中国古代数学发展史
- 格式:doc
- 大小:24.00 KB
- 文档页数:13
古今数学发展史我们从小学就开始学习数学,我们现在接触数学已经12年了,到了高考完填志愿我们还是选择了与数学打交道,算起来我们与数学的缘分颇深,那么你对数学的了解又有多少呢?数学又是怎样发展过来的呢?约公元前4000年,中国西安半坡的陶器上出现数字刻符。
公元前3000~前1700年,巴比伦的泥版上出现数学记载。
公元前2700年,中国黄帝时代传说隶首做算数之说,大挠发明了甲子。
公元前2500年前,据中国战国时尸佼著《尸子》记载:“古者,陲(注:传说为黄帝或尧时人)为规、矩、准、绳,使天下仿焉”。
这相当于在已有“圆,方、平、直”等形的概念。
公元前2100年,中国夏朝出现象征吉祥的河图洛书纵横图,即为“九宫算”,这被认为是现代“组合数学”最古老的发现。
美索不达米亚人已有了乘法表,其中使用着六十进位制的算法。
公元前2500年前,据中国战国时尸佼著《尸子》记载:“古者,陲(注:传说为黄帝或尧时人)为规、矩、准、绳,使天下仿焉”。
这相当于在已有“圆,方、平、直”等形的概念。
公元前2100年,中国夏朝出现象征吉祥的河图洛书纵横图,即为“九宫算”,这被认为是现代“组合数学”最古老的发现。
最早的数学知识可以追溯到古代埃及和美索不达米亚(现今伊拉克地区)。
这些文明的人民使用数学来解决土地测量、建筑和贸易等实际问题。
古代埃及人发展了一套用于计数和计量的系统,而美索不达米亚人则使用了一套基于60进制的计数系统,我们现在仍在钟面上使用这个系统。
中世纪欧洲的数学主要受到阿拉伯数学的影响。
阿拉伯学者在代数学、三角学和算术方面有重要发展,他们还引入了十进制的数字系统和算术符号,这对现代数学的发展起到了关键作用。
在欧洲,数学家斯内尔发明了现代代数学中的符号表示法,他的著作《代数的演绎术》对代数学有深远影响。
当代数学仍在不断发展中,涌现出了许多新的领域、理论和应用。
随着技术的进步,数学在解决现实世界的问题以及推动科学和技术的发展中扮演着越来越重要的角色。
中国古代数学发展史一、概述中国古代数学发展源远流长,可以追溯到公元前11世纪的商代时期。
在古代数学的发展过程中,中国的数学家们积极探索,不断创新,逐渐形成了独特的数学体系。
本文将从古代数学的起源、发展阶段和主要成就三个方面,对中国古代数学发展史进行探讨。
二、起源中国古代数学的起源可以追溯到商代,商代的甲骨文中已经有了一些数学的雏形。
这些甲骨文中包含了一些计数的符号,比如“一”、“二”、“三”等,以及一些简单的数学运算符号。
这些早期的数学符号成为后来发展的基础。
三、发展阶段1. 春秋战国时期在春秋战国时期,中国古代数学开始逐渐形成体系。
这个时期的数学家们开始研究几何学和代数学。
其中,著名的数学家彭勃提出了“勾股定理”的雏形,奠定了后来几何学的基础。
2. 秦汉时期秦汉时期是中国古代数学发展的重要时期。
这个时期的数学家们在几何学和代数学方面取得了重要的成就。
李冶提出了“周公疏密术”,开始研究无穷级数的性质。
刘徽在几何学方面做出了很多重要贡献,他提出了“刘徽定理”,解决了很多几何问题。
3. 魏晋南北朝时期魏晋南北朝时期是中国古代数学发展的黄金时期。
这个时期的数学家们在几何学、代数学和数论方面取得了巨大的成就。
刘徽的弟子祖冲之提出了“祖冲之定理”,解决了一些几何问题。
刘徽和祖冲之的研究成果对后来的数学发展产生了深远的影响。
四、主要成就1. 几何学中国古代数学在几何学方面取得了很多重要的成就。
早期的数学家们研究了简单的几何图形,比如点、线、面等。
随着数学的发展,他们开始研究更复杂的几何图形,比如三角形、圆形等。
