高中数学空间直角坐标系
- 格式:docx
- 大小:35.65 KB
- 文档页数:4
4.3 空间直角坐标系一、空间直角坐标系二、空间直角坐标系中点的坐标1.空间中的任意点与有序实数组(),,x y z之间的关系如图所示,设点M为空间直角坐标系中的一个定点,过点M分别作垂直于x轴、y轴和z轴的平面,依次交x轴、y轴和z轴于点P、Q和R.设点P、Q和R在x轴,y轴和z轴上的坐标分别是x、y和z,那么点M就和有序实数组(x,y,z)是一一对应的关系,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z),其中x叫做点M的横坐标,y叫做点M纵坐标,z叫做点M的竖坐标.2.空间直角坐标系中特殊位置点的坐标 3.空间直角坐标系中的对称点设点P (a ,b ,c )为空间直角坐标系中的点,则三、空间两点间的距离公式如图,设点11112222(,,),(,,)P x y z P x y z 是空间中任意两点,且点11112222(,,),(,,)P x y z Px y z 在xOy 平面上的射影分别为M ,N ,那么M ,N 的坐标分别为1122(,,0),(,,0)M x y N x y .在xOy 平面上,||MN = 在平面21MNP P 内,过点1P 作2P N 的垂线,垂足为H ,则11122||||,||||,||||PH MN MP z MP z ===,所以221||||HP z z =-.在12Rt △PHP 中,1||||PH MN == 根据勾股定理,得12||PP ==.因此,空间中点P 1(x 1,y 1,z 1)、P 2(x 2,y 2,z 2)之间的距离是12||PP =特别地,点P (x ,y ,z )到坐标原点O (0,0,0)的距离为|OP |空间两点间的距离公式可以类比平面上两点间的距离公式,只是增加了对应的竖坐标的运算. 空间中点坐标公式:设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB 中点P ⎝⎛⎭⎫x 1+x 22,y 1+y 22,z 1+z 22.1.确定空间任一点的坐标确定空间直角坐标系中任一点P 的坐标的步骤是:①过P 作PC ⊥z 轴于点C ;②过P 作PM ⊥平面xOy 于点M ,过M 作MA ⊥x 轴于点A ,过M 作MB ⊥y 轴于点B ;③设P (x ,y ,z ),则|x |=|OA |,|y |=|OB |,|z |=|OC |.当点A 、B 、C 分别在x 、y 、z 轴的正半轴上时,则x 、y 、z 的符号为正;当点A 、B 、C 分别在x 、y 、z 轴的负半轴上时,则x 、y 、z 的符号为负;当点A 、B 、C 与原点重合时,则x 、y 、z 的值均为0.空间中点的坐标受空间直角坐标系的制约,同一个点,在不同的空间直角坐标系中,其坐标是不同的.【例1】如图,在长方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱BC ,CC 1上的点,|CF |=|AB |=2|CE |,|AB |∶|AD |∶|AA 1|=1∶2∶4.试建立适当的坐标系,写出E ,F 点的坐标.【名师点睛】空间中点P 坐标的确定方法 (1)由P 点分别作垂直于x 轴、y 轴、z 轴的平面,依次交x 轴、y 轴、z 轴于点P x 、P y ,P z ,这三个点在x 轴、y 轴、z 轴上的坐标分别为x ,y ,z ,那么点P 的坐标就是(x ,y ,z ).(2)若题所给图形中存在垂直于坐标轴的平面,或点P 在坐标轴或坐标平面上,则要充分利用这一性质解题.【例2】如图所示,在长方体ABCD-A 1B 1C 1D 1中,|AD|=3,|DC|=4,|DD 1|=2,E ,F 分别是BB 1,D 1B 1的中点,求点A ,B ,C ,D ,A 1,B 1,C 1,D 1,E ,F 的坐标.【例3】如图,在正方体1111ABCD A B C D -中,,E F 分别是111,BB D B 的中点,棱长为1. 