1 液态金属凝固学的研究对象
- 格式:pdf
- 大小:112.75 KB
- 文档页数:4
第4章液态金属(合金)凝固热力学和动力学凝固热力学和动力学的主要任务是研究液态金属(合金)由液态变成固态的热力学和动力学条件。
凝固是体系自由能降低的自发进程,若是仅是如此,问题就简单多了。
凝固进程中各类相的平衡产生了高能态的界面。
如此,凝固进程中体系自由能一方面降低,另一方面又增加,而且阻碍凝固进程的进行。
因此液态金属凝固时,必需克服热力学能障和动力学能障凝固进程才能顺利完成。
凝固的热力学基础金属凝固进程能够用热力学原理来描述。
热力学能够用于判断一个凝固进程是不是可能发生,和发生的程度如何。
而对于凝固进程的判断,一样也是利用热力学状态函数来进行的。
本节主要涉及状态函数的概念、状态函数之间的关系、及自发进程的判据。
为下面学习凝固的形核与生长,创造必要的基础。
状态函数的概念几个重要的热力学术语:体系:具有指明界限与范围的研究对象。
环境:与体系有联系的外界。
状态:体系的物理、化学性质均匀、固按时的总和。
状态函数:与进程无关。
进程:体系发生转变从一个状态到另一个状态的经历。
自发进程:从不平衡自发地移向平衡状态的进程,不可逆进程。
图容器内气体压力做体积功的是以描述金属凝固进程,能够采用热力学函数。
但某些热力学函数,在描述进程转变的状态时,与进程所经历的“历程”有关。
比如功,在纯做体积功时,某容器内的气体由状态1,即该状态下的压力及体积别离为1p ,1V 通过不同的路径,变到状态2,即压力为2p ,体积为2V 的状态。
当路径改变时(图),虽然,始态与终态系相同,压力所做的体积功pdV W =δ或 ⎰=21)(V V dV V p W必然不同。
还有一类热力学函数,与进程经历的“历程”无关,只与研究体系所处的状态有关。
咱们把这种热力学函数,称为状态函数。
讨论凝固进程常常利用的几个状态函数有:内能 物质体系内部所有质点的动能和势能之和,用U 来表示,w q dU δδ+=。
焓 体系等压进程中热量的转变,用H 来表示,H H H q p ∆=-=12。
第9章液态金属在特殊条件下的凝固及成形2概述液态金属在特殊条件下的凝固及成形是一个研究领域,它涉及到利用高温和高压条件下的金属熔体材料的特殊性质,使其在固态下表现出优异的性能和形状。
这一领域的研究对于开发制造新型材料和提高材料性能具有重要意义。
本文将从液态金属的特点、凝固过程和成形方法等方面进行概述,以探讨液态金属在特殊条件下的凝固及成形的相关研究进展。
首先,我们来看一下液态金属的一些基本特点。
不同于传统固态材料,液态金属具有较低的黏度和较高的导热性能,这使得它们在高温下容易流动和传热。
此外,液态金属在固态下具有良好的电导率和机械性能,这使得它们在成形过程中能够保持较高的导电和机械稳定性。
液态金属在凝固过程中的特殊性质使其表现出与传统凝固方法不同的行为。
一种常用的凝固方法是在导热性好的介质中进行凝固,通常称为渗透凝固。
在渗透凝固过程中,液态金属从外部环境中吸热,逐渐凝固形成固态材料。
由于液态金属的高导热性能,其熔体可以迅速充满整个渗透体,从而实现较快的凝固。
此外,由于液态金属的高流动性,其凝固时常常表现出多晶固态材料中的晶界移动、晶粒合并和细化等现象。
除了渗透凝固外,还有一些其他的凝固方法可以应用于液态金属。
例如,快速凝固是一种将液态金属迅速冷却成固态的方法,通常通过液态金属熔滴在冷却介质中的快速凝固来实现。
由于凝固速度非常快,液态金属无法形成固态结构,因此快速凝固一般会产生非晶态或亚晶态材料,这些材料具有较好的力学性能。
此外,还有一些其他的凝固方法,如微重力凝固和高压凝固等,可以通过控制不同的条件来调控凝固过程中的微观结构和性能。
液态金属在凝固后可以通过不同的成形方法来加工成所需的形状和尺寸。
一种常用的成形方法是利用热压成形,即将固态的金属材料加热到一定温度,然后施加压力使其塑性变形并保持固态结构。
另一种方法是利用粉末冶金成形,即将液态金属凝固成粉末,然后通过压制和烧结等方法来制备复杂形状的金属制品。
