整流电路的分类及分析
- 格式:pptx
- 大小:863.90 KB
- 文档页数:11
整流电路的分类1、按组成的器件可分为不可控电路、半控电路、全控电路三种1)不可控整流电路完全由不可控二极管组成,电路结构一定之后其直流整流电压和交流电源电压值的比是固定不变的。
2)半控整流电路由可控元件和二极管混合组成,在这种电路中,负载电源极性不能改变,但平均值可以调节。
3)在全控整流电路中,所有的整流元件都是可控的(SCR、GTR、GTO 等),其输出直流电压的平均值及极性可以通过控制元件的导通状况而得到调节,在这种电路中,功率既可以由电源向负载传送,也可以由负载反馈给电源,即所谓的有源逆变。
2、按电路结构可分为零式电路和桥式电路1)零式电路指带零点或中性点的电路﹐又称半波电路。
它的特点所有整流元件的阴极(或阳极)都接到一个公共接点﹐向直流負载供电﹐負载的另一根线接到交流电源的零点。
2)桥式电路实际上是由两个半波电路串联而成﹐故又称全波电路。
3、按电网交流输入相数分为单相电路、三相电路和多相电路1)对于小功率整流器常采用单相供电。
单相整流电路分为半波整流,全波整流,桥式整流及倍压整流电路等。
2)三相整流电路是交流测由三相电源供电,负载容量较大,或要求直流电压脉动较小,容易滤波。
三相可控整流电路有三相半波可控整流电路,三相半控桥式整流电路,三相全控桥式整流电路。
因为三相整流裝置三相是平衡的﹐输出的直流电压和电流脉动小﹐对电网影响小﹐且控制滞后時间短,采用三相全控桥式整流电路时﹐输出电压交变分量的最低频率是电网频率的6倍﹐交流分量与直流分量之比也较小﹐因此滤波器的电感量比同容量的单相或三相半波电路小得多。
另外﹐晶闸管的额定电压值也较低。
因此﹐这种电路适用于大功率变流装置。
3)多相整流电路随著整流电路的功率进一步增大(如轧钢电动机﹐功率达数兆瓦)﹐为了减轻对电网的干扰﹐特別是减轻整流电路高次谐波对电网的影响﹐可采用十二相﹑十八相﹑二十四相﹐乃至三十六相的多相整流电路。
采用多相整流电路能改善功率因数﹐提高脉动频率﹐使变压器初级电流的波形更接近正弦波﹐从而显著减少谐波的影响。
8种类型精密全波整流电路及详细分析精密全波整流电路是将交流信号转换为直流信号的一种电路。
下面将介绍8种常见的精密全波整流电路及其详细分析:1.整流电阻式整流电路:这种电路通过一个电阻来限制电流,将输入信号的负半周去掉,输出为纯正半周波信号。
该电路简单且成本较低,但效果不稳定,受负载变化的影响较大。
2.桥式全波整流电路:桥式整流电路是将四个二极管按桥形连接,可以实现将输入信号的负半周反向成正半周输出。
该电路具有高效率、稳定性好且抗干扰能力强的优点,被广泛应用。
3.中点整流电路:中点整流电路是将输入信号通过一个变压器分成两路,然后进行整流,再通过滤波电容和稳压电路来获得稳定的直流输出。
该电路具有较好的稳定性和输出质量,但成本较高。
4.高压全波整流电路:高压全波整流电路是在桥式整流电路的基础上加入一个电压倍压电路,用于输出高压直流。
该电路被广泛应用于高压直流电源。
5.隔离型全波整流电路:隔离型全波整流电路是通过一个变压器将输入的交流信号与输出的直流信号进行电气隔离,以提高安全性和抗干扰能力。
6.双绕组全波整流电路:双绕组全波整流电路是通过两个平衡绕组来实现整流,可以提高转换效率和输出质量,适用于高精度和高要求的应用场景。
7.调谐式全波整流电路:调谐式全波整流电路通过一个调谐电路来实现对输入信号波波数的调谐,并通过滤波电路和稳压电路获得稳定的直流输出。
该电路适用于需要对输入信号进行调谐的场景。
8.双向全波整流电路:双向全波整流电路是将输入信号进行整流后得到一个正半周波信号,然后通过一个功率倍增电路产生一个负半周波信号,最后将两者相加得到完整的全波信号,可以提高输出质量和效率。
总之,不同的精密全波整流电路适用于不同的场景,根据具体要求选择合适的电路可以提高输出质量和效率,满足各种应用需求。
1.第一种得模拟电子书上(第三版442页)介绍得经典电路。
A1用得就是半波整流并且放大两倍,A2用得就是求与电路,达到精密整流得目得。