试建立适当的空间直角坐标系,写出点,E F 的坐标.【解析】建立如图所示坐标系.方法一:E 点在xDy 面上的射影为,1,()1,0B B ,竖坐标为12.所以1(1,1,)2E .F 在xDy 面上的射影为BD 的中点G ,竖坐标为1.所以11(,,1)22F . 方法二:11,()1,1B ,10,()0,1D ,()1,1,0B ,E 为1B B 的中点,F 为11B D 的中点.故E 点的坐标为111110(,,)222+++即1(1,1,)2,F 点的坐标为101011(,,)222+++,即11(,,1)22. 2.求空间对称点的坐标求对称点的坐标一般依据“关于谁对称,谁保持不变,其余坐标相反”来解决.如关于横轴(x 轴)的对称点,横坐标不变,纵坐标、竖坐标变为原来的相反数;关于xOy 坐标平面的对称点,横坐标、纵坐标不变,竖坐标变为原来的相反数.【例4】设点是直角坐标系中一点,则点关于轴对称的点的坐标为( A )A .B .C .D . 【例5】空间直角坐标系中,点关于点的对称点的坐标为( C ) A .B .C .D .【名师点睛】(1)求空间对称点的规律方法 空间的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论.(2)空间直角坐标系中,任一点P (x ,y ,z )的几种特殊对称点的坐标如下:①关于原点对称的点的坐标是P 1(-x ,-y ,-z );②关于x 轴(横轴)对称的点的坐标是P 2(x ,-y ,-z );③关于y 轴(纵轴)对称的点的坐标是P 3(-x ,y ,-z );④关于z 轴(竖轴)对称的点的坐标是P 4(-x ,-y ,z );⑤关于xOy 坐标平面对称的点的坐标是P 5(x ,y ,-z );⑥关于yOz 坐标平面对称的点的坐标是P 6(-x ,y ,z );⑦关于xOz 坐标平面对称的点的坐标是P 7(x ,-y ,z ).(3)点关于点的对称要用中点坐标公式解决,即已知空间中两点111222(,,),(,,)A x y z B x y z ,则AB 的中点P 的坐标为121212(,,)222x x y y z z +++.3.空间两点间的距离公式(1)已知空间两点间的距离求点的坐标,是距离公式的逆应用,可直接设出该点坐标,利用待定系数法求解点的坐标.(2)若求满足某一条件的点,要先设出点的坐标,再建立方程或方程组求解.(3)利用空间两点间的距离公式判断三角形的形状时,需分别求出三边长,得到边长相等或者满足勾股定理;判断三点共线时,需分别求出任意两点连线的长度,判断其中两线段长度之和等于另一条线段长度.【例6】已知点()3,2,1M ,()1,0,5N ,求:(1)线段MN 的长度;(2)到,M N 两点的距离相等的点(),,P x y z 的坐标满足的条件.【例7】如图所示,建立空间直角坐标系Dxyz,已知正方体ABCD-A1B1C1D1的棱长为1,点P 是正方体的体对角线D1B的中点,点Q在棱CC1上.当2|C1Q|=|QC|时,求|PQ|.【例8】如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,|AP|=|AB|=2,|BC|=2,E,F分别是AD,PC的中点.求证:PC⊥BF,PC⊥EF.【解析】如图,以A为坐标原点,AB,AD,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系.∵|AP|=|AB|=2,|BC|=2,四边形ABCD是矩形,∴A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),∴|PB|==2,∴|PB|=|BC|,又F为PC的中点,∴PC⊥BF.【例9】如图,已知正方体ABCD -A′B′C′D′的棱长为a,M为BD′的中点,点N在A′C′上,且|A′N|=3|NC′|,试求|MN|的长.因为|A ′N |=3|NC ′|,所以N 为A ′C ′的四等分点,从而N 为O ′C ′的中点,故N ⎝⎛⎭⎫a 4,34a ,a . 