第五课 DNA限制性内切酶酶切反应
- 格式:ppt
- 大小:70.50 KB
- 文档页数:11
限制性内切酶酶切反应的标准操作规程(编号:007)1、目的及适用范围利用限制性内切酶在特异性的识别位点上或附近切割双链DNA分子,用于特定基因的克隆等分子生物学研究。
2、主要试剂及仪器微量移液器、恒温水浴锅、限制性内切酶 EcoR I, BamH I 等、通用缓冲液10× Buffer3、操作步骤按顺序加入下列反应物,放入37℃水浴锅内反应2h。
反应物体积(μL)灭菌水3DNA4010× Buffer K 5EcoR I1BamH I1总体积504、问题向导4.1 建立一个标准的酶切反应:目前大多数研究者遵循一条规则,即10个单位的内切酶可以切割1μg不同来源和纯度的DNA。
通常,一个50μL的反应体系中,1μL的酶在1X NEBuffer终浓度及相应温度条件下反应1h即可降解1μg已纯化好的DNA。
如果加入更多的酶,则可相应缩短反应时间;如果减少酶的用量,对许多酶来说,相应延长反应时间(不超过16h)也可完全反应。
4.2 选择正确的酶:选择的酶在底物DNA上必须至少有一个相应的识别位点。
识别碱基数目少的酶比碱基数目多的酶更频繁地切割底物。
假设一个GC含量50%的DNA链,一个识别4个碱基的酶将平均在每44(256)个碱基中切割一次;而一个识别6个碱基的酶将平均在每46(4096)碱基切割一次。
内切酶的产物可以是粘端的(3\'或5\'突出端),也可以是平端的片段。
粘端产物可以与相容的其它内切酶产物连接,而所有的平端产物都可以互相连接。
4.3 内切酶:内切酶一旦拿出冰箱后应当立即置于冰上。
酶应当是最后一个被加入到反应体系中(在加入酶之前所有的其它反应物都应当已经加好并已预混合)。
酶的用量视在底物上的切割频率而定。
例如,超螺旋和包埋法切割的DNA通常需要超过1U/μg的酶才能被完全切割。
21。
DNA限制性内切酶酶切分析一、原理限制性内切酶和基因载体是DNA重组技术中的两个极其重要的方面。
限制性内切酶是首先在大肠杆菌中发现的能够分解外来DNA的核酸酶。
与核酸外切酶相比,该酶可从DNA双链内部特异的核苷酸序列处将DNA双链切断,产生带有粘性或平头末端的DNA片段。
把要克隆的外来DNA和载体DNA用同一种限制性内切酶切割,即可产生带有相同粘性末端的DNA片段。
如果同时用两种不同的酶切割,则可产生带不同粘性末端的片段,通过电泳分离出所需要的目的基因片段。
把目的基因与切开的载体DN A混合,再经过DNA连接酶处理,转化和筛选即可得到希望的重组子。
进行DNA酶切时,根据具体情况可用单酶切或双酶切。
特定的酶有其配套的缓冲液。
进行双酶切时,应选用两种酶都适合的缓冲液;如果两种酶要求的温度不同时,先在较低温度下酶切,然后在较高的温度下酶切。
二、目的了解限制性内切酶的特性和DNA分子的结构,掌握DNA限制性内切酶酶切的图谱的分析方法。
三、材料、试剂与器具1、DNA样品。
2、限制性内切酶。
3、10×限制性内切酶反应缓冲液。
4、无菌双蒸水。
5、0.5M EDTA (pH 8.0)溶液。
6、10×TBE buffer。
7、琼脂糖。
8、溴化乙锭溶液。
9、上样缓冲液(40%蔗糖,0.25%溴酚兰)。
10、微量离心管、微量加样器、水浴锅、台式高速离心机、电泳仪、水平电泳槽。
11、10mg/ml Rnase。
四、操作步骤1、将在-20℃保存的DNA样品和10×限制性内切酶反应缓冲液取出,放在冰浴上融化待用。
