CMOS模拟集成电路设总复习教学提纲
- 格式:ppt
- 大小:3.69 MB
- 文档页数:57
CMOS模拟集成电路设计第二版课程设计一、设计目标本次课程设计目标是:通过对CMOS模拟集成电路设计第二版中的一个电路设计实例进行仿真分析、电路优化及布局设计,深入理解和掌握CMOS模拟集成电路的基本原理及设计方法,培养学生分析和设计模拟集成电路的能力。
二、课程设计内容1.复习:基本模拟电路的分析和设计方法在进行CMOS模拟集成电路设计前,学生需要具备基本模拟电路的分析和设计方法。
本节将对常见的放大电路(比如共射放大电路,共基放大电路和共集放大电路等)的分析和设计方法进行复习。
2.CMOS反相器设计实例讲解本部分将讲解CMOS反相器的结构及原理,并通过具体的例子进行电路设计分析和仿真。
帮助学生了解CMOS反相器的设计方法、电路特性及其影响因素。
3.电路优化与参数选择在本部分,我们将重点介绍电路优化及参数选择的方法。
从电路的性能和稳定性等方面进行优化选择,并通过仿真结果来证明优化参数的效果。
4.布局设计与模拟验证本部分将介绍CMOS模拟集成电路的布局设计及模拟验证方法。
布局设计不仅可以影响电路的性能,也会影响电路的稳定性和可靠性。
通过模拟验证对电路进行分析验证。
三、设计评分方案本次课程设计采用滚动评分的方式,共计100分,具体评分如下:1.复习及设立问题:10分2.设计实例介绍及分析:20分3.参数选择及电路优化:30分4.布局设计及模拟验证:40分四、设计要求1.学生需要独立完成所有实验任务,不允许抄袭2.电路模拟软件使用HSPICE或者Spectre等,本节课程以HSPICE为例3.学生需要提交电路仿真截图、仿真结果以及电路设计原理图等作为实验报告。
五、总结通过本次课程设计的学习,学生可以深入了解CMOS模拟集成电路设计的基本原理及设计方法,并且培养分析和设计模拟集成电路的能力,为以后的研究或工作打下更好的基础。
同时,通过本次课程设计,学生能进一步加深对学过的知识的理解,增强把理论知识转化为实际工程应用的能力,提高实际应用能力和工程素质。
《模拟集成电路设计》复习大纲一、 概念:1. 密勒定理:如果将图(a )的电路转换成图(b )的电路,则Z 1=Z/(1-A V ),Z 2=Z/(1-A V -1),其中A V =V Y /V X 。
这种现象可总结为密勒定理。
2. 沟道长度调制效应:当栅与漏之间的电压增大时,实际的反型沟道长度逐渐减小,也就是说,L 实际上是V DS 的函数,这种效应称为沟道长度调制。
3. 等效跨导Gm :对于某种具体的电路结构,定义inDV I ∂∂为电路的等效跨导,来表示输入电压转换成输出电流的能力,跨导的表达式4. N 阱:CMOS 工艺中,PMOS 管与NMOS 管必须做在同一衬底上,若衬底为P 型,则PMOS 管要做在一个N 型的“局部衬底”上,这块与衬底掺杂类型相反的N 型“局部衬底”叫做N 阱。
5. 亚阈值导电效应:实际上,V GS =V TH 时,一个“弱”的反型层仍然存在,并有一些源漏电流,甚至当V GS <V TH 时,I D 也并非是无限小,而是与V GS 呈指数关系,这种效应叫亚阈值导电效应。
6. 有源电流镜:像有源器件一样用来处理信号的电流镜结构叫做有源电流镜。
7. 输出摆幅:输出电压最大值与最小值之间的差。
8. 放大应用时,通常使MOS 管工作在饱和区,电流受栅源过驱动电压控制,我们定义跨导来表示电压转换电流的能力。
9. 在模拟集成电路中MOS 晶体管是四端器件 10. 源跟随器主要应用是起到什么作用?11. λ为沟长调制效应系数,λ值与沟道长度成反比,对于较长的沟道,λ值较小。
12. 饱和区NMOS 管的电压条件及其其沟道电流表达式。