根据空间两点间的距离公式,可得|MN |=⎝⎛⎭⎫a 2-a 42+⎝⎛⎭⎫a 2-3a 42+⎝⎛⎭⎫a 2-a 2=64a . 【名师点睛】求空间两点间的距离时,一般使用空间两点间的距离公式,应用公式的关键在于建立适当的坐标系,确定两点的坐标.确定点的坐标的方法视具体题目而定,一般说来,要转化到平面中求解,有时也利用几何图形的特征,结合平面直角坐标系的知识确定.4.混淆平面与空间直角坐标系【例10】已知空间中两点(3,1,1)(2,2,3)A B ---、,在z 轴上有一点C ,它到A B 、两点的距离相等,求点C 的坐标.【错解】由已知得,AB 的中点坐标为51(,,2)22-,且AB 所在直线的斜率为3,故AB 的垂直平分线的斜率为13-,则垂直平分线的方程为15112()()3232z x y -=-+--, 当0x y ==时,43z =,故点C 的坐标为4(0,0,)3. 【错因分析】上面解法照搬平面解析几何中的解题思路而出现错误.由于点C 到A B 、两点的距离相等,故可求AB 的垂直平分线.以目前所学知识只能用两点间的距离公式求解.【正解】设点C 的坐标为(0,0,)z ,则=,即2210(1)3()8z z +-=+-,解得32z =,所以点C 的坐标为3(0,0,)2. 基础训练1.在空间直角坐标系中,点P (1,2,3)关于x 轴对称的点的坐标为( B )A .(-1,2,3)B .(1,-2,-3)C .(-1,-2,3)D .(-1,2,-3)2.在空间直角坐标系中,点P (3,4,5)关于yOz 平面对称的点的坐标为( A )A .(-3,4,5)B .(-3,-4,5)C .(3,-4,-5)D .(-3,4,-5)3.如图,在正方体OABC -O 1A 1B 1C 1中,棱长为2,E 是B 1B 上的点,且|EB |=2|EB 1|,则点E 的坐标为( D )A .(2,2,1)B .(2,2,23)C .(2,2,13)D .(2,2,43) 4.在长方体ABCD -A 1B 1C 1D 1中,若D (0,0,0)、A (4,0,0)、B (4,2,0)、A 1(4,0,3),则对角线AC 1的长为( B )A .9B .29C .5D .2 65.已知点A (1,a ,-5),B (2a ,-7,-2)(a ∈R )则|AB |的最小值是( B )A .3 3B .3 6C .2 3D .2 66.点(2,0,3)在空间直角坐标系中的( C )A .y 轴上B .xOy 面上C .xOz 面上D .第一象限内7.在空间直角坐标系中,已知点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为( B )A .(0,2,0)B .(0,2,3)C .(1,0,3)D .(1,0,0)8.如图所示,在长方体ABCO -A 1B 1C 1O 1中,OA =1,OC =2,OO 1=3,A 1C 1与B 1O 1交于P ,分别写出A ,B ,C ,O ,A 1,B 1,C 1,O 1,P 的坐标.9.(1)已知A (1,2,-1),B (2,0,2),①在x 轴上求一点P ,使|PA |=|PB |;②在xOz 平面内的点M 到A 点与到B 点等距离,求M 点轨迹.(2)在xOy 平面内的直线x +y =1上确定一点M ,使它到点N (6,5,1)的距离最小.(1)①设P (a ,0,0),则由已知得222(1)(2)1a -+-+=2(2)4a -+,即a 2-2a +6=a 2-4a +8,解得a =1,所以P 点坐标为(1,0,0).②设M (x ,0,z ),则有222(1)(2)(1)x z -+-++=22(2)(2)x z -+-,整理得2x +6z -2=0,即x +3z -1=0.故M 点的轨迹是xOz 平面内的一条直线.(2)由已知,可设M (x ,1-x ,0),则|MN |=222(6)(15)(01)x x -+--+-=22(1)51x -+.所以当x =1时,|MN |min =51,此时点M (1,0,0).能力10.