数学分析第五章 导数和微分
- 格式:pptx
- 大小:1.20 MB
- 文档页数:130
第五章导数和微分5 微分一、微分的概念定义1:设函数y=f(x)定义在点x0的某邻域U(x0)内. 当给x0一个增量△x,x0+△x∈U(x0)时,相应地得到函数的增量为△y=f(x0+△x)-f(x0). 如果存在常数A,使得△y能表示为△y=A△x +o(△x),则称函数f在点x0可微,并称上式中的第一项A△x为f在点x0的微分,记作:dy=A△x,或df(x)=A△x.当A≠0时,微分dy称为增量△y的线性主部。
定理5.10:函数f在点x0可微的充要条件是函数f在点x0可导,而且定义中的A=f’(x0).证:先证必要性:若f在点x0可微,则△y=A△x +o(△x),即=A+o(1),两边取极限得:f’(x0)==(A+o(1))=A.再证充分性:若f在点x0可导,则f在点x0的有限增量公式为:△y=f’(x0)△x+o(△x),根据微分的定义,f在点x0可微且有dy=f’(x0)△x.微分的几何意义:(如图)当自变量由x0增加到x0+△x时,函数增量△y= f(x0+△x)-f(x0)=RQ,而微分则是在点P处的切线上与△x所对应的增量,即dy=f’(x0)△x=RQ’,且==f’(x0)=0,所以当f ’(x 0)≠0时,=0. 即当x →x 0时线段Q ’Q 远小于RQ ’。
若函数y=f(x)在区间I 上每一点都可微,则称f 为I 上的可微函数.函数y=f(x)在I 上任一点x 处的微分记作dy=f ’(x)△x ,x ∈I. 特别地,当y=x 时,dy=dx=△x ,则微分也可记为dy=f ’(x)dx ,即 f ’(x)=,可见函数的导数等于函数微分与自变量微分的商。
因此导数也常称为微商。
二、微分的运算法则1、d[u(x)±v(x)]=du(x)±dv(x);2、d[u(x)v(x)]=v(x)du(x)+u(x)dv(x);3、d=;4、d(f ◦g(x))=f ’(u)g ’(x)dx ,其中u=g(x),或dy=f ’(u)du.例1:求y=x 2lnx+cosx 2的微分。
第五章 导数与微分引 言导数与微分是数学分析的基本概念之一。
导数与微分都是建立在函数极限的基础之上的。
导数的概念在于刻划瞬时变化率。
微分的概念在于刻划瞬时改变量。
求导数的运算被称为微分运算,是微分学的基本运算,也是积分的重要组成部分。
本章主要内容如下:1. 以速度问题为背景引入导数的概念,介绍导数的几何意义;2. 给出求导法则、公式,继而引进微分的概念;3. 讨论高阶导数、高阶微分以及参数方程所确定函数的求导法。
4. 可导与连续,可导与微分的关系。
导数与微分有广泛的应用,特别对研究初等函数变化的性态是极为有效的工具,因此学好本章内容意义非凡。
总起来讲: 1) 什么是导数?2) 导数有何用?3) 怎么算导数?4) 什么是微分?为什么引进?怎么算?§1 导数的概念[学习目的] 使学生准备掌握导数的概念。
明确其物理、几何意义,能从定义出发求一些简单函数的导数与微分,能利用导数的意义解决某些实际应用的计算问题。
[学习要求] 深刻理解导数的概念,能准确表达其定义;明确其实际背景并给出物理、几何解释;能够从定义出发求某些函数的导数;知道导数与导函数的相互联系和区别;明确导数与单侧导数、可导与连续的关系;能利用导数概念解决一些涉及函数变化率的实际应用为体;会求曲线上一点处的切线方程。
[学习重点] 导数的概念。
[学习难点] 导数的概念。
[教学方法]“系统讲授”结合“问题教学”。
[学习程序]一 导数的定义1. 引言(背景)导数的概念和其它的数学概念一样是源于人类的实践。
具体来讲,导数的思想最初是有法国数学家费马(Fermat )为研究极值问题而引入的。
后经牛顿、莱布尼兹(Leibuiz )等数学家的努力,提炼出了导数的思想,给出了导数的精确定义。
在引入导数的定义前,先看两个与导数概念有关的实际问题。
问题1. 已知曲线求它的切线:曲线方程)(x f y =,),(00y x p =是其上一点,求)(x f y =通过点p 的切线方程。
《数学分析》第五章导数和微分1《数学分析》第五章导数和微分1导数和微分是数学分析中非常重要的概念。
导数以及微分的概念不仅在数学中有着广泛的应用,而且在物理、经济、工程等各个学科中都起着关键的作用。
本章首先介绍导数的概念和性质。
导数是描述函数变化快慢的指标,它衡量了函数在其中一点附近的变化率。