13. 共源共栅放大器结构的一个重要特性就是输出阻抗很高,因此可以做成恒定电流源。
14. MOS 管的主要几何参数15. 共模输入电平的变化会引起差动输出发生改变的因素有哪些? 16. MOS 管的电路符号17. 增益小于1的单级放大器 18. N 阱和P 阱的概念19. MOS 管的二级效应的表达式,比如沟道长度调制效应、体效应、亚阈值效应 20. 按比例缩小理论:恒定电场、恒定电压、准恒压21. 采用电阻负载的共源级单级放大器其小信号增益Av 表达式 22. 在差动放大器设计中CMRR23. 带源极负反馈的共源级其小信号增益的表达式 24. 图示电路的小信号增益表达式。
集成电路设计⽅法--复习提纲1.什么叫IC 的集成度?⽬前先进的IC规模有多⼤?集成度就是⼀块集成电路芯⽚中包含晶体管的数⽬,或者等效逻辑门数2012年5⽉ 71亿晶体管的NVIDIA的GPU 28nm2.什么叫特征尺⼨?特征尺⼨通常是指是⼀条⼯艺线中能加⼯的最⼩尺⼨,反映了集成电路版图图形的精细程度,如MOS晶体管的沟道长度,DRAM结构⾥第⼀层⾦属的⾦属间距(pitch)的⼀半。
3.⽬前主流的硅圆⽚直径是多少?12英⼨4.什么叫NRE(non-recurring engineering)成本?⽀付给研究、开发、设计和测试某项新产品的单次成本。
在集成电路领域主要是指研发⼈⼒成本、硬件设施成本、CAD⼯具成本以及掩膜、封装⼯具、测试装置的成本,产量⼩,费⽤就⾼。
5.什么叫recurring costs?重复性成本,每⼀块芯⽚都要付出的成本,包括流⽚费、封装费、测试费。
也称可变成本,指直接⽤于制造产品的费⽤,因此与产品的产量成正⽐。
包括:产品所⽤部件的成本、组装费⽤以及测试费⽤。
6.什么叫有⽐电路?靠两个导通管的宽长⽐不同,从⽽呈现的电阻不同来决定输出电压,它是两个管⼦分压的结果,电压摆幅由管⼦的尺⼨决定。
7.IC制造⼯艺有哪⼏种?双极型模拟集成电路⼯艺、CMOS⼯艺、BiCMOS⼯艺8.什么叫摩尔定律?摩尔定律⾯临什么样的挑战?当价格不变时,积体电路上可容纳的电晶体数⽬,约每隔24个⽉(现在普遍流⾏的说法是“每18个⽉增加⼀倍”)便会增加⼀倍,性能也将提升⼀倍;或者说,每⼀美元所能买到的电脑性能,将每隔18个⽉翻两倍以上。
⾯临⾯积、速度和功耗的挑战。
9.什么叫后摩尔定律?后摩尔定律下IC设计⾯临哪些挑战?解决⽅案?多重技术创新应⽤向前发展,即在产品多功能化(功耗、带宽等)需求下,将硅基CMOS和⾮硅基等技术相结合,以提供完整的解决⽅案来应对和满⾜层出不穷的新市场发展。
挑战:a单芯⽚的处理速度越来越快,主频越来越⾼,热量越来越多b.互联线延迟增⼤解决⽅案:1.多核、低功耗设计2.3D互联、⽆线互联、光互连延续摩尔定律“尺⼨更⼩、速度更快、成本更低”,还会利⽤更多的技术创新:节能、环保、舒适以及安全性架构:多核散热:研发新型散热器更薄的材料:⽤碳纳⽶管组装⽽成的晶体管速度更快的晶体管:超薄⽯墨烯做的晶体管纳⽶交叉线电路元件:忆阻器光学互联器件分⼦电路、分⼦计算、光⼦计算、量⼦计算、⽣物计算10. IC按设计制造⽅法不同可以分为哪⼏类?全定制IC:硅⽚各掩膜层都要按特定电路的要求进⾏专门设计半定制IC:全部逻辑单元是预先设计好的,可以从单元苦衷调⽤所需单元来掩模图形,可使⽤相应的EDA软件,⾃动布局布线可编程IC :全部逻辑单元都已预先制成,不需要任何掩膜,利⽤开发⼯具对器件进⾏编程,以实现特定的逻辑功能。
2007年《大规模集成电路分析与设计》复习提纲第2章MOSFET 的工作原理及器件模型分析重点内容:* CMOS 模拟集成电路设计分析的最基本最重要的知识:MOS 器件的三个区域的判断,并且对应于各个区域的I D 表达式,和跨导的定义及表达式。