在空间直角坐标系中,一定点P 到三个坐标轴的距离都是1,则该点到原点的距离是( A )A .62B . 3C .32D .6311.已知A 点坐标为(1,1,1),B (3,3,3),点P 在x 轴上,且|PA |=|PB |,则P 点坐标为( A )A .(6,0,0)B .(6,0,1)C .(0,0,6)D .(0,6,0)12.已知M (5,3,-2),N (1,-1,0),则点M 关于点N 的对称点P 的坐标为(-3,-5,2).13.在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的顶点A 的坐标为(3,-1,2),其中心M的坐标为(0,1,2),则该正方体的棱长等于_2393_. 14.如图所示,正方形ABCD ,ABEF 的边长都是1,并且平面ABCD ⊥平面ABEF ,点M 在AC 上移动,点N 在BF 上移动.若|CM |=|BN |=a (0<a <2).(1)求MN 的长度;(2)当a 为何值时,MN 的长度最短?因为平面ABCD ⊥平面ABEF ,且交线为AB ,BE ⊥AB ,所以BE ⊥平面ABCD ,所以BA ,BC ,BE 两两垂直.取B 为坐标原点,过BA ,BE ,BC 的直线分别为x 轴,y 轴和z 轴,建立空间直角坐标系.因为|BC |=1,|CM |=a ,点M 在坐标平面xBz 内且在正方形ABCD 的对角线上, 所以点M (22a ,0,1-22a ).因为点N 在坐标平面xBy 内且在正方形ABEF 的对角线上,|BN |=a ,所以点N (22a ,22a ,0). (1(2)由(1),得|当a =22(满足0<a 即MN 15.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 在线段BC 1上,且|BM |=2|MC 1|,N 是线段D 1M 的中点,求点M ,N 的坐标.16.如图所示,V -ABCD 是正棱锥,O 为底面中心,E ,F 分别为BC ,CD 的中点.已知|AB |=2,|VO |=3,建立如图所示空间直角坐标系,试分别写出各个顶点的坐标.∵底面是边长为2的正方形,∴|CE |=|CF |=1.∵O 点是坐标原点,∴C (1,1,0), 同样的方法可以确定B (1,-1,0),A (-1,-1,0),D (-1,1,0).∵V 在z 轴上,∴V (0,0,3).17.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,以正方体的三条棱所在直线为轴建立空间直角坐标系Oxyz .(1)若点P 在线段BD 1上,且满足3|BP |=|BD 1|,试写出点P 的坐标,并写出P 关于y 轴的对称点P ′的坐标;(2)在线段C 1D 上找一点M ,使点M 到点P 的距离最小,求出点M 的坐标.(1)由题意知P 的坐标为⎝⎛⎭⎫23,23,13,P 关于y 轴的对称点P ′的坐标为⎝⎛⎭⎫-23,23,-13. (2)设线段C 1D 上一点M 的坐标为(0,m ,m ),则有|MP |=⎝⎛⎭⎫-232+⎝⎛⎭⎫m -232+⎝⎛⎭⎫m -132=2m 2-2m +1=2⎝⎛⎭⎫m -122+12. 当m =12时,|MP |取得最小值22,所以点M 为⎝⎛⎭⎫0,12,12. 18.如图,三棱柱ABC -A 1B 1C 1中,所有棱长都为2,侧棱AA 1⊥底面ABC ,建立适当坐标系写出各顶点的坐标.19.如图,以长方体ABCD ﹣A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标是(﹣4,3,2).。