第一章绪论第一节凝固理论研究对象从工业生产到固态物理,在这些领域的许多过程中,凝固现象都起着重要的作用。
从成吨的大型连续铸锭,到中型的超合金精密铸件,直至相当小的高纯度晶体,都涉及到凝固。
凝固就是液态金属转变为固体的过程。
从微观来看,凝固就是金属原子由“近程有序”向“远程有序”的过渡,使原子成为按一定规则排列的晶体;从宏观来看,就是把液态金属储存的热量传给外界而凝固成一定形状的固体。
凝固理论的研究对象内容如下:1.出炉钢水质量控制: 内容包括钢水温度的控制,其中涉及到的内容有钢水温度控制的重要性、钢水温度控制的热工过程、合适浇注温度的确定。
钢水氧含量的控制,其中涉及到的内容有钢中氧的行为、沸腾钢氧控制、半镇静钢氧控制、镇静钢氧控制。
2.钢水传递过程的物理化学现象:内容包括出钢钢流的化学反应、注流与空气的作用、钢液与耐火材料的作用和水口结瘤等。
3.浇铸过程的流体流动现象:钢液流动特性、浇注过程流动水力学、流动的物理模拟和流动数学模拟。
4.钢液结晶与固结构:内容包括液固相变的热力学特点、均质形核、非均质形核、晶核长大、树枝晶凝固、凝固结构和凝固结构的控制。
5.钢水凝固传热:内容包括钢液凝固热平衡、钢锭传热机构、传热与凝固定律和传热方程在钢锭凝固的应用。
6.凝固过程的偏析:内容包括凝固显微偏析和凝固宏观偏析。
其中凝固显微偏析涉及到的内容有结晶的不平衡性、凝固过程溶质再分配、凝固显微偏析和影响显微偏析因素。
凝固宏观偏析涉及到的内容有凝固产品的宏观偏析、凝固过程液体流动、宏观偏析溶质分配方程、钢锭锥形偏析、连铸坯中心偏析和宏观偏析的控制。
7.凝固坯壳应力:内容包括钢的高温力学行为和凝固坯壳的应力。
其中钢的高温力学行为涉及到的内容有钢的高温延性和钢高温力学行为定律。
凝固坯壳的应力涉及到的内容有鼓肚力、弯曲或矫直力、热应力、意外机械力、坯壳与结晶器磨擦力和相变应力。
8.凝固收缩:涉及到的内容包括凝固过程体积变化、缩孔的形成和收缩与裂纹等问题的解答。
液态金属成型工艺的研究与应用导言液态金属成型工艺是一种利用金属在高温状态下具有流动性的特点来进行加工和成型的技术。
它具有高精度、高效率、可塑性强等优点,并在航空航天、汽车制造、电子设备等领域得到广泛应用。
本文将探讨液态金属成型工艺在材料科学与工程中的研究和应用。
一、液态金属成型的基本原理液态金属成型是利用金属在高温状态下的流动性,通过控制金属的温度和形状来进行成型工艺。
通常液态金属成型工艺包括:压铸、浇铸、挤压、注射成形等。
压铸是将金属液体注入模具中,在高压下迅速冷却固化得到零件的一种工艺。
它具有制造复杂形状零件的优势,并且能够实现高度自动化和大规模生产。
浇铸是将金属液体注入到模具中,通过冷却后得到铸件的工艺。
它是一种常用的金属成型工艺,可以制造各种形状和尺寸的零件,广泛应用于汽车制造和航空航天等领域。
挤压是将金属材料加热至液态,通过挤压机的作用将液态金属迫入模具中,然后冷却固化成型。
挤压工艺适用于制造长条形零件或中空零件。
注射成形是将金属液体注射到模具中,通过冷却后得到零件的工艺。
它具有高精度和高稳定性的优势,常用于制造微小和复杂形状的零件。
二、液态金属成型的优势和应用液态金属成型工艺具有以下几个优势:1. 高精度:液态金属成型可以制造出高精度的零件,满足现代产品对精度的要求。
2. 高效率:液态金属成型工艺可以实现连续生产,提高生产效率,节省时间和成本。
3. 可塑性强:液态金属成型可以加工各种复杂形状的零件,具有较强的可塑性和可变性。
液态金属成型工艺在多个领域得到广泛应用:1. 航空航天领域:液态金属成型工艺可以用于制造飞机的发动机部件、燃烧室等关键零件,提高飞行器的性能和安全性。
2. 汽车制造领域:液态金属成型可以用于制造汽车发动机、车身结构和底盘等部件,提高汽车的性能和安全性。
3. 电子设备领域:液态金属成型工艺可以用于制造电子产品的外壳、散热器和连接器等零件,提高产品的可靠性和美观度。
三、液态金属成型的研究进展液态金属成型工艺的研究一直是材料科学与工程领域的热点。