* 体效应的概念,体效应产生的原因,及体效应系数γ。
* 沟道调制效应的概念,沟长调制效应产生的原因,沟道电阻D o I r λ1=,λ与沟道长度成反比。
* MOS 管结构电容的存在,它们各自的表达式。
* MOS 管完整的小信号模型。
MOSFET 的I-V 特性 1. TH GS V V <,MOS 管截止 2. TH GS V V ≥,MOS 管导通a.TH GS DS V V V -<,MOS 管工作在三极管区;⎥⎦⎤⎢⎣⎡--=221)(DS DS TH GS ox n D V V V V L W C I μ 当)(2TH GS DS V V V -<<时,MOS 工作于深Triode 区,此时DS TH GS oxn D V V V LWC I )(-≈μ,DSD V I ~为直线关系. 导通电阻:)(1TH GS ox n DDSon V V LW C I V R -=∂∂=μb .THGS DSV V V -≥,MOS 管工作在饱和区;2)(21TH GS oxn D V V LWC I -=μ 跨导g m :是指在一定的V DS 下,I D 对V GS 的变化率。
饱和区跨导:TH GS DD oxn H T GS oxn m V V I I LW C V V LW C g -==-=22)(μμ三极管区跨导:DS ox n m V L WC g μ=MOSFET 的二级效应1. 体效应: 源极电位和衬底电位不同,引起阈值电压的变化.)22(0F SB F TH TH V V V φφγ-++=)22(0FP BS FP n TH THN V V V φφγ--+=)(H T GS oxn constV GSD m V V LW C V I g DS -=∂∂==μ)22(0FN FN BS P TH THP V V V φφγ---+=2. 沟长调制效应: MOS 工作在饱和区,↑DS V 引起↓L 的现象.)1()(212DS TH GS ox n D V V V LWC I λμ+-⎪⎭⎫⎝⎛= TH GS D DS D ox n DS H T GS oxn GSD m V V I V I L W C V V V LW C V I g -=+⎪⎭⎫⎝⎛=+-=∂∂=2)1(2 )1)((λμλμ 饱和区输出阻抗:λλμ⋅=⋅-⎪⎭⎫⎝⎛=∂∂=D TH GS ox n DS D o I V V LWC V I r 1)(21112线性区输出阻抗:()[]DS TH GS oxn o V V V LW C r --=μ13. 亚阈值导电性V GS <V TH ,器件处于弱反型区.V DS >200mV 后,饱和区I D -V GS 平方律的特性变为指数的关系:T GSD V V I I ζexp0=MOSFET 的结构电容(各电容的表达式见书)MOSFET 的小信号模型MOS 器件在某一工作点附近微小变化的行为,称为小信号分析.此时MOS 器件的工作模型称为小信号模型. MOS 管的交流小信号模型是以其直流工作点为基础的。
模拟集成电路设计教学大纲目录一、课程开设目的和要求2二、教学中应注意的问题2三、课程内容及学时分配2第一章模拟电路设计绪论2第二章MOS器件物理基础2第三章单级放大器3第四章差动放大器3第五章无源与有源电流镜3第六章放大器的频率特性3第八章反馈3第九章运算放大器3高级专题3四、授课学时分配4五、实践环节安排4六、教材及参考书目5课程名称:模拟集成电路设计课程编号:055515英文名称:Analog IC design课程性质:独立设课课程属性:专业限选课应开学期:第5学期学时学分:课程总学时___48,其中实验学时一-一8。
课程总学分--3学生类别:本科生适用专业:电子科学与技术专业的学生。