空间直角坐标系中点的坐标1.空间中点的坐标:P (x ,y ,z ),确定方法:由P 作PP '⊥坐标平面xOy ,则P '点是平面xOy 上的点,其坐标为(x ,y ,O ),这样就确定了P 的横坐标x 和纵坐标y.若PP '与z 轴正半轴在平面xOy 同侧,则z=|PP '|;若PP '与z 轴正半轴在平面xOy 异侧,则z=-|PP '|,这样就确定了P点的竖坐标z.2.坐标平面上点的坐标:①xOy 平面上点的坐标:(x ,y ,0);xOz 平面上点的坐标:(x ,O ,z );yOz 平面上点的坐标:(0,y ,z );②x 轴上点的坐标:(x ,0,0);y 轴上点的坐标:(0,y ,0);z 轴上点的坐标:(0,0,z )3.空间直角坐标系中长方体各顶点的坐标:设长方体ABCD -A 'B 'C 'D '的长.宽.高分别为,将A 点放在坐标原点,AB 放在x 轴正半轴上,AD 放在y 轴正半轴上,如图:则A (0,0,0),B (a ,0,0),C (a ,b ,0),D (0,b ,0),A '(0,0,c ),B '(a ,0,c ),C '(a ,b ,c ),D '(0,b ,c ).例1 已知A (x ,2,3).B (5,4,7),且|AB |=6,求x 的值.解:Q |AB |=6,∴ (x - 5)× (x - 5) + (2 - 4) ×(2 - 4)2+ (3 - 7)×(3 - 7) = 36 ,即 (x - 5)2 = 16 ,解得x =1 或x =9.例3求点P (1,2,3)关于坐标平面xOy 的对称点的坐标.解:设点P 关于坐标平面xOy 的对称点为P ¢ ,连PP ¢ 交坐标平面xOy 于Q , 则PP ¢ ^ 坐标平面xOy ,且|PQ |=| P ¢ Q|,∴ P ¢ 在 x 轴.y 轴上的射影分别与 P 在 x 轴.y 轴上的射影重合, P ¢ 在 z 轴上的射影与 P 在 z 轴上的射影关于原点对称,∴ P ¢ 与P 的横坐标.纵坐标分别相同,竖坐标互为相反数,,,a b c∴点P(1,2,3)关于坐标平面xOy 的对称点的坐标为(1,2,3).。
高中数学空间直角坐标系一、引言在高中数学中,空间直角坐标系是一个非常重要的概念。
它是将三维空间中的点与坐标进行对应的一种方法。
通过空间直角坐标系,我们可以准确地描述和计算三维空间中的几何图形、距离、角度等属性。
本文将详细介绍空间直角坐标系的定义、性质以及其在几何图形和计算中的应用。
二、空间直角坐标系的定义空间直角坐标系是由三个互相垂直的坐标轴组成的。
这三个坐标轴分别称为x轴、y轴和z轴。
它们的交点称为原点O。
我们可以用一个有序三元组(x, y, z)来表示空间直角坐标系中的任意一点P。
其中,x表示点P在x轴上的投影长度,y表示点P在y轴上的投影长度,z表示点P在z轴上的投影长度。
通过这种方式,我们可以将三维空间中的点与坐标进行一一对应。
三、空间直角坐标系的性质1. 三个坐标轴两两垂直,任意两个坐标轴的交点都在第三个坐标轴上。
2. 坐标轴上的单位长度相等,可以任意确定。
3. 空间直角坐标系中的平面可以分为三个不同的视图:俯视图、前视图和侧视图。
俯视图是以z轴为观察方向看空间直角坐标系,可以看到x轴和y轴;前视图是以y轴为观察方向看空间直角坐标系,可以看到x轴和z轴;侧视图是以x轴为观察方向看空间直角坐标系,可以看到y轴和z轴。
4. 空间直角坐标系中,两点的距离可以通过直角三角形的勾股定理求得。
四、空间直角坐标系在几何图形中的应用1. 点的位置:通过空间直角坐标系,我们可以准确地描述点在三维空间中的位置。
2. 直线的方程:在空间直角坐标系中,我们可以通过两点确定一条直线,并求得直线的方程。
3. 平面的方程:在空间直角坐标系中,我们可以通过三点确定一个平面,并求得平面的方程。
4. 空间直角坐标系中的几何变换:平移、旋转、镜像等几何变换都可以在空间直角坐标系中进行描述和计算。
五、空间直角坐标系在计算中的应用1. 距离计算:通过空间直角坐标系,我们可以计算两点之间的距离。
根据勾股定理,设两点分别为A(x1, y1, z1)和B(x2, y2, z2),则AB 的距离为√[(x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2]。