(R1=R3=R4=R5=2R2)2.第二种方法瞧起来比较简单A1就是半波整流电路,就是负半轴有输出,A2得电压跟随器得变形,正半轴有输出,这样分别对正负半轴得交流电进行整流!(R1=R2)3.第三种电路仿真效果如下:这个电路真就是她妈得坑爹,经过我半天得分析才发现就是这样得结论:Uo=-|Ui|,整出来得电路全就是负得,真想不通为什么作者放到这里,算了先把分析整理一下:当Ui>0得时候电路等效就是这样得放大器A就是同相比例电路,Uo1=(1+R2/R1)Ui=2Ui放大器B就是加减运算电路,Uo2=(1+R2/R1)Ui-(R4/R3)Uo1=-Ui当Ui<0得时候电路图等效如下:放大器A就是电压跟随器,放大器B就是加减运算电路式子整理:Uo2=(1+R4/(R2+R3))Ui- R4/(R2+R3)Ui=Ui以上就是这个电路得全部分析,但就是想达到正向整流得效果就应该把二极管全部反向过来电路与仿真效果如下图所示4.第四种电路就是要求所有电阻全部相等。
这个仿真相对简单。
电路与仿真效果如下计算方法如下:当Ui>0时,D1导通,D2截止(如果真就是不清楚为什么就是这样分析,可以参照模拟电子技术书上对于第一种电路得分析),这就是电路图等效如下(R6就是为了测试信号源用得跟这个电路没有直接得关系,不知道为什么不加这个电阻就仿真不了)放大器A构成反向比例电路,uo1=-ui,这时在放大器B得部分构成加减运算电路,uo2=-uo1=-(-ui)注意:这里放大器B得正相输入端就是相当于接地得,我刚开始一直没有想通,后来明白了,这一条线路上就是根本就没有电流得,根本就没有办法列出方程来。
(不知道这么想就是不就是正确得)当Ui<0得时候,D1截止,D2导通,电路图等效如下:这时就需要列方程了Ui<0时Ui/R1=-(U2/R5+U2/(R2+R3))计算得到U2=-2/3 Ui再根据U2/(R2+R3)=(U0-U2)/R4 得到U0=3/2 U2带入得到U0=-Ui这个电路在网上找到得,加在这里主要就就是感觉与上一个电路有点像,但就是现在分析了一下,这个就是最经典得电路变形,好处还不清楚。
精密全波整流电路图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计.图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益图2优点是匹配电阻少,只要求R1=R2图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点.图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K图8的电阻匹配关系为R1=R2图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称.图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性.图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡.精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态.结论:虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种.图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波.图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了.图3的优势在于高输入阻抗.其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高. 两个单运放型虽然可以实现整流的目的,但是输入\输出特性都很差.需要输入\输出都加跟随器或同相放大器隔离.各个电路都有其设计特色,希望我们能从其电路的巧妙设计中,吸取有用的.例如单电源全波电路的设计,复合反馈电路的设计,都是很有用的设计思想和方法,如果能把各个图的电路原理分析并且推导每个公式,会有受益的.最后的结论供大家在电路设计的时候参考.半波精密整流电路硬件-AD 2008-05-18 17:26:25 阅读525 评论0 字号:大中小整流:将交流电转换为直流电,称为整流。