先修课程:电路、模拟电子技术、半导体物理、固体物理、集成电路版图设计等课程。
一、教学目的和要求CMOS模拟集成电路设计课程是电子科学与技术专业(微电子方向)的主干课程,在教学过程中可以培养学生对在先修课程中所学到的有关知识和技能的综合运用能力和CMOS模拟集成电路分析、设计能力,掌握微电子技术人员所需的基本理论和技能,为学生进一步学习硕士有关专业课程和日后从事集成电路设计工作打下基础。
二、教学中应注意的问题1、教学过程中应强调基本概念的理解,着重注意引导和培养学生的电路分析能力和设计能力2、注重使用集成电路设计工具对电路进行分析仿真设计的训练。
3、重视学生的计算能力培养。
三、教学内容第一章模拟电路设计绪论本课程讨论模拟CMOS集成电路的分析与设计,既着重基本原理,也着重于学生需要掌握的现代工业中新的范例。
掌握研究模拟电路的重要性、研究模拟集成电路以及CMOS模拟集成电路的重要性,掌握电路设计的一般概念。
第二章MOS器件物理基础重点与难点:重点在于MOS的I/V特性以及二级效应。
难点在于小信号模型和SPICE模型。
掌握MOSFET的符号和结构,MOS的I/V特性以及二级效应,掌握MOS 器件的版图、电容、小信号模型和SPICE模型,会用这些模型分析MOS电路。
模拟cmos集成电路设计第二版知识点总结《模拟CMOS集成电路设计》第二版是由Behzad Razavi编写的一本关于模拟集成电路设计的经典教材。
本书主要介绍了模拟集成电路设计的基本原理、技术和方法,包括以下几个方面的知识点:1.CMOS技术基础:介绍CMOS技术的发展历程、基本概念和特点,以及MOSFET器件的工作原理、特性和参数。
2.单级放大器:讨论了单级放大器的基本结构、设计方法和性能指标,包括共源放大器、共栅放大器和共漏放大器等。
3.差分放大器:介绍了差分放大器的工作原理、性能指标和设计方法,以及如何利用差分放大器实现信号放大、电压参考和电流镜等功能。
4.运算放大器:详细阐述了运算放大器的设计原理、性能指标和实际应用,包括折叠式Cascode放大器、套筒式Cascode放大器和两级放大器等。
5.数据转换器:介绍了模数转换器(ADC)和数模转换器(DAC)的基本原理、结构和设计方法,包括逐次逼近型ADC、闪存型ADC、Σ-Δ型ADC和R-2R梯形DAC等。
6.滤波器和振荡器:讨论了模拟滤波器的基本原理、设计和实现方法,包括有源RC滤波器、Gm-C滤波器和开关电容滤波器等;同时介绍了振荡器的工作原理、性能指标和设计方法,包括环形振荡器、LC振荡器和晶体振荡器等。
7.电源管理:阐述了线性稳压器、开关稳压器和电荷泵等电源管理电路的工作原理、性能指标和设计方法。
8.频率响应和稳定性:介绍了频率响应的基本概念、分析方法和设计技巧,以及如何利用频率补偿技术提高电路的稳定性。
9.噪声分析:讨论了噪声的来源、类型和影响因素,以及如何降低噪声对电路性能的影响。
10.非线性效应:介绍了非线性效应的基本原理、产生原因和影响,以及如何利用非线性效应实现特定的功能,如混频器、乘法器和倍频器等。
通过学习这些知识点,读者可以掌握模拟CMOS集成电路设计的基本原理、技术和方法,为进一步深入研究和实际应用打下坚实的基础。
《模拟集成电路设计》课程教学大纲一、课程基本信息1、课程编码:2、课程名称(中/英文):模拟集成电路设计/ Design of Analog integrated Circuits3、学时/学分:56学时/3.5学分4、先修课程:电路基础、信号与系统、半导体物理与器件、微电子制造工艺5、开课单位:微电子学院6、开课学期(春/秋/春、秋):秋7、课程类别:专业核心课程8、课程简介(中/英文):本课程为微电子专业的必修课,专业核心课程,是集成电路设计方向最核心的专业课程之一。