个性化辅导教案学员姓名科目年级授课时间课时授课老师教学课题教学目标重点难点教学内容4.3空间直角坐标系空间直角坐标系的建立及坐标表示[导入新知]1.空间直角坐标系及相关概念(1)空间直角坐标系:从空间某一定点引三条两两垂直,且有相同单位长度的数轴:x轴、y轴、z轴,这样就建立了空间直角坐标系O-xyz.(2)相关概念:点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、yOz平面、zOx平面.2.右手直角坐标系在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.3.空间一点的坐标空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z).其中x叫点M的横坐标,y叫点M的纵坐标,z叫点M的竖坐标.[化解疑难]1.空间直角坐标系的建立建立空间直角坐标系时,要考虑如何建系才能使点的坐标简单、便于计算,一般是要使尽量多的点落在坐标轴上,对于长方体或正方体,一般取相邻的三条棱所在的直线为x ,y ,z 轴建立空间直角坐标系.2.空间直角坐标系的画法(1)x 轴与y 轴成135°(或45°),x 轴与z 轴成135°(或45°).(2)y 轴垂直于z 轴、y 轴和z 轴的单位长相等,x 轴上的单位长则等于y 轴单位长的12.3.特殊点在空间直角坐标系中的坐标表示如下点的位置 x 轴 y 轴 z 轴 xOy 平面 yOz 平面 xOz 平面 坐标表示 (x,0,0)(0,y,0)(0,0,z )(x ,y,0)(0,y ,z )(x,0,z )空间两点间的距离公式[导入新知]1.点P (x ,y ,z )到坐标原点O (0,0,0)的距离 |OP |=x 2+y 2+z 2.2.任意两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)间的距离 |P 1P 2|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2.[化解疑难]1.空间两点间的距离公式可以类比平面上两点间的距离公式,只是增加了对应的竖坐标的运算. 2.空间中点坐标公式:设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB 中点P ⎝⎛⎭⎫x 1+x 22,y 1+y 22,z 1+z 22.空间中点的坐标的确定[例1] 如图,在长方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱BC ,CC 1上的点,|CF |=|AB |=2|CE |,|AB |∶|AD |∶|AA 1|=1∶2∶4.试建立适当的坐标系,写出E ,F 点的坐标. [解] 以A 为坐标原点,射线AB ,AD ,AA 1的方向分别为正方向建立空间直角坐标系,如图所示.分别设|AB |=1,|AD |=2,|AA 1|=4,则|CF |=|AB |=1,|CE |=12|AB |=12,所以|BE |=|BC |-|CE |=2-12=32.所以点E 的坐标为(1,32,0),点F 的坐标为(1,2,1).[类题通法]空间中点P 坐标的确定方法(1)由P 点分别作垂直于x 轴、y 轴、z 轴的平面,依次交x 轴、y 轴、z 轴于点P x 、P y 、P z ,这三个点在x 轴、y 轴、z 轴上的坐标分别为x 、y 、z ,那么点P 的坐标就是(x ,y ,z ).(2)若题所给图形中存在垂直于坐标轴的平面,或点P 在坐标轴或坐标平面上,则要充分利用这一性质解题.[活学活用]1.如图所示,V -ABCD 是正棱锥,O 为底面中心,E ,F 分别为BC ,CD 的中点.已知|AB |=2,|VO |=3,建立如右所示空间直角坐标系,试分别写出各个顶点的坐标.空间中点的对称[例2] (1)点A (1,2,-1)关于坐标平面xOy 及x 轴的对称点的坐标分别是________.(2)已知点P (2,3,-1)关于坐标平面xOy 的对称点为P 1,点P 1关于坐标平面yOz 的对称点为P 2,点P 2关于z 轴的对称点为P 3,则点P 3的坐标为________.