2、取一干净无菌的微量离心管,按顺序加入以下组分:DNA样品 0.1-2mg10×内切酶反应缓冲液 1ml内切酶1 1ml内切酶2 1ml加无菌水至 10ml3、离心1秒钟,使管壁上的溶液集中到管底。
用手指轻弹管底部位使之混合,再离心一次,使管壁上的溶液集中到一起。
4、在37℃温育60-120分钟。
实验五DNA的限制性内切酶酶切反应DNA restriction enzyme digestion一、实验目的通过本实验掌握DNA的限制性内切酶酶切反应的基本原理与实验过程。
二、实验原理限制性内切酶能特异地结合于一段被称为限制性酶识别序列的DNA 序列之内或其附近的特异位点上,并切割双链DNA。
它可分为三类:Ⅰ类和Ⅲ类酶在同一蛋白质分子中兼有切割和修饰(甲基化)作用且依赖于ATP 的存在。
Ⅰ类酶结合于识别位点并随机的切割识别位点不远处的DNA,而Ⅲ类酶在识别位点上切割DNA 分子,然后从底物上解离。
Ⅱ类由两种酶组成: 一种为限制性内切核酸酶(限制酶),它切割某一特异的核苷酸序列; 另一种为独立的甲基化酶,它修饰同一识别序列。
绝大多数Ⅱ类限制酶识别长度为4 至6个核苷酸的回文对称特异核苷酸序列(如EcoRⅠ识别六个核苷酸序列:5'- G↓AATTC-3'),有少数酶识别更长的序列或简并序列。
Ⅱ类酶切割位点在识别序列中,有的在对称轴处切割,产生平末端的DNA 片段(如Sma:5'-CCC↓GGG-3');有的切割位点在对称轴一侧,产生带有单链突出末端的DNA 片段称粘性未端, 如EcoRⅠ切割识别序列后产生两个互补的粘性末端。
5'…G↓AATTC…3' →5'…G AATTC…3' ;3'…CTTAA↑G …5' →3'…CTTAA G…5' 。
Pvu I 的识别序列5'…CGAT↓CG…3' →5'…CGATCG…3'三、实验仪器与设备水平式电泳装置,电泳仪,台式高速离心机, 恒温水浴锅, 微量移液枪, 微波炉,紫外透射仪,凝胶成像系统四、实验材料与试剂pUC18质粒:2686bp,0.5μg/μl,40μl/管(日本东洋纺织株式会社) Pvu I 酶及其酶切缓冲液:10U/μl,200U/管(北京鼎国昌盛生物技术有限公司),在pUC18质粒上有两个酶切位点,分别为酶切第一个碱基位是276(896bp)、2066(1790bp)10X的酶切反应体系(使用时酶切反应体系为1X)琼脂糖(Agarose) 溴化乙锭:5×TBE 电泳缓冲液:(使用时稀释10倍)6×电泳载样缓冲液:五、实验步骤1.将清洁干燥并经灭菌的eppendorf 管(最好0.2ml)编号,用微量移液枪分别加入pUC18质粒2μl(1μg)和相应的限制性内切酶反应10×缓冲液2μl,再加入重蒸水15μl(使总体积为19μl), 用手指轻弹管壁使溶液混匀,然后加入1μl 酶液,用吸头轻轻抽吸数次混匀酶切反应物,用微量离心机2000rpm数秒,使溶液集中在管底。
1. DNA中的中的DNase,蛋白,RNA, SDS ,EDTA,酚, 中的 ,蛋白, , , 氯仿和乙醇等
杂质都会影响酶切效果. 氯仿和乙醇等杂质都会影响酶切效果. 2. DNA中的杂中的杂DNA,蛋白可与非专一性结合使酶活中的杂 ,蛋白可与RE非专一性结合使
酶活性降低,另外杂DNA 也竞争酶的切口,往往造成切不也竞争酶的切口, 性降低,另外杂动. 3. DNA中的盐离子(如Mn2+,Cu2+,Co2+和Zn2+等) 中的盐离子( 中的盐离子与有机溶剂(如酚,氯仿和乙醇等) 与有机溶剂(如酚,氯仿和乙醇等)都可抑制限制酶的活性或使限制酶失活或造成DNA切不动或使限制酶的活性或使限制酶失活或造成切不动或使限制酶切割一些非特异序列(*活性活性) 切割一些非特异序列(*活性).