本课程主要介绍典型模拟CMOS集成电路的工作原理、设计方法和设计流程、仿真分析方法,以及模拟CMOS集成电路的最新研发动态。
通过该课程的学习,将为学生今后从事集成电路设计奠定坚实的理论基础。
9、教材及教学参考书:教材:《模拟集成电路设计》,魏廷存,等编著教学参考书:1)《模拟CMOS集成电路设计》(第2版).2)《CMOS模拟集成电路设计》二、课程教学目标本课程为微电子专业的必修课,专业核心课程,是集成电路设计方向最核心的专业课程之一。
通过该课程的学习,将为学生今后从事集成电路设计奠定坚实的理论基础。
本课程主要介绍典型模拟CMOS集成电路的工作原理、设计方法和设计流程、仿真分析方法,以及模拟CMOS模拟集成电路的最新研发动态。
主要内容有:1)模拟CMOS集成电路的发展历史及趋势、功能及应用领域、设计流程以及仿真分析方法;2)CMOS元器件的工作原理及其各种等效数学模型(低频、高频、噪声等);3)针对典型模拟电路模块,包括电流镜、各种单级放大器、运算放大器、比较器、基准电压与电流产生电路、时钟信号产生电路、ADC与DAC电路等,重点介绍其工作原理、性能分析(直流/交流/瞬态/噪声/鲁棒性等特性分析)和仿真方法以及电路设计方法;4)介绍模拟CMOS集成电路设计领域的最新研究成果,包括低功耗、低噪声、低电压模拟CMOS集成电路设计技术。
CMOS模拟集成电路版图设计课程大纲第一讲CMOS模拟集成电路版图基础⏹CMOS模拟版图概述⏹CMOS模拟集成电路版图的定义⏹CMOS模拟集成电路版图设计流程❑版图规划❑版图设计实现❑版图验证❑版图完成⏹CMOS模拟集成电路版图设计工具第二讲模拟集成电路版图器件与互连⏹概述⏹器件❑MOS管❑电阻❑电容❑电感❑三极管⏹互连❑金属(第一层金属,第二层金属……)❑通孔第三讲寄生参数⏹概述⏹寄生电容⏹线电阻压降(IR drop)⏹寄生电感⏹连线寄生模型⏹MOS管寄生效应第四讲器件匹配⏹概述⏹指状交叉法线⏹共质心法⏹虚拟器件⏹MOS晶体管匹配⏹电阻匹配⏹电容匹配⏹差分线布线⏹器件匹配总则第五讲设计规则⏹概述⏹工艺库中各类器件的层信息⏹设计规则细则⏹工业标准的基本数据格式第六讲验证⏹设计规则检查(DRC)Design Rule Check⏹版图与电路图的对照(LVS)Layout Versus Schematic⏹电气规则检查(ERC)Electrical Rule Check⏹天线规则检查(ANT)⏹静电放电检查(ESD)第七讲可靠性设计⏹天线效应⏹闩锁效应⏹静电放电保护(Electro-Static Discharge ,ESD)⏹数模混合集成电路版图设计第八讲工艺设计工具包(PDK)⏹ 1.PDK名称的涵义⏹ 2.PDK中包含的内容● 2.1 IO lib2.1.1 GDS文件的导入操作2.1.2 网表导入2.1.3 IO使用文档介绍● 2.2 SMIC_13_PDK_v2.6_20142.2.1 Smic13mmrf_1233文件夹2.2.2 model 文件夹2.2.3 Calibre 文件夹● 2.3 SMIC_13_TF_LG_LIST_2014122.3.1 Standard cell Timing lib2.3.2 Calview.cellmap2.3.3 Standard cell netlist及网表导入操作2.3.4 Ant rule (天线规则)第九讲Cadence spectre概述与操作界面⏹Cadence spectre 概述⏹Cadence spectre的特点⏹Cadence spectre的仿真设计方法⏹Cadence spectre与其他EDA软件的连接⏹Cadence spectre的基本操作第十讲Spectre窗口和库元件⏹模拟设计环境(Analog Design