[解析] (1)如图所示,过A 作AM ⊥xOy 交平面于M ,并延长到C ,使AM =CM ,则A 与C 关于坐标平面xOy 对称且C 的坐标为(1,2,1).过A 作AN ⊥x 轴于N 并延长到点B ,使AN =NB ,则A 与B 关于x 轴对称且B 的坐标为(1,-2,1).∴A(1,2,-1)关于坐标平面xOy对称的点C的坐标为(1,2,1);A(1,2,-1)关于x轴的对称点B的坐标为(1,-2,1).(2)点P(2,3-1)关于坐标平面xOy的对称点P1的坐标为(2,3,1),点P1关于坐标平面yOz的对称点P2的坐标为(-2,3,1),点P2关于z轴的对称点P3的坐标是(2,-3,1).[答案](1)(1,2,1),(1,-2,1)(2)(2,-3,1)[类题通法]1.求空间对称点的规律方法空间的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论.2.空间直角坐标系中,任一点P(x,y,z)的几种特殊对称点的坐标如下:①关于原点对称的点的坐标是P1(-x,-y,-z);②关于x轴(横轴)对称的点的坐标是P2(x,-y,-z);③关于y轴(纵轴)对称的点的坐标是P3(-x,y,-z);④关于z轴(竖轴)对称的点的坐标是P4(-x,-y,z);⑤关于xOy坐标平面对称的点的坐标是P5(x,y,-z);⑥关于yOz坐标平面对称的点的坐标是P6(-x,y,z);⑦关于xOz坐标平面对称的点的坐标是P7(x,-y,z).[活学活用]2.在空间直角坐标系中,点P(3,1,5)关于平面yOz对称的点的坐标为()A.(-3,1,5)B.(-3,-1,5)C.(3,-1,-5) D.(-3,1,-5)3.点P(-3,2,-1)关于平面xOy的对称点是________,关于平面yOz的对称点是________,关于x轴的对称点是________,关于y轴的对称点是________.空间中两点间的距离[例3]如图,已知正方体ABCD-A′B′C′D′的棱长为a,M为BD′的中点,点N在A′C′上,且|A′N|=3|NC′|,试求|MN|的长.[解] 由题意应先建立坐标系,以D 为原点,建立如图所示空间直角坐标系.因为正方体棱长为a ,所以B (a ,a,0),A ′(a,0,a ),C ′(0,a ,a ),D ′(0,0,a ).由于M 为BD ′的中点,取A ′C ′的中点O ′,所以M ⎝⎛⎭⎫a 2,a 2,a 2,O ′⎝⎛⎭⎫a 2,a2,a .因为|A ′N |=3|NC ′|,所以N 为A ′C ′的四等分点,从而N 为O ′C ′的中点,故N ⎝⎛⎭⎫a 4,34a ,a .根据空间两点间的距离公式,可得|MN |=⎝⎛⎭⎫a 2-a 42+⎝⎛⎭⎫a 2-3a 42+⎝⎛⎭⎫a 2-a 2=64a . [类题通法]求空间两点间的距离时,一般使用空间两点间的距离公式,应用公式的关键在于建立适当的坐标系,确定两点的坐标.确定点的坐标的方法视具体题目而定,一般说来,要转化到平面中求解,有时也利用几何图形的特征,结合平面直角坐标系的知识确定.[活学活用]4.如图,在空间直角坐标系中,有一棱长为a 的正方体ABCD -A 1B 1C 1D 1,A 1C的中点E 到AB 的中点F 的距离为( )A.2aB.22a C .a D.12a12.空间直角坐标系的应用误区[典例] 如图,三棱柱ABC -A 1B 1C 1中,所有棱长都为2,侧棱AA 1⊥底面ABC ,建立适当坐标系写出各顶点的坐标.[解析] 取AC 的中点O 和A 1C 1的中点O 1,可得BO ⊥AC ,分别以OB 、OC 、OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.因为三棱柱各棱长均为2,所以OA =OC =1,OB =3,可得A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,-1,2),B 1(3,0,2),C 1(0,1,2).[易错防范]1.