刘徽和祖冲之的研究成果对几何学的发展产生了深远的影响。
2. 代数学中国古代数学在代数学方面也取得了重要的成就。
数学家们开始研究代数方程和代数运算。
他们提出了一些代数定理和公式,解决了一些代数问题。
这些成就对后来代数学的发展起到了重要的推动作用。
3. 数论数论是中国古代数学的另一个重要领域。
数学家们开始研究数的性质和规律。
数学在中国的发展历史中国的数学发展历史可以追溯到古代,最早的数学文化可以追溯到商周时期,此时已经有扁鹊算术、卜筮等各种数学科技的应用。
接下来,随着战国时期的发展,数学逐渐形成了一些基本概念和计算方法,如乘法、几何应用等。
汉代是中国数学发展的重要时期之一,汉武帝时期出现了《九章算术》,它包含了“A+B”、“一元二次方程”、“直角三角形”等数学概念。
此外,还有另一部重要的数学著作《孙子算经》,它在数学领域的发展和应用方面都有重大的作用。
这些著作的出现标志着中国数学从此开始了一个新的时期。
唐代是中国数学史上又一个伟大的时期,数学领域的繁荣要归功于宋朝的一位伟大的数学家李冶。
他的著作“欧几里德几何原本”和“数学通轨”为中国数学发展的奠基石。
在中国数学的发展史上,唐朝还出现了用于计算圆周率的平积法、线性同余方程以及大中等肋芝麻算法等重要的数学方法。
宋朝是中国数学史上的黄金时期之一,这个时期的数学领域达到了一个新的高峰。
这一时期著名的数学家有杨辉、李之仪、祖冲之、秦九韶等,他们的数学著作成为了学术研究成果的代表。
此外,宋朝还出现了加减乘除、高次方程、三角函数以及应用微积分等数学方法。
明朝是中国数学史上的又一个重要时期,明朝时期数学家朱载堉的“借芝麻将军之名开设算术课”的做法,引发了全国的数学热潮,使中国数学进入了一个新的时代。
总的来说,中国古代数学的发展历程非常悠久,这个发展过程的关键在于它不仅继承发扬了古代数学遗产,而且还对数学的发展提供了自己的贡献,成为了中华民族数学文化的一部分。
随着时代的发展与进步,如今的中国数学正在不断发展壮大。
中国古代数学发展史中国传统数学的形成与兴盛:公元前1 世纪至公元14 世纪。
分成三个阶段:《周髀算经》与《九章算术》、刘徽与祖冲之、宋元数学,这反映了中国传统数学发展的三次高峰,简述9 位中国科学家的数学工作。
第一次高峰:数学体系的形成秦始皇陵兵马俑(中国,1983 ),秦汉时期形成中国传统数学体系。
我们通过一些古典数学文献说明数学体系的形成。
1983 -1984 年间考古学家在湖北江陵张家山出土的一批西汉初年(即吕后至文帝初年,约为公元前170 年前后)的竹简,共千余支。
经初步整理,其中有历谱、日书等多种古代珍贵的文献,还有一部数学著作,据写在一支竹简背面的字迹辨认,这部竹简算书的书名叫《算数书》,它是中国现存最早的数学专著。
经研究,它和《九章算术》(公元1 世纪)有许多相同之处,体例也是“问题集”形式,大多数题都由问、答、术三部分组成,而且有些概念、术语也与《九章算术》的一样。
《周髀算经》(髀:量日影的标杆)编纂于西汉末年,约公元前100 年,它虽是一部天文学著作(“盖天说”-天圆地方;中国古代正统的宇宙观是“浑天说”-大地是悬浮于宇宙空间的圆球,“天体如弹丸,地如卵中黄”),涉及的数学知识有的可以追溯到公元前11 世纪(西周),其中包括两项重要的数学成就:勾股定理的普遍形式(中国最早关于勾股定理的书面记载),数学在天文测量中的应用(测太阳高或远的“陈子测日法”,陈子约公元前6、7 世纪人,相似形方法)。
勾股定理的普遍形式:求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日。