Environment)⏹波形显示窗口(Waveform)⏹波形计算器(Waveform Calculator)⏹Spectre库中的基本器件第十讲Cadence Virtuoso版图设计工具⏹Cadence Virtuoso概述⏹Virtuoso 界面介绍⏹Virtuoso 基本操作第十一讲Mentor Calibre版图验证工具⏹Mentor Calibre版图验证工具概述⏹Mentor Calibre版图验证工具调用⏹Mentor Calibre DRC验证⏹Mentor Calibre LVS验证⏹Mentor Calibre寄生参数提取(PEX)第十二讲版图设计与验证流程实例⏹设计环境准备⏹反相器链电路的建立和前仿真⏹反相器链版图设计⏹反相器链版图验证与参数提取⏹反相器链电路后仿真⏹输入输出单元环设计⏹主体电路版图与输入输出单元环的连接⏹导出GDSII文件。
《集成电路设计基础》复习大纲
重点是CMOS电路结构和设计分析。
具体范围如下:
1.模拟集成电路设计、制造过程的基本概念(包括掩膜的技术功能、掩膜在制造过程中的应用、简单版图识别)。
(参考书第1、2章)。
2.基本MOS器件的模型及其分析方法(包括MOS管基本模型、直流特性、频率特性)。
(参考书第3章)。
3.CMOS基本模拟单元电路分析(参考书第4章)
4.CMOS放大器基本结构和特性参数分析(参考书第5章)。
5. 二级运算放大器分析与设计基础(参考书第6章)
本次考试的基本形式为选择题、简答题、计算题和设计题。
本次考试不要求死记公式。
参考书:Phillip E. Allen, Douglas R. Holberg, CMOS Analog Circuit Design, Second Edition, 电子工业出版社,2007年8月。
2012.09.10。
《数字集成电路设计》复习提纲(1-7,10,11章)2011-121. 数字集成电路的成本包括哪几部分?2. 数字门的传播延时是如何定义的?3. 集成电路的设计规则(design rule)有什么作用?4. 什么是MOS晶体管的体效应?什么是沟道长度调制效应?5. 写出一个NMOS晶体管处于截止区、线性区、饱和区的判断条件,以及各工作区的源漏电流表达式(考虑短沟效应即沟道长度调制效应,不考虑速度饱和效应)注:NMOS晶体管的栅、源、漏、衬底分别用G、S、D、B表示。
6. MOS晶体管的本征电容有哪些来源?7. 对于一个CMOS反相器的电压传输特性,请标出A、B、C三点处NMOS管和PMOS管各自处于什么工作区?Vin=0、VDD、VM时,两个管子什么区?V DD8. 在CMOS 反相器中,NMOS 管的平均导通电阻为R eqn ,PMOS 管的平均导通电阻为R eqp ,请写出该反相器的总传播延时定义。
9. 减小一个数字门的延迟的方法有哪些?列出三种,并解释可能存在的弊端。
10. CMOS 电路的功耗有哪三类?这三类功耗分别由什么引起的?11. 同步寄存器的建立时间、维持时间、传播延时的含义是什么?V outV in0.511.522.512. 以下三级反相器链,请问使得总延迟最小的每级反相器的f 是多少?最小的总延迟是多少?假设标准反相器的延迟为t p0。
1C L = 8 C13.(1)用静态互补CMOS 门实现如下功能,画出电路连接图。
Out=AB+CD(2)为使上述逻辑门的延迟与以下尺寸的反相器相同,请给出各晶体管的尺寸。
反相器尺寸:NMOS 管=1,PMOS 管=2。
14. 分析下列动态电路的功能。
OutClkClkAB CM pM e15. 下面的电路是什么功能?16.描述超前进位加法器的基本原理。
17.CLK1和CLK2存在正时钟偏差,即CLK2比CLK1晚。
(1)给出最小时钟周期的约束表达式,考虑时钟偏差。