直观地说,如果函数在其中一点附近呈现出逐渐增大的趋势,那么该点的导数将是正值;如果函数在其中一点附近呈现出逐渐减小的趋势,那么该点的导数将是负值。
导数的符号和数值都能够揭示出函数局部性质的特点。
导数的计算通常使用极限的概念。
通过定义极限,我们可以精确地计算出函数在其中一点的导数值。
导数的定义以及计算方法是数学分析中的重要内容,对于理解函数的变化规律以及解决实际问题有着重要的帮助。
接下来,本章详细介绍了一阶导数和高阶导数的概念。
一阶导数是函数变化最基本的指标,它描述了函数在其中一点的瞬时变化率;而高阶导数则描述了函数变化率的变化率,它们在一阶导数的基础上进一步深化了对函数性质的研究。
导数和微分在实际问题中有着丰富的应用。
通过导数和微分可以解决各种数学建模中的问题,如最大值、最小值的求解、函数图形的研究、曲线的切线和法线的求解等等。
导数和微分在物理学、经济学、工程学等应用领域也有着广泛的运用,如速度和加速度的求解、最优化问题的分析等。
在本章的最后,还介绍了一些与导数和微分相关的基本定理,如费马定理、罗尔定理、拉格朗日中值定理等。
这些定理是导数和微分性质的重要推论,它们在数学分析和应用领域中起着重要的作用。
总之,导数和微分是数学分析中重要的概念,它们具有广泛的应用价值。
通过深入学习导数和微分的概念、性质和计算方法,我们可以更好地理解函数的特性、求解实际问题,为数学和应用科学的发展做出贡献。
2.许寿裳,王薄清.数学分析[M].高等教育出版社,2024.。
第五章 导数与微分 (计划课时:1 2时)§1 导数的概念 ( 2 时)一. 导数的背景与定义:1. 背景:曲线的切线、直线运动的瞬时速度. 2.导数的定义: )(0x f '定义的各种形式. )0(f '的定义. 导数的记法.有限增量公式: .0 ),( )(0→∆∆+∆'=∆x x x x f y 例1 ,)(2x x f = 求). 1 (f '例2 设函数)(x f 在点0x 可导, 求极限 .)3()(lim000hh x f x f h --→3.单侧导数: 定义. 单侧可导与可导的关系. 曲线的尖点.例3 . )(x x f = 考查)(x f 在点0=x 的可导情况.例4 设⎩⎨⎧<≥-=.0,,0,cos 1)(x x x x x f 讨论)(x f 在点0=x 处的左、右导数与导数.二. 导数的几何意义:可导的几何意义, 导数的几何意义, 单侧导数的几何意义. 例5 求曲线2)(x x f y ==在点) 1 , 1 (处的切线与法线方程.三. 可导与连续的关系:Th1 若函数f 在点0x (左、右)可导,则f 在点0x (左、右)连续.例6 证明函数)()(2x D x x f =仅在点00=x 处可导,其中)(x D 为Dirichlet 函数.四 导函数: 函数在区间上的可导性, 导函数, 导函数的记法..)()(lim )(0xx f x x f x f x ∆-∆+='→∆(注意:x sin 等具体函数的导函数不能记为,n si x ' 应记为.)(sin 'x ) 例7 求下列函数的导数:⑴ ,)(nx x f = ⑵x x f sin )(=, ⑶x x f a log )(=.五 导函数的介值性:1 极值的定义例8 证明: 若,0)(0>'+x f 则),(,000δδ+∈∀∍>∃x x x ,有)()(0x f x f <. 2 取极值的必要条件: Th2 (Fermat 定理)3 导函数的介值性:引理 (导函数的介值性)若函数f 在闭区间],[b a 上可导, 且,0)()(<''-+b f a f 则.0)( ),,( ='∍∈∃ξξf b a ( 证 )Th3 (Darboux 定理)设函数)(x f 在区间],[b a 上可导且)()(b f a f '≠'. 若k 为介于)(a f '与)(b f '之间的任一实数, 则.)( ),,(k f b a ='∍∈∃ξξ(设),()(a f k b f '<<'对辅助函数kx x f x F -=)()(,应用系4的结果.) ( 证 ) Ex [1]P 94—95 1—9§2 求 导 法 则( 4时)一 导数的四则运算法则: 推导导数四则运算公式. (只证“⨯”和“÷”)例1 .95)(23π+-+=x x x x f 求).(x f '例2 .ln cos x x y = 求.|π='x y ( ). 