中国传统数学最重要的著作是《九章算术》(东汉,公元100 年)。
它不是出自一个人之手,是经过历代多人修订、增补而成,其中的数学内容,有些也可以追溯到周代。
中国儒家的重要经典著作《周礼》记载西周贵族子弟必学的六门课程“六艺”(礼、乐、射、御、书、数)中有一门是“九数”。
《九章算术》是由“九数”发展而来。
在秦焚书(公元前213 年)之前,至少已有原始的本子。
中国古代数学中国古代数学是世界上最古老的数学之一,具有重要的历史和文化价值。
古代中国的数学发展可以追溯到至少公元前14世纪的商朝,人们在商朝就开始使用计算方法和数学符号。
以下是有关中国古代数学的相关内容:古代数学的起源与发展古代中国数学的起源可以追溯到商朝,商朝人民使用的计算方法和数学符号记录在《甲骨文》中。
《甲骨文》中的很多符号表示了数字和几何形状,这表明商朝人民已经掌握了一定的计算和几何知识。
随着时间的推移,数学在周朝和秦朝得到了进一步的发展。
《周髀算经》和《九章算术》是两本流传最广的古代中国数学著作,它们涵盖了从初级的算术到高级的几何和代数的内容。
这些著作为后世的数学研究奠定了基础,并影响了中国古代数学的发展。
古代数学的主要研究内容古代中国数学的研究内容主要包括算术、几何和代数。
算术是古代中国数学的基础,主要涉及整数、分数、正负数等的运算、约分、等式等。
几何主要研究了圆、直线、曲线等的性质和计算方法。
代数主要研究了方程的解法和多项式的计算。
除了这些基本内容之外,古代数学家还研究了一些高级概念,如数论、几何证明、求根方法等。
这些研究内容体现了古代中国人民在数学领域的聪明才智和丰富的数学思维。
古代数学成就的应用古代中国数学的成就不仅仅停留在理论上,还有广泛的应用。
在农业方面,古代数学可以用于测量土地面积、规划农田和水利工程。
在商业方面,古代数学可以用于计算货币价值、盈亏比率和税收等。
在天文学方面,古代数学可以用于计算地球和天体的位置、运行轨迹等。
这些应用展示了古代中国数学的实用性和功能性,对古代社会的发展起到了积极的推动作用。
古代数学的传承与影响古代中国数学的传承和发展离不开数学家和教育工作者的努力。
古代数学家通过书籍和教育机构传播数学知识,使其得到了广泛的传承和应用。
古代数学的一些重要著作被翻译成多种语言,传播到其他国家和地区。
这些传承和影响使古代中国数学成为世界上重要的数学学派之一,对后世数学的发展产生了深远的影响。
中国数学历史发展史话说中国这片古老而又神奇的土地,不仅有悠久的历史,还蕴藏着璀璨的数学智慧。
咱们今天就来聊聊,中国数学历史发展那点事儿,看看咱们老祖宗是怎么玩转数字的。
早在很久很久以前,那会儿咱们还没用上计算器、电脑这些高科技玩意儿,古人就已经开始琢磨数学了。
最早的数学记录可以追溯到甲骨文时代,那时候的古人啊,用简单的符号来记录数目,虽然看起来简单,但那可是数学的萌芽啊!想象一下,在那个时候,能算出多少东西,那简直就是神一般的存在。
到了商周时期,咱们的祖先们就开始玩起了“算术”这个高级游戏。
那时候有个叫《九章算术》的宝贝,那可是中国古代数学的经典之作,里面的内容涵盖了面积、体积、勾股定理、方程求解等等,简直就是一部古代的“数学百科全书”。
你说咱们现在学的数学知识,很多都是从那时候传承下来的呢!春秋战国时期,诸子百家争鸣,数学也跟着沾光。
那时候的数学家们,不仅研究数学,还把它应用到了天文、历法、建筑等各个领域。
比如咱们现在说的“勾三股四弦五”,就是那时候的数学家们通过观察和实践,得出的宝贵结论。
那时候的人,真是既聪明又勤奋,让人不得不佩服。
汉朝时期,数学又有了新的发展。
张衡,大家知道他吧?他不仅是天文学家,还是数学家呢!他发明的地动仪,那可是世界级的科技发明。
