum signal processing Abstract This article elaborated the spread spectrum communication technology's basic principle, the main performance index and the operating feature, then act according to the Shannon theorem, provides visualization tool Simulink using MATLAB, has established the wide frequency communications system simulation model, narrated in detail each module's design, and had pointed out in the simulation model must pay attention question. Through the modeling further understanding the substantive of this simulation based on MATLAB, master the methods of communication system simulation. Enhance the independent ability and creativity of system modeling and design, and according to a given set of parameters, and the simulation the results. Had proven constructs the simulation model the accuracy. 目录 1 绪论 (1) 1.1选题的背景 (1) 1.2选题的主要任务 (2) 2 扩频通信系统 (3) 2.1扩频通信的基本原理 (3) 2.2扩频通信的特点 (3) 2.2.1抗干扰性强 (3) 2.2.2 抗干扰性强 (4) 2.2.3 抗多径干扰 (4) 2.2.4 保密性好 (4) 3 线性调频扩频系统 (5)

本科毕业设计__基于matlab的通信系统仿真报告

创新实践报告
报 告 题 目: 学 院 名 称: 姓 名:
基于 matlab 的通信系统仿真 信息工程学院 余盛泽 11042232 温 靖
班 级 学 号: 指 导 老 师:
二 O 一四年十月十五日

目录
一、引言 ....................................................................................................................... 3 二、仿真分析与测试 ................................................................................................... 4
2.1 随机信号的生成................................................................................................................ 4 2.2 信道编译码......................................................................................................................... 4 2.2.1 卷积码的原理 ......................................................................................................... 4 2.2.2 译码原理................................................................................................................. 5 2.3 调制与解调........................................................................................................................ 5 2.3.1 BPSK 的调制原理 ................................................................................................... 5 2.3.2 BPSK 解调原理 ....................................................................................................... 6 2.3.3 QPSK 调制与解调................................................................................................... 7 2.4 信道..................................................................................................................................... 8 2.4.1 加性高斯白噪声信道 ............................................................................................. 8 2.4.2 瑞利信道................................................................................................................. 8 2.5 多径合并............................................................................................................................. 8 2.5.1 MRC 方式 ................................................................................................................ 8 2.5.2 EGC 方式................................................................................................................. 9 2.6 采样判决............................................................................................................................. 9 2.7 理论值与仿真结果的对比 ................................................................................................. 9
三、系统仿真分析 ..................................................................................................... 11
3.1 有信道编码和无信道编码的的性能比较 ....................................................................... 11 3.1.1 信道编码的仿真 .................................................................................................... 11 3.1.2 有信道编码和无信道编码的比较 ........................................................................ 12 3.2 BPSK 与 QPSK 调制方式对通信系统性能的比较 ........................................................ 13 3.2.1 调制过程的仿真 .................................................................................................... 13 3.2.2 不同调制方式的误码率分析 ................................................................................ 14 3.3 高斯信道和瑞利衰落信道下的比较 ............................................................................... 15 3.3.1 信道加噪仿真 ........................................................................................................ 15 3.3.2 不同信道下的误码分析 ........................................................................................ 15 3.4 不同合并方式下的对比 ................................................................................................... 16 3.4.1 MRC 不同信噪比下的误码分析 .......................................................................... 16 3.4.2 EGC 不同信噪比下的误码分析 ........................................................................... 16 3.4.3 MRC、EGC 分别在 2 根、4 根天线下的对比 ................................................... 17 3.5 理论数据与仿真数据的区别 ........................................................................................... 17
四、设计小结 ............................................................................................................. 19 参考文献 ..................................................................................................................... 20

通信主流仿真软件

通信系统主流仿真软件简介 学号: 姓名: 专业:

Systemvue(原System View) System View 是一个用于现代工程与科学系统设计及仿真的动态系统分析平台。从滤波器设计、信号处理、完整通信系统的设计与仿真,直到一般的系统数学模型建立等各个领域,System View 在友好而且功能齐全的窗口环境下,为用户提供了一个精密的嵌入式分析工具。 在2005年Elanix被美国安捷伦(Agilent)公司收购,把软件名字改为SystemVue,由原先的SystemView1.0,SystemView4.5,SystemView5.0,SystemView.6.0,再到后来的SystemView2005,SystemVue2007,SystemVue2008.功能也逐步的的完善,有开始的具有基本的仿真功能到后来的增加了DSP库,第二代,第三代移动通讯,蓝牙库的完善,实例仿真的范围的拓展,眼图相位噪声处理的完善。随着科技的发展,人类创造出来的智慧也在不断升值。 ELANIX公司位于CALIFORNIA州,公司总裁和创建人PATRICK J.READY博士拥有先进的信号处理器的美国和国际专利权,是一位信号处理和通信方面的改革者。ELANIX公司的技术力量雄厚,其设计工作可以依据使用的处理器及其环境的状况,使用DSP,MP'S,ASIC,VLSI神经网络和其他当前领先的技术。包括所有的用于商业和军用的信号处理在内,公司在理论分析,软件开发,仿真与测试,硬件设计和微处理器等方面有广泛的经验。 SystemView的特点 1.真正的动态系统仿真器; 2.直觉样本数据(Z域)和连续的Laplace域系统详细说明; 3.多速率系统和并行的平行系统; 4.时间连续和时间离散的混合系统;

扩频通信系统仿真实验

重庆交通大学信息科学与工程学院综合性设计性实验报告 专业:通信工程专业11级 学号: 姓名: 实验所属课程:移动通信原理与应用 实验室(中心):信息技术软件实验室 指导教师:李益才 2013年11月

一、题目 扩频通信系统仿真实验 二、仿真要求 扩频通信系统的多用户数据传输 ①传输的数据随机产生,要求采用频带传输(BPSK调制); ②扩频码要求采用周期为63(或127)的m序列; ③仿真从基站发送数据到三个不同的用户,各不同用户分别进行数据接收; ④设计三种不同的功率延迟分布,从基站到达三个不同的用户分别经过多径衰落(路径数分别为2,3,4); ⑤三个用户接收端分别解出各自的数据并与发送前的数据进行差错比较。三、仿真方案详细设计 整个实验主要通过matlab仿真,产生基带信号,产生M序列,并且进行BPSK调制以及扩频和解扩等,实现三个不同用户不同径的数量的多径衰落,最终得出误码率。

整个通信系统的总体框图如下: 扩频通信发射机设计 扩频通信接收机设计

由流程图可知,整个设计主要由发送端、信道和接收机组成。 其中发射端主要完成m序列的产生,随机0,1序列的产生。然后利用m序列对产生的随机序列进行扩频,然后再用cos(wt)对其进行调制。 信道主要模拟信号的多径传输,在这个信道中一共有三个用户的数据进行传输,用户一经过了2径衰落,用户二经过了3径衰落,用户三经过了4径衰落。 接收端接收到的信号是几路多径信号的加噪后的叠加,首先要完成信号的解扩,然后再解调,滤波,抽样判决最后分别与原始信号比较并统计误码率现对主要功能部分进行详细描述: 1.主程序流程图