1π-例3 .122x x y +-=求.dx dy例4 证明: . ,) (1+---∈-='Z n nx xn n( 用商的求导公式证明 ).例5 证明: .csc ) ( ,sec ) (22x ctgx x tgx -='=' 例6 证明:.sec sec xtgx x dxd=. 二 反函数的导数: 推导公式并指出几何意义.例8 证明反三角函数的求导公式. ( 只证反正弦 ) Ex [1]P 102 1,2.三 复合函数的导数:推导复合函数的求导公式.例9 设,sin 2x y =求y '.例10 设α为实数,求幂函数)0( ≥=x x y α的导数. 解 ().1ln ln -=⋅=⋅='='αααααααx xx xeey xx例11 ,1)(2+=x x f 求 )0(f '和). 1 (f ' 例12 ),1ln(2++=x x y 求 .y '例13 ,12xtgy = 求 .y ' 四 取对数求导法:例14 设215312)4()2()4()5(++-+=x x x x y , 求 .y '例15 ().s i n ln xx y = 求 .y '例16 设)()(x v x u y =, 其中0)(>x u ,且)(x u 和)(x v 均可导, 求 .y '五 基本求导法则与公式:1 基本求导法则.2基本初等函数导数公式. 公式表: [1]P 101.Ex [1]P 102 3,4.§3 参变量函数的导数1 设曲线C 的参变量方程为⎩⎨⎧≤≤==)().(),(βαψϕt t y t x ,设函数)( ),(t y t x ψϕ==可导且,0)(⇒≠'t ϕ.)()(t t dx dy ϕψ''=证:(证法一) 用定义证明.(证法二) 由 ,0)(⇒≠'t ϕ恒有0)(>'t ϕ或.0)(<'t ϕ)( t ϕ⇒严格单调. ( 这些事实的证明将在下一章给出. ) 因此, )(t ϕ有反函数, 设反函数为x t (1-=ϕ), 有(),)()(1x t y -==ϕψψ 用复合函数求导法, 并注意利用反函数求导公式. 就有.)()(t t dtdx dt dydx dt dt dy dx dy ϕψ''==⋅=例1 .sin ,cos t b y t a x == 求.dxdy2 若曲线C 由极坐标)(θρρ=表示,则可转化为以极角θ为参数的参数方程:⎩⎨⎧====.sin )(sin ,cos )(cos θθρθρθθρθρy x 则.tan )()()(tan )(θθρθρθρθθρ-'+'=dx dy 例2 证明:对数螺线2θρe =上所有点的切线与向径的夹角ϕ为常量. Ex [1]P 105 1,2,3.§4 高 阶 导 数一 高阶导数:定义: .)()(lim)(0000xx f x x f x f x ∆'-∆+'=''→∆()().)()( ,)()()1()('=''=''-x f x f x f x f n n 注意区分符号)(0x f ''和().)(0''x f高阶导数的记法.二 几个特殊函数的高阶导数:1. 多项式: 多项式的高阶导数. 例1 求幂函数nx y =(n 为正整数)的各阶导数. 例2. 正弦和余弦函数: 计算())(sin n x 、())(cos n x 、())(sin n kx 、())(cos n kx 的公式.例3. x e 和kxe 的高阶导数: 例4.x1的高阶导数: 例5))((1b x a x ++的高阶导数:例6 分段函数在分段点的高阶导数:以函数⎪⎩⎪⎨⎧<-≥=.0 ,,0 ,)(22x x x x x f 求)(x f ''为例.三 高阶导数的运算性质: 设函数)(x u 和)(x v 均n 阶可导. 则1. ()).()()()(x ku x ku n n =2.()).()()()()()()(x v x u x v x u n n n ±=±3. 乘积高阶导数的Leibniz 公式: 约定 ).()()0(x u x u =()∑=-=nk k k n k n n x v x u C x v x u 0)()()().()()()( ( 介绍证法.) 例7 ,cos x e y x= 求 .)5(y解 ⇒====== .10 ,5 ,1352545155505C C C C C C).cos (sin 4)sin cos 5sin 10cos 10sin 5(cos )5(x x e x x x x x x e yx x -=-++--=例8 ),(arctgx f y = 其中)(x f 二阶可导. 