在数学上,他也做出了不少贡献,推动了数学的发展。
那时候的数学,已经开始涉及到几何、代数等领域,真是越来越深奥了。
唐宋时期,数学更是迎来了黄金时代。
那时候有个叫李冶的数学家,他写了一本《测圆海镜》,专门研究圆和三角函数的问题。
还有祖冲之,他算出的圆周率,那可是精确到了小数点后七位,比欧洲人要早几百年呢!你说这厉害不厉害?那时候的数学家们,真是把数学玩出了花儿,让人叹为观止。
明清时期,数学虽然受到了一些冲击,但依然在艰难中前行。
那时候的数学家们,开始尝试用西方的数学方法来研究问题,比如徐光启翻译的《几何原本》,就让中国人第一次接触到了欧几里得的几何学。
中国古代数学历史时间轴中国古代数学历史时间轴可以按照以下方式来编写:公元前3000年至公元前2000年:中国古代数学的起源可以追溯到这个时期,这一时期主要是集约农业和城市的兴起,人们开始用计数来记录物品和人口数量。
公元前2000年至公元前1100年:在这个时期,古代中国数学逐渐发展起来,出现了较复杂的数学问题和计算方法。
人们开始使用约等于3.14的圆周率,提出了一些几何概念。
公元前1100年至公元前200年:这段时间被称为春秋战国时期,数学的发展呈现出蓬勃的态势。
出现了中国古代最早的数学著作《三经新义》,该书对数学的发展起到了重要作用。
公元前200年至公元220年:西汉时期,中国的数学进一步发展,出现了《九章算术》这一重要的数学著作。
这本著作包含了丰富的数学内容,如代数、几何等。
公元220年至公元280年:三国时期,数学研究出现衰退的迹象,但仍有一些重要贡献。
蜀汉的刘徽提出了一套整数解方程的方法。
公元280年至公元589年:北朝时期,数学的研究再次兴起。
北朝的贾宪斯编写了《数学九章》等数学著作,其中包含了代数和几何的内容。
公元589年至公元618年:隋朝时期,数学研究再次进入了一个高峰期。
数学家李淳风提出了一种新的作图法,被称为“刻径法”。
公元618年至公元907年:唐朝时期,中国古代数学达到了一个新的高度。
数学家祖冲之在此时期提出了无穷法和割圆术,对后世的数学研究产生了深远的影响。
公元907年至公元1127年:五代十国时期,数学研究陷入了低谷,但仍有一些数学著作被编写出来。
公元1127年至公元1368年:南宋时期,中国数学开始恢复并发展。
数学家秦九韶、李冶等提出了一些重要的数学方法和问题。
公元1368年至公元1644年:明清时期,中国古代数学进一步发展。
明代数学家朱世杰编写了《数术补遗》,对于几何学的发展做出了贡献。
以上是中国古代数学历史的一个简要时间轴,展现了中国古代数学在不同时期的发展与进步。
中国数学发展史中国数学发展历史可以追溯到古代,早在商代,中国人就已经开始使用字母和数字了。
随着历史的发展,中国数学也不断发展。
下面我们来一一介绍。
1.古代数学古代数学主要有三个时期:先秦时期、汉代到隋唐时期、唐宋明清时期。
在先秦时期,尚书:“六铢”之中就包含有算术运算方法。
《九章算术》是将古代运算方法集中起来的一项数学成果。
在隋唐时期,王陂算经出现,这是一部有关算术、代数、几何、人工运算和天文理论的书籍。
唐代的《数书九章》更是囊括了古代数学大量的知识和成果。
2.八股文数学八股文是中国传统文化时期的一种标志性的文章写作形式。
在明清时期,数学教育也采用了这种形式。
后来,八股文数学成为了中国古代数学的代表性成果之一,而数学分成九科也成为了这一时期的一个标志性成果。
3.古代算术古代算术指的是古人们在生产和生活中所进行的算术运算。
在《数书九章》中,有大量关于古代算术的内容。