通信工程系统仿真实验报告

通信原理课程设计 实验报告 专业:通信工程 届别:07 B班 学号:0715232022 姓名:吴林桂 指导老师:陈东华

数字通信系统设计 一、 实验要求: 信源书记先经过平方根升余弦基带成型滤波,成型滤波器参数自选,再经BPSK ,QPSK 或QAM 调制(调制方式任选),发射信号经AWGN 信道后解调匹配滤波后接收,信道编码可选(不做硬性要求),要求给出基带成型前后的时域波形和眼图,画出接收端匹配滤波后时域型号的波形,并在时间轴标出最佳采样点时刻。对传输系统进行误码率分析。 二、系统框图 三、实验原理: QAM 调制原理:在通信传渝领域中,为了使有限的带宽有更高的信息传输速率,负载更多的用户必须采用先进的调制技术,提高频谱利用率。QAM 就是一种频率利用率很高的调制技术。 t B t A t Y m m 00sin cos )(ωω+= 0≤t ≤Tb 式中 Tb 为码元宽度t 0cos ω为 同相信号或者I 信号; t 0s i n ω 为正交信号或者Q 信号; m m B A ,为分别为载波t 0cos ω,t 0sin ω的离散振幅; m 为 m A 和m B 的电平数,取值1 , 2 , . . . , M 。 m A = Dm*A ;m B = Em*A ; 式中A 是固定的振幅,与信号的平均功率有关,(dm ,em )表示调制信号矢量点在信号空

间上的坐标,有输入数据决定。 m A 和m B 确定QAM 信号在信号空间的坐标点。称这种抑制载波的双边带调制方式为 正交幅度调制。 图3.3.2 正交调幅法原理图 Pav=(A*A/M )*∑(dm*dm+em*em) m=(1,M) QAM 信号的解调可以采用相干解调,其原理图如图3.3.5所示。 图3.3.5 QAM 相干解调原理图 四、设计方案: (1)、生成一个随机二进制信号 (2)、二进制信号经过卷积编码后再产生格雷码映射的星座图 (3)、二进制转换成十进制后的信号 (4)、对该信号进行16-QAM 调制 (5)、通过升余弦脉冲成形滤波器滤波,同时产生传输信号 (6)、增加加性高斯白噪声,通过匹配滤波器对接受的信号滤波 (7)、对该信号进行16-QAM 解调 五、实验内容跟实验结果:

simulink模拟通信系统仿真及仿真流程

基于Simulink的通信系统建模与仿真 ——模拟通信系统 姓名:XX 完成时间:XX年XX月XX日

一、实验原理(调制、解调的原理框图及说明) AM调制 AM调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。AM调制原理框图如下 AM信号的时域和频域的表达式分别为 式中,为外加的直流分量;可以是确知信号也可以是随机信号,但通常认为其平均值为0,即。 AM解调 AM信号的解调是把接收到的已调信号还原为调制信号。 AM信号的解调方法有两种:相干解调和包络检波解调。 AM相干解调原理框图如下。相干解调的关键在于必须产生一个与调制器同频同相位的载波。如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。 AM包络检波解调原理框图如下。AM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。包络检波器一般由半波或全波整流器和低通滤波器组成。 DSB调制 在幅度调制的一般模型中,若假设滤波器为全通网络(=1),调制信号 中无直流分量,则输出的已调信号就是无载波分量的双边带调制信号(DSB)。DSB调制原理框图如下

DSB信号实质上就是基带信号与载波直接相乘,其时域和频域表示式分别为 DSB解调 DSB只能进行相干解调,其原理框图与AM信号相干解调时完全相同,如图 SSB调制 SSB调制分为滤波法和相移法。 滤波法SSB调制原理框图如下所示。图中的为单边带滤波器。产生SSB信号最直观方法的是,将设计成具有理想高通特性或理想低通特性的单边带滤波器,从而只让所需的一个边带通过,而滤除另一个边带。产生上边带信号时即为,产生下边带信号时即为。 滤波法SSB调制的频域表达式 相移法SSB调制的原理框图如下。图中,为希尔伯特滤波器,它实质上是一个宽带相移网络,对中的任意频率分量均相移。