单相整流电路是一种常见的电力电子设备,用于将交流电转换为直流电。
根据其工作原理和拓扑结构,单相整流电路可以分为半波整流电路和全波整流电路。
本文将介绍这两种类型的整流电路,并对它们的优缺点进行比较。
首先,我们来介绍半波整流电路。
半波整流电路是最简单、最基本的整流电路之一。
它由一个二极管和一个负载组成。
当输入的交流电压为正半周时,二极管导通,将正半周的电压传递给负载;而当输入的交流电压为负半周时,二极管截止,负半周的电压将被屏蔽。
因此,半波整流电路只能利用输入电压的一半,效率较低。
此外,由于输出电压存在较大的脉动,需要进一步进行滤波处理,以保证输出电压的稳定性。
接下来,我们来介绍全波整流电路。
全波整流电路相比于半波整流电路,具有更高的电压利用率和更稳定的输出电压。
全波整流电路通常由两个二极管和一个中心点连接的负载组成。
当输入的交流电压为正半周时,D1导通,将正半周的电压传递给负载;当输入的交流电压为负半周时,D2导通,将负半周的电压传递给负载。
因此,全波整流电路可以充分利用输入电压的全部能量,提高了能量利用效率。
此外,由于有两个二极管交替导通,输出电压的脉动较小,不需要额外的滤波电路。
然而,全波整流电路相比于半波整流电路,结构更为复杂,需要使用两个二极管,成本相对较高。
此外,全波整流电路在电路设计和布局上也更加复杂,需要考虑二极管的选择和放置位置。
因此,在一些成本敏感和空间受限的应用中,半波整流电路更常被使用。
综上所述,半波整流电路和全波整流电路都有各自的优缺点。
半波整流电路简单、成本低,但效率较低且需要额外的滤波处理;全波整流电路效率高、输出稳定,但结构复杂、成本较高。
在实际应用中,我们需要根据具体的需求和条件选择合适的整流电路。
1. 第一种的模拟电子书上(第三版442页)介绍的经典电路。
A1用的是半波整流并且放 大两倍,A2用的是求和电路,达到精密整流的目的。
(R1=R3=R4=R5=2R2)2. 第二种方法看起来比较简单A1是半波整流电路,是负半轴有输岀,A2的电压跟随器的 变形,正半轴有输岀,这样分别对正负半轴的交流电进行整流! (R1=R2)3.第三种电路图3咼输入阻抗型图4等值电阻型R1U1 ZOR ^^7R2 1OKR3 20KarR1 R220K 10KUiR31 0K謝1>1图6单运放三箱形图5单运放T 型© 8壊益等于1复合放大器型R2R4■叭R101 -DH-D2Uo丄R3图9复合放大器输入不对称型 因10单电源运放元二极管型这个电路真是他妈的坑爹,经过我半天的分析才发现是这样的结论:Uo=-|Ui|,整出来的电路全是负的,真想不通为什么作者放到这里,算了先把分析整理一下:当Ui>0的时候电路等效是这样的放大器B是加减运算电路.Uo2= (1+R^Rl) Ui- (R§R3) Uol=-Ui 当Ui<0的时候电路图等效如下:以上是这个电路的全部分析,但是想达到正向整流的效果就应该把二极管全部反向过来电路和仿真效果如下图所示4. 第四种电路是要求所有电阻全部相等。
这个仿真相对简单。
电路和仿貞•效果如下计算方法如下:当Ui>0时,D1导通,D2截止(如果真是不淸楚为什么是这样分析,可以参照模拟电 子技术书上对于第一种电路的分析),这是电路图等效如下(R6是为了测试信号源用的 跟这个电路没有直接的关系,不知道为什么不加这个电阻就仿真不了)/Z—'1—厶丿r%R 8 uvD34«>Postonth10I martAu?n Oro Shot CursorsmVLM3少AC OC GNDCFF AC [FMlChannel AU2:AClkimielCZA+IH10K10KRo I0KCM :#SOLTC© 8 C nn=DI00E•:TEXT :〔U2:B这时在放大器B 的部分构成加减运算电路,uo2=-uol=-(-ui)注意:这里放大器B 的正相输入端是相当于接地的,我刚开始一直没有想通,后来明白 了,这一条线路上是根本就没有电流的,根本就没有办法列出方程来。