古代算术主要包括加法、减法、乘法、除法等计算方面的知识,还包括古人们使用的算盘、草率和算具等。
4.代数学代数学是一门古老而又现代的数学学科。
最早的代数学思想可以追溯至先秦时期的“六铢”,唐代的“大衍数学”和宋代的“忘穴”等都是代数学的成果。
代数学在古代并不是一个独立的学科,而是与其他学科如几何学和算术学紧密联系在一起的。
5.数学教育古代的数学教育主要有两种形式:家教和私塾。
在家教方面,大富豪会请最好的数学家为其子弟授课。
而在私塾方面,数学家将自己的子女和其他有志于学习数学的青年聚集在一起,进行数学教育。
6.现代数学现代数学是在西方文化的影响下,从19世纪末期到20世纪初期在中国发展壮大的一门学科。
现代数学的发展主要包括微积分、概率论、数理逻辑、数论、拓扑、代数等方面。
现代数学的发展推动了许多雷同的新学科和理论的出现。
以上是有关中国数学发展史的简介。
在古代,中国数学相当发达,与世界同步。
而在现代,中国数学在与其它强国数学学者竞争的同时,被大家逐渐所认同和赞扬。
中国传统数学史话中国的数学史不仅在东亚范围之内,而且在全世界都享有盛誉。
中国古代数学奠定了世界古代数学发展的基础,是古代数学发展史上不朽的一部到。
一、夏商时期1、夏商时代,算术发展十分迅速,用捻筒法来做算术运算,以结构较为完整的“十倍乘计”等方法计算乘法、九宫法计算除法的算法技术,使算术计算更加便捷准确。
2、夏商时代也发明了比例4:3——三角比例,从而实现了圆周率和圆面积的应用实践,并形成了计算几何和解几何的学科体系。
另外在夏商时代,是发现了“六十甲子(公历)历法”,以及“八卦”科学。
二、战国秦汉时期1、在战国时期,发明了由三角比例4:3——三角比例发展而来的圆周率,在秦汉时期得出圆周率π值,它圆周率的估算值已经达到公约的标准水平,也可以说,秦汉时期是中国数学发展史中的重要时期。
2、还有,在战国秦汉时期,发明了叫“交叉算”的算术技术,而且提出了“等比数列递推法”的历史经典,以及多个著名的数学家出现。
三、隋唐五代1、在隋唐五代时期,数学发展很快,发明了多个技术,如立方相等法、金刚石等技术,计算方法:由半径或直径及圆坐标定义圆,最早提出等比相似多边形、正多边形、螺旋线等基本几何概念。
2、同时发明了“九章算法”,一种可以用来进行继数和解几何概算的数学技术。
五代时期数学也开始应用于测量和地图,当时出现了很多的历史名人、定等比数列的定理李世民等。
四、宋元明清时期1、宋元时期,出现了许多著名的数学家,他们把一些著名的数学理论发展得更深入,还发明了“竹算术”,并将竹木算术应用到等比数列和三角函数上。
2、除此之外,也有许多发明技术:圆表面积的应用、圆的面积的几何计算、正方形根的计算,以及著名的比例锤破尺、旋转缆轮和双端拱形等。
3、明清时期,数学研究也在不断的进步,发明了拟固线、解微分方程、应用舒尔伯斯定理解圆的方程,形成了中国历史上第一部解析几何公式。
五、新中国建立到现在1、新中国成立到现在,数学研究也在不断地进行,形成了多个数学体系,如灰色系统理论、计算数学、概率论与数理统计、拓扑学、线性空间与非线性分析等。
中国数学史数学是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,能够分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。
一、中国古代数学的萌芽原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。
到原始公社末期,已开始用文字符号取代结绳记事了。
西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。