求.22dx yd 例9 验证函数x y arcsin =满足微分方程 ) 3 ( .0)12()1()(2)1()2(2≥=-+--++n y n xy n y x n n n并依此求 ).0()(n y解 .11 ,1122='--='y x xy 两端求导,011 22=-'-''-⇒xy x y x 即.0)1(2='-''-y x y x 对此式两端求n 阶导数, 利用Leibniz 公式, 有=---+-+-+++)(1)1()(2)1(1)2(2)2()2()1(n n n n n n n n y C xy y C y x C yx .0)12()1()(2)1()2(2=-+--=++n n n y n xy n yx可见函数x y arcsin =满足所指方程. 在上式中令,0=x 得递推公式).(2)2( n n y n y=+注意到 0)0(=''y 和 1)0(='y , 就有k n 2=时, ;0)0()(=n y12+=k n 时, )0(13)32()12()0(2222)(f k k y n '⋅⋅--= [].!)!12(2-=k四. 参数方程所确定函数的高阶导数:=''⎪⎪⎭⎫ ⎝⎛''=⎪⎭⎫⎝⎛=)()()(22t t t dtdx dx dy dt d dx y d ϕϕψ().)()()()()(3t t t t t ϕϕψϕψ''''-''' 例6 .sin ,cos t b y t a x == 求.22dx yd 解 .c t g t abdx dy -= .s i n 3222t a b dx y d -== Ex [1]P 109 1—6.§5 微 分一 微分概念:1. 微分问题的提出: 从求正方形面积增量的近似值入手,引出微分问题.2. 微分的定义:Th1 ( 可微与可导的关系 ).3. 微分的几何意义:二 微分运算法则:一阶微分形式不变性. 利用微分求导数. 微商.例1 已知,cos ln 22x x x y += 求dy 和 .y '例2 已知,)sin(b ax ey += 求dy 和 .y '三 高阶微分:高阶微分的定义: ()()=⋅'='==dx x f d dxx f d dy d y d )()()(2.)())(()(22dx x f dx x f dx dx x f ''=''=⋅''=n 阶微分定义为1-n 阶微分的微分, 即().)()(1n n n ndx x f y dd y d ===-(注意区分符号 )( ),0( ,)(2222x dx d dx dx ==的意义.) 例3 已知.)( ,sin )(2x x u u u f y ====ϕ 求 .2y d以例3为例, 说明高阶微分不具有形式不变性:在例7中, 倘若以u y sin =求二阶微分, 然后代入2x u =, 就有;s i n 4)2(s i n )(s i n )()(s i n22222222dx x x xdx x du u du u y d -=-=-=''= 倘若先把2x u =代入u y sin =, 再求二阶微分, 得到.sin 4cos 2)sin 4cos 2(sin 222222222222dx x x dx x dx x x x x d y d -=-==可见上述两种结果并不相等. 这说明二阶微分已经不具有形式不变性. 一般地, 高阶微分不具有形式不变性.四 微分的应用:1. 建立近似公式: 原理: ,dy y ≈∆ 即 ).)(()()(000x x x f x f x f -'+≈ 特别当00=x 时, 有近似公式 .)0()0()(x f f x f '+≈ 具体的近似公式如:x e x nx x x x n +≈+≈+≈1 ,111 ,s i n 等.2. 作近似计算: 原理: .)()()(00.0x x f x f x x f ∆'+=∆+例4 求 97.0 和 3127的近似值.例5 求29sin 的近似值. ( 参阅[1]P 138 E4 ) 3.估计误差:绝对误差估计: ,)(0x x f y ∆'≈∆相对误差估计: ),(ln ln ),0( )(⇒=>=x f y x f y.)(ln x f d ydyy y =≈∆ 例6( [1]P 138 E5 )设已测得一根圆轴的直径为cm 43,并知在测量中绝对误差不超过cm 2.0. 试求以此数据计算圆轴的横截面面积时所产生的误差.4. 求速度: 原理: .)(,)( ),(dtdx x f dt dy dx x f dy x f y '='== 例7 球半径R 以sec 2.0cm 的速度匀速增大.求cm R 4=时,球体积增大的速度. [4]P 124 E53 ⅰ)Ex [1]P 116 1—5.。