分子克隆
个体克隆多莉羊的克隆。
DNA的限制性内切酶酶切实验目的1.掌握DNA限制性内切酶酶切的原理与实验方法。
2.了解限制性内切酶的特点。
实验原理限制性内切酶是基因工程中剪切DNA分子常用的工具酶,它能识别双链DNA分子内部的特异序列并裂解磷酸二酯键。
根据限制性内切酶的组成、所需因子及裂解DNA的方式不同可分为三类,即Ⅰ型、Ⅱ型和Ⅲ型。
重组DNA技术中所说的限制性内切酶通常指Ⅱ型酶。
绝大多数Ⅱ型酶识别长度为4~6个核苷酸的回文对称特异核苷酸序列(如EcoRⅠ识别六个核苷酸序列5′-G↓AATTC-3′),有少数酶识别更长的序列或简并序列。
实验器材移液器、移液器吸头、1.5ml离心管、离心管架、水浴锅、离心机、制冰机、漂浮板等。
实验试剂(1)DNA样品:质粒pUC19和基因3055。
(2)限制性内切酶、BamH I和EcoR I。
(3)通用型DNA纯化回收试剂盒(试剂盒组成见本篇“实验四DNA片段的纯化与回收”)。
实验操作(1)取2支离心管,在冰上按以下顺序分别配制酶切反应体系(50μl):质粒pUC19/基因3055 43μl限制性内切酶5μlBamH I 1μlEcoR I 1μl(2)加完反应体系后,用手指弹管壁混匀,短暂离心,使反应液甩入离心管底部。
(3)将离心管插入漂浮板上,放置于水浴锅中,37℃水浴15min,然后80℃加热20min终止反应。
(4)使用通用型DNA纯化回收试剂盒回收酶切产物。
注意事项(1)注意要在冰上操作。
(2)加入限制性内切酶时,移液器吸头应贴着离心管壁沿着液面加入。
实验意义限制性内切酶是重组DNA技术中常用的工具酶,在体外构建重组载体时,用于特异性切割载体及目的基因。
思考题如何根据载体和目的基因选取合适的限制性内切酶?。
DNA的限制性酶切反应实验目的学习在实现DNA的体外重组过程中,正确选择合适的载体和限制性核酸内切酶,并利用限制性核酸内切酶对载体和目的DNA进行切割,产生利于连接的合适末端。
通过对DNA的酶切,学会设计构建重组DNA分子的基本方法,掌握载体和外源目的DNA酶切的操作技术。
实验原理核酸限制性内切酶是一类能识别双链DNA中特定碱基顺序的核酸水解酶,这些酶都是从原核生物中发现,它们的功能犹似高等动物的免疫系统,用于抗击外来DNA的侵袭。
限制性内切酶以内切方式水解核酸链中的磷酸二酯键,产生的DNA片段5’端为P,3’端为OH。
根据限制酶的识别切割特性,催化条件及是否具有修饰酶活性可分为Ⅰ、Ⅱ、Ⅲ型三大类。
Ⅰ类和Ⅲ类限制性内切酶,在同一蛋白分子中兼有甲基化作用及依赖ATP的限制性内切酶活性。
Ⅰ类限制性内切酶结合于特定识别位点,且没有特定的切割位点,酶对其识别位点进行随机切割,很难形成稳定的特异性切割末端。
Ⅲ类限制性内切酶在识别位点上切割,然后从底物上解离下来。
故Ⅰ类和Ⅲ类酶在基因工程中基本不用。
Ⅱ型酶就是通常指的DNA限制性内切酶。
它们能识别双链DNA的特异顺序,并在这个顺序内进行切割,产生特异的DNA片段;Ⅱ型酶分子量较小,仅需Mg2+作为催化反应的辅助因子,识别顺序一般为4~6个碱基对的反转重复顺序;Ⅱ型内切酶切割双链DNA产生3种不同的切口--5’端突出;3’端突出和平末端。
体外构建重组DNA分子,首先要了解目的基因的酶切图谱,选用的限制性核酸内切酶都不能在目的基因内部有专一的识别位点,即当用一种或者两种限制性核酸内切酶切割外源供体DNA时,能够得到完整的目的基因。
其次,选择具有相应的单一酶切位点的质粒、噬菌体等载体分子作为克隆的载体。
常用的酶切方法有双酶切法和单酶切法两种。
本实验采用单酶切法,即只用一种限制性内切酶切割目的DNA片段,酶切后的片段两端将产生相同的黏性末端或平末端,再选用同样的限制性内切酶处理载体。