为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。
据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。
商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。
公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩能够为圆等例子。
《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。
春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。
这个时期的测量数学在生产上有了广泛应用,在数学上亦有相对应的提升。
战国时期的百家争鸣也促动了数学的发展,尤其是对于正名和一些命题的争论直接与数学相关。
名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不能够为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。
还提出了“一尺之棰,日取其半,万世不竭”等命题。
而墨家则认为名来源于物,名能够从不同方面和不同深度反映物。
数学发展的历史介绍中国古代数学发展的历史可以追溯到公元前2000年左右,当时出现了以《九章算术》、《六十四卦》等数学著作为代表的智慧精华。
《九章算术》是中国古代数学史上一部重要的著作,它是中国古代最早出现的具有技术性的数学方面的著作,它汇集了各种数学原理,给出了比喻、证明、算法等多种方法,从而形成有系统而完整的数学体系。
《六十四卦》是另一部重要的古代文献,它用十行六十四列六十四卦格子来表达,起初该卦主要用于测定军事运筹,但广泛运用到其他传统文化,像民俗、医药、气象等,其中的数学原理是用古代中国的道家哲学在数学方面的体现,表明中国古代数学术质古朴健全,具有智慧的内涵和创造性的精神。
另一种重要的古代数学著作是《诸子百家》,它包含了许多哲学家用词语表达的数学概念,从而使传统的东方数学思维得到了发展,诸子百家中中也包括《算经》、《周禅》、《算法教材》等著作,它们是古代被广泛引用的大量古典数学著作,蕴藏了深厚的思想内涵,归纳统编了古代数学的精华。
隋唐时期,邵雍、李唐等杰出数学家孜孜不倦地探索数学理论,先后出版了《曲阜教材》《谭才》《九章原义》等数学著作,开创了中国古代数学史上崭新的篇章。
宋元明清时期,佟其昂、闻弼、高云、叶开明等著名数学家及众多杰出学者对数学对深刻研究,他们发现并沿用了先前众多学者创新研究的算术、几何和微积分等数学理论,又出版了《正义表》《江州通证》《曲阜教材》《功加纳》等诸多有益的数学著作,为中国数学发展增添了新的活力。
近代以来,中国数学家积极学习西方发达的数学理论,在建立数学方面取得了大量重要成就,艾黎、宋庆龄、杨百翰等著名数学家为中国数学发展做出了显著贡献。
随着中国改革开放的不断深入和教育的发展,数学方面的研究也在逐步推进,步入了新时代,中国数学发展具有更加可喜的前景。
简述中国数学的发展史中国数学发展史:历史与传统一直保鲜中国数学的发展史可以追溯到两千多年前,是基于当时基于当时用数学领域发展出的算法和工具而演变而成。
中国数学 but 研究的深远性及其贡献享誉全球,令它在古代文明的巅峰时期占据重要地位。
本文将重点讨论近代中国数学发展史。
一、古代中国数学的起源古代中国数学的发展可以追溯到夏朝以前,一步步演变而来,从简单计数工具到绘制有规律图形。