通信系统设计仿真软件

通信系统设计仿真软件

安捷伦科技有限公司 目录 插图列表 (3) 1 ADS对于通信系统设计仿真的意义 (4) 2 ADS设计仿真软件的优点 (4) 2.1 集成的自顶向下的系统设计 (4) 2.2 灵活的设计环境 (5) 2.3 优化系统架构 (5) 2.4 灵活快速地建立DSP算法 (6) 2.5 快速准确地建立射频模型 (6) 2.6 通过优化得到最佳的系统性能 (7) 2.7 利用已有的用户自定义模型 (7) 2.8 ADS软件与测量仪表连接加快从设计到现实的转变 (7) 2.8.1 据硬件测试建立仿真模型 (7) 2.8.2 尽早进行验证实验,降低系统集成风险 (7) 2.8.3 创建新的测试能力 (8) 2.8.4通信信道,干扰测试 (8) 3 ADS加速B3G/4G通信系统研发 (10) 3.1 ADS具有可以灵活产生各种制式的信号源的能力 (10) 3.2 ADS具有可以仿真MIMO 信道的能力 (10) 3.3 ADS具有仿真空-时(Spacing-time coding)编码性能的能力 (11) 3.4 ADS具有给用户提供Test Bench的能力 (11) 3.5 与仪器的互联 (11) 4 ADS在RF系统设计流程中的地位 (12) 4.1 系统级设计与仿真 (12) 4.1.1 分析并设定RF系统设计指标 (12) 4.1.2 研究并选择恰当的RF拓扑结构 (13) 4.1.3 定义功能模块并进行RF系统性能优化 (13) 4.2 电路级设计与仿真 (14) 4.2.1 研究选择合适的电路拓扑结构 (14) 4.2.2 器件选型与建模 (14) 4.2.3 关键模块设计与电路级仿真 (14) 4.2.4 综合仿真验证RF系统性能 (14) 4.2.5 各独立模块制作与测试 (14) 4.3 集成测试 (14) 4.3.1组合各个单独电路模块 (14) 4.3.2 调试 (14) 4.3.3修改系统指标(如果需要) (15) 4.3.4重新定义项目目标(如果需要) (15)

OFDM系统仿真实验报告

无线通信——OFDM系统仿真

一、实验目的 1、了解OFDM 技术的实现原理 2、利用MATLAB 软件对OFDM 的传输性能进行仿真并对结论进行分析。 二、实验原理与方法 1 OFDM 调制基本原理 正交频分复用(OFDM)是多载波调制(MCM)技术的一种。MCM 的基本思想是把数据流串并变换为N 路速率较低的子数据流,用它们分别去调制N 路子载波后再并行传输。因子数据流的速率是原来的1/N ,即符号周期扩大为原来的N 倍,远大于信道的最大延迟扩展,这样MCM 就把一个宽带频率选择性信道划分成N 个窄带平坦衰落信道,从而“先天”具有很强的抗多径衰落和抗脉冲干扰的能力,特别适合于高速无线数据传输。OFDM 是一种子载波相互混叠的MCM ,因此它除了具有上述毗M 的优势外,还具有更高的频谱利用率。OFDM 选择时域相互正交的子载波,创门虽然在频域相互混叠,却仍能在接收端被分离出来。 2 OFDM 系统的实现模型 利用离散反傅里叶变换( IDFT) 或快速反傅里叶变换( IFFT) 实现的OFDM 系统如图1 所示。输入已经过调制(符号匹配) 的复信号经过串P 并变换后,进行IDFT 或IFFT 和并/串变换,然后插入保护间隔,再经过数/模变换后形成OFDM 调制后的信号s (t ) 。该信号经过信道后,接收到的信号r ( t ) 经过模P 数变换,去掉保护间隔以恢复子载波之间的正交性,再经过串/并变换和DFT 或FFT 后,恢复出OFDM 的调制信号,再经过并P 串变换后还原出输入的符号。 图1 OFDM 系统的实现框图 从OFDM 系统的基本结构可看出, 一对离散傅里叶变换是它的核心,它使各子载波相互正交。设OFDM 信号发射周期为[0,T],在这个周期内并行传输的N 个符号为001010(,...,)N C C C -,,其中ni C 为一般复数, 并对应调制星座图中的某一矢量。比如00(0)(0),(0)(0)C a j b a b =+?和分别为所要传输的并行信号, 若将