数学分析课本(华师大三版)-习题及答案05第五章 导数和微分习题§5.1导数的概念1、已知直线运动方程为2510t t s +=,分别令01.0,1.0,1=∆t ,求从t=4至t t ∆+=4这一段时间内运动的平均速度及时的瞬时速度。
2、等速旋转的角速度等于旋转角与对应时间的比,试由此给出变速旋转的角速度的定义。
3、设4)(,0)(0='=x f x f ,试求极限xx x f x ∆+∆→∆)(lim 00。
4、设⎩⎨⎧<+≥=,3,,3,)(2x b ax x x x f 试确定的a,b 值,使f在x=3处可导。
5、试确定曲线y x ln =上哪些点的切线平行于下列直线:(1);1-=x y (2)32-=x y6、求下列曲线在指定点P 的切线方程与法线方程:(1)).1,0(,cos )2();1,2(,42p x y p x y ==7、求下列函数的导函数: ⎩⎨⎧<≥+==,0,1,0,1)()2(;)()1(3x x x x f xx f8、设函数⎪⎩⎪⎨⎧=≠=,0,0,0,1sin )(x x xx x f m(m 为正整数),试问:(1)m 等于何值时,f 在x=0连续;(2)m 等于何值时,f 在x=0可导; (3)m 等于何值时,f '在x=0连续。
9、求下列函数的稳定点:(1)f(x)=sinx-cosx ;(2)x x x f ln )(-=。
10、设函数f 在点0x 存在左右导数,试证明f 在点0x 连续。
11、设0)0()0(='=g g ,⎪⎩⎪⎨⎧=≠=,0,0,0,1sin )()(x x xx g x f求)0(f '。
12、设f 是定义在R 上的函数,而且对任何Rxx ∈21,,都有)()()(2121x f x f x x f =+。
若1)0(='f ,证明对任何R x ∈,都有)()(x f x f ='。
数学分析中的导数与微分方程研究导数与微分方程是数学分析中重要的研究领域。
导数作为微积分的基本概念之一,描述了函数在某一点处的变化率。
微分方程是描述变化率与函数之间关系的方程。
本文将从导数的定义、性质以及微分方程的概念、分类和解法等方面对数学分析中的导数与微分方程进行研究。
首先,我们来了解导数的定义和性质。
在数学中,导数可以理解为函数的变化率。
对于函数f(x),在某一点x处的导数可以通过极限的概念来定义,即:\[f'(x)=\lim _{h\to 0}\frac{f(x+h)-f(x)}{h}\]这个定义表示了函数在x处的局部变化率,也可以理解为函数在一点处的切线的斜率。
导数具有一些重要的性质,例如导数存在的条件,导数的基本运算法则,以及导数与函数的性质之间的关系等。
这些性质对于分析函数的特性和性质非常重要。
接下来,我们来研究微分方程的概念、分类和解法。
微分方程描述了函数的导数与函数本身之间的关系。
根据微分方程中出现的导数的次数以及函数自变量的次数,微分方程可以分为常微分方程和偏微分方程两大类。
常微分方程中只涉及到一阶或高阶导数,而偏微分方程涉及到多个自变量和多个偏导数。
对于常微分方程,常见的类型包括一阶线性方程、一阶二阶齐次线性常微分方程、一阶非齐次线性常微分方程和高阶线性常微分方程等。
解常微分方程的方法包括分离变量法、变量代换法、常数变易法和欧拉方程等。
这些方法使我们能够找到函数满足微分方程的解析解。
而对于偏微分方程,根据方程类型的不同,解法也会有所不同。
常见的偏微分方程类型包括椭圆型、双曲型和抛物型方程等。
常见的数值方法可以用于求解偏微分方程,例如有限差分法、有限元法和有限体积法等。
这些数值方法将偏微分方程转化为离散的代数方程组,通过迭代求解得到近似解。
此外,导数与微分方程在实际应用中具有广泛的应用。
在物理学、工程学、经济学等领域,导数与微分方程可以用于描述自然现象的规律性和模型建立。