解答此题不是以OB 、OC 、OO 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,而是以AB 、AC 、AA 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,进而错误地求出A (0,0,0),B (2,0,0),C (0,2,0).2.求空间点的坐标的关键是建立正确的空间直角坐标系,这也是正确利用坐标求解此类问题的前提.建立空间直角坐标系时要注意坐标轴必须是共点且两两垂直,且符合右手法则.[成功破障]如图,在棱长为1的正方体ABCD-A1B1C1D1中,以正方体的三条棱所在直线为轴建立空间直角坐标系O-xyz.(1)若点P在线段BD1上,且满足3|BP|=|BD1|,试写出点P的坐标,并写出P关于y 轴的对称点P′的坐标;(2)在线段C1D上找一点M,使点M到点P的距离最小,求出点M的坐标.[随堂即时演练]1.在空间直角坐标系中,点P(3,4,5)与Q(3,-4,-5)两点的位置关系是()A.关于x轴对称B.关于xOy平面对称C.关于坐标原点对称D.以上都不对2.在空间直角坐标系中,点P(-2,1,4)关于xOy平面的对称点的坐标是()A.(-2,1,-4) B.(-2,-1,-4)C.(2,-1,4) D.(2,1,-4)3.已知点A(4,5,6),B(-5,0,10),在z轴上有一点P,使|P A|=|PB|,则点P的坐标是________.4.在空间直角坐标系中,正方体ABCD-A1B1C1D1的顶点A的坐标为(3,-1,2),其中心M的坐标为(0,1,2),则该正方体的棱长为________.5.如图所示,直三棱柱ABC-A1B1C1中,|C1C|=|CB|=|CA|=2,AC⊥CB,D,E分别是棱AB,B1C1的中点,F是AC的中点,求DE,EF的长度.课后作业教师课后赏识。
空间直角坐标系
知识梳理
要点一:空间直角坐标系
1、点M对应着唯一确定的有序实数组(x,y,z) , X、y、Z分别是P、Q、R在X、y、z轴上的坐标
2、有序实数组(x, y, z),对应着空间直角坐标系中的一点
3、空间中任意点M的坐标都可以用有序实数组(x,y,z)来表示,该数组叫做点M在此空间直角坐标系中的坐标, 记M(x, y,z),x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标
要点二:空间两点间的距离公式
1、空间中任意一点R(X i,y i,zJ到点P2(X2,y2,Z2)之间的距离公式
PP2 低—X2)2 (y i—y2P—(z1—z2F
三
- 典型例题(例题+变式)
考点1:空间直角坐标系
题型1:认识空间直角坐标系
例1(1 )在空间直角坐标系中,y a表示( )
A. ,y轴上的点
B.过y轴的平面
C. ,垂直于y轴的平面 D •平行于y轴的直线
(2) 在空间直角坐标系中,方程y X表示
A. ,在坐标平面xOy中,1,3象限的平分线
B.平行于z轴的一条直线
C .经过z 轴的一个平面
D .平行于Z 轴的一个平面
考点2 :空间两点间的距离公式
题型2 :利用空间两点间的距离公式解决有关问题
例2如图:已知点 A(1,1,0),对于Oz 轴正半轴上任意一点 P ,在Oy 轴上是否存在一点 B ,使得PA AB 恒成 变式
1•已知A(x,5 x,2x 1),B(1,x 2,2 x),当 代B 两点间距离取得最小值时,
x 的值为 () 2 •设点B 是点A(2,-3,5)关于平面xOy 的对称点,贝U |AB|等于()
四•归纳总结
立?若存在,求出 B 点的坐标;若不存在,说明理由
8 8 A . 19 B . — C . 7 7
19 14 A . 10 C . 38
D . 38
五•每节一测
1 •三角形ABC的三个顶点的坐标为A(1, 2,11), B(4,2,3),C(6, 1,4),则ABC的形状为()
A .正三角形
2.点P(3,4,5)
A • (3,0,0)
B •锐角三角
形
C•直角三角形
在yoz平面上的投影点P的坐标是
B. (0,4,5)
C. (3,0,5)
D •钝角三角形
()
D •(3,4,0)。