MATLAB 2psk通信系统仿真报告

实验一 2PSK调制数字通信系统 一实验题目 设计一个采用2PSK调制的数字通信系统 设计系统整体框图及数学模型; 产生离散二进制信源,进行信道编码(汉明码),产生BPSK信号; 加入信道噪声(高斯白噪声); BPSK信号相干解调,信道解码; 系统性能分析(信号波形、频谱,白噪声的波形、频谱,信道编解 二实验基本原理 数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。 数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(PSK)基本的调制方式。 图1 相应的信号波形的示例 1 0 1 调制原理 数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,它们应处于"同相"状态;如果其中一个开始得迟了一点,就可能不相同了。如果一个达到正最大值时,另一个达到负最大值,则称为"反相"。一般把信号振荡一次(一周)作为360度。如果一个波比另一个波相差半个周期,我们说两个波的

相位差180度,也就是反相。当传输数字信号时,"1"码控制发0度相位,"0"码控制发180度相位。载波的初始相位就有了移动,也就带上了信息。 相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。在2PSK中,通常用初始相位0和π分别表示二进制“1”和“0”。因此,2PSK信号的时域表达式为(t)=Acos t+) 其中,表示第n个符号的绝对相位: = 因此,上式可以改写为 图2 2PSK信号波形 解调原理 2PSK信号的解调方法是相干解调法。由于PSK信号本身就是利用相位传递信息的,所以在接收端必须利用信号的相位信息来解调信号。下图2-3中给出了一种2PSK信号相干接收设备的原理框图。图中经过带通滤波的信号在相乘器中与本地载波相乘,然后用低通滤波器滤除高频分量,在进行抽样判决。判决器是按极性来判决的。即正抽样值判为1,负抽样值判为0. 2PSK信号相干解调各点时间波形如图 3 所示. 当恢复的相干载波产生180°倒相时,解调出的数字基带信号将与发送的数字基带信号正好是相反,解调器输出数字基带信号全部出错.

通信系统设计仿真软件

Agilent ADS 通信系统设计仿真软件

安捷伦科技有限公司 目录 插图列表 (3) 1 ADS对于通信系统设计仿真的意义 (4) 2 ADS设计仿真软件的优点 (4) 2.1 集成的自顶向下的系统设计 (4) 2.2 灵活的设计环境 (5) 2.3 优化系统架构 (5) 2.4 灵活快速地建立DSP算法 (6) 2.5 快速准确地建立射频模型 (6) 2.6 通过优化得到最佳的系统性能 (7) 2.7 利用已有的用户自定义模型 (7) 2.8 ADS软件与测量仪表连接加快从设计到现实的转变 (7) 2.8.1 据硬件测试建立仿真模型 (7) 2.8.2 尽早进行验证实验,降低系统集成风险 (7) 2.8.3 创建新的测试能力 (8) 2.8.4通信信道,干扰测试 (8) 3 ADS加速B3G/4G通信系统研发 (10) 3.1 ADS具有可以灵活产生各种制式的信号源的能力 (10) 3.2 ADS具有可以仿真MIMO 信道的能力 (10) 3.3 ADS具有仿真空-时(Spacing-time coding)编码性能的能力 (11) 3.4 ADS具有给用户提供Test Bench的能力 (11) 3.5 与仪器的互联 (11) 4 ADS在RF系统设计流程中的地位 (12) 4.1 系统级设计与仿真 (12) 4.1.1 分析并设定RF系统设计指标 (12) 4.1.2 研究并选择恰当的RF拓扑结构 (13) 4.1.3 定义功能模块并进行RF系统性能优化 (13) 4.2 电路级设计与仿真 (14) 4.2.1 研究选择合适的电路拓扑结构 (14) 4.2.2 器件选型与建模 (14) 4.2.3 关键模块设计与电路级仿真 (14) 4.2.4 综合仿真验证RF系统性能 (14) 4.2.5 各独立模块制作与测试 (14) 4.3 集成测试 (14) 4.3.1组合各个单独电路模块 (14) 4.3.2 调试 (14) 4.3.3修改系统指标(如果需要) (15) 4.3.4重新定义项目目标(如果需要) (15)

相关主题
文本预览
相关文档 最新文档