第五章导数和微分1 导数的概念一、导数的定义定义1:设函数y=f(x)在点x0的某邻域内有定义,若极限存在,则称函数f在点x0处可导,并称该极限为函数f在点x0处的导数,记作f’(x0). 若该极限不存在,则称f在点x0处不可导.令x=x0+△x,△y=f(x0+△x)-f(x0),则:==f’(x0).∴导数是函数增量△y与自变量增量△x之比的极限. 这个增量比称为函数关于自变量的平均变化率(又称为差商),而导数f’(x0)则为f在x0处关于x的变化率.注:显然常量函数f(x)=C在任何一点x的导数都等于零.例1:求函数f(x)=x2在点x=1处的导数,并求曲线在点(1,1)处的切线方程.解:f’(1)===2.∴曲线在点(1,1)处的切线方程为:y-1=2(x-1),即y=2x-1.例2:证明函数f(x)=|x|在点x=0处不可导.证:f’(0)=,∵=1,=-1,∵不存在,∴f在点x=0处不可导.设f(x)在点x0可导,则ε=f’(x0)-是当△x→0时的无穷小量,于是ε·△x=o(△x),即△y=f’(x0)△x+o(△x),称为f在点x0的有限增量公式.该公式对△x=0仍成立.定理5.1:若函数f在点x0可导,则f在点x0连续.注:可导是连续的充分而非必要条件.例3:证明函数f(x)=x2D(x)仅在点x0=0处可导,其中D(x)为狄利克雷函数.证:当x0≠0时,由归结原理可得f在x= x0处不连续,∴f在x= x0处不可导.当x0=0时,∵D(x)有界,∴f’(0)==xD(x)=0.即f仅在点x0=0处可导.定义2:设函数y=f(x)在点x0的某右邻域(x0, x0+δ)上有定义,若右极限=(0<△x<δ)存在,则称该极限值为f在点x0的右导数,记作f’+(x0). 类似地,定义左导数为f’-(x0)==.右导数和左导数统称为单侧导数.定理5.2:若函数f在点x0的某右邻域内有定义,则f’(x0)存在的充要条件是:f’+(x0)与f’-(x0)都存在,且f’+(x0)=f’-(x0).例4:设f(x)=,讨论f(x)在x=0处的左右导数与导数.解:f’+(0)===0.f’-(x0) ===1.∵f’+(x0)≠f’-(x0),∴f在x=0处不可导.二、导函数若函数在区间I上每一点都可导(区间端点只考虑单侧导数),则称f为I上的可导函数. 对每一个x∈I,都有一个导数f’(x)(或单侧导数)与之对应,函数f’就称为f 在I上的导函数,简称为导数. 记作f’, y’或,即:f’(x)=, x∈I注:f’(x0)可写作:y’或例5:证明:(1)(x n)’=nx n-1,n为正整数;(2)(sinx)’=cosx,(cosx)’=-sinx;(3)(log a x)’=log a e (a>0,a≠1,x>0),特别的(ln x)’=.证:(1)对于y=x n, ==x n-1+x n-2△x +…+△x n-1,∴(x n)’==(x n-1+x n-2△x +…+△x n-1)=x n-1=nx n-1.(2)∵==,由cosx在R上连续可得:(sinx)’==cosx.又==,由sinx在R上连续可得:(cosx)’== -sinx.(3)∵=log a=log a,又由log a x的连续性可得:(log a x)’=log a=log a=log a e.当a=e时,ln e=1,∴(ln x)’=.三、导数的几何意义曲线y=f(x)在点(x0,y0)的切线方程为:y-y0=f’(x0)(x-x0).即函数f在点x0的导数f’(x0)是曲线fy=(x)在点(x0,y0)的切线斜率.若α表示这条切线与x轴正方向的夹角,则f’(x0)=tanα.例6:求曲线y=x3在点P(x0,y0)处的切线方程与法线方程.解:y’=3x2, ∴f’(x0)=3x02==.当x0≠0时,曲线在点P(x0,y0)处的切线方程为y-y0=f’(x0)(x-x0),即y=3x02x-2y0;法线方程为y-y0=(x-x0),即y=x y0.当x0=0时,切线方程为y=0,法线方程为x=0.定义3:若函数f在点x0的某邻域U(x0)内对一切x∈U(x0)有f(x0)≥f(x)或f(x0)≤f(x),则称f在点x0取得极大(小)值,称点x0为极大(小)值点. 极大值和极小值统称为极值,极大值点、极小值点统称为极值点.例7:证明:若f’+(x0)>0,则存在δ>0. 对任何x∈(x0,x0+δ),有f(x0)<f(x).证:∵f’+(x0)=>0,由保号性可知,存在δ>0,对一切x∈(x0,x0+δ),有>0,∴对任何x∈(x0,x0+δ),有f(x0)<f(x).定理5.3(费马定理):设函数f在点x0的某邻域内有定义,且在点x0可导,若点x0为f的极值点,则必有f’(x0)=0.我们称满足方程f’(x0)=0的点为稳定点. 稳定点不一定是极值点。