其中有很多方面的研究,如分形计算、比例、极坐标、等值线、相似概念等,可以追溯到秦朝以前。
《九章算术》是古代中国数学的伟大成就,记载了中国古代研究数学的基础知识,并以此为基础发展出很多数学领域的算法和工具。
二、唐宋数学的复兴唐宋时期,中国的数学研究逐渐受到重视,诸如《郑玄算经》、《裴达森算经》、《支学算经》等著作相继推出,大大推动了中国数学的发展。
值得一提的是,巫马可以将数学技术应用到天文、地理和医学等领域,把它们作为辅助手段,让中国古代数学技术的发展取得了质的飞跃。
三、明清数学的蓬勃发展明清时期,中国数学技术受到国内外的瞩目,得到大幅提升。
榜样最高的是范仲淹,《流沙池记》、《定经》以及集大成的《算学启蒙》让中国数学技术具有世界性的影响力,被公认为是专业数学著作,有很高的学术地位。
另外,著名数学家周辩和穆蔚在回归分析、拉格朗日法及新型椭圆函数领域也做出了重要贡献。
四、近代中国数学的发展近代,中国的哲学数学发展遭受中国历史的沉重打击,不得不向西方学习数学知识,从而推动了中国储存数学知识的转变。
现在,数学大多由实验研究提供的数据进行计算,而不是像以前那样,通过计算机技术来求解问题。
20世纪,中国出现了一些著名的数学家,他们在微积分、线性代数和实分析等领域做出了卓越的贡献。
五、结论提及中国数学发展史,我们不得不从古代,从夏朝开始说起,历时上千年,中国数学系统地学习了很多西方数学知识,把它应用到了日常生活中。
中国数学的传承有着悠久的历史,它的传统一直保留良好,并给后人留下了无尽的财富和影响力。
中国古代数学发展史中国传统数学的形成与兴盛:公元前1世纪至公元14世纪。
分成三个阶段:《周髀算经》与《九章算术》、刘徽与祖冲之、宋元数学,这反映了中国传统数学发展的三次高峰,简述9位中国科学家的数学工作。
第一次高峰:数学体系的形成秦始皇陵兵马俑(中国,1983),秦汉时期形成中国传统数学体系。
我们通过一些古典数学文献说明数学体系的形成。
1983-1984年间考古学家在湖北江陵张家山出土的一批西汉初年(即吕后至文帝初年,约为公元前170年前后)的竹简,共千余支。
经初步整理,其中有历谱、日书等多种古代珍贵的文献,还有一部数学著作,据写在一支竹简背面的字迹辨认,这部竹简算书的书名叫《算数书》,它是中国现存最早的数学专著。
经研究,它和《九章算术》(公元1世纪)有许多相同之处,体例也是“问题集”形式,大多数题都由问、答、术三部分组成,而且有些概念、术语也与《九章算术》的一样。
《周髀算经》(髀:量日影的标杆)编纂于西汉末年,约公元前100年,它虽是一部天文学著作(“盖天说”-天圆地方;中国古代正统的宇宙观是“浑天说”-大地是悬浮于宇宙空间的圆球,“天体如弹丸,地如卵中黄”),涉及的数学知识有的可以追溯到公元前11世纪(西周),其中包括两项重要的数学成就:勾股定理的普遍形式(中国最早关于勾股定理的书面记载),数学在天文测量中的应用(测太阳高或远的“陈子测日法”,陈子约公元前6、7世纪人,相似形方法)。
勾股定理的普遍形式:求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日。
中国传统数学最重要的著作是《九章算术》(东汉,公元100年)。
它不是出自一个人之手,是经过历代多人修订、增补而成,其中的数学内容,有些也可以追溯到周代。
中国儒家的重要经典著作《周礼》记载西周贵族子弟必学的六门课程“六艺”(礼、乐、射、御、书、数)中有一门是“九数”。
《九章算术》是由“九数”发展而来。
在秦焚书(公元前213年)之前,至少已有原始的本子。
经过西汉张苍(约公元前256-152年,约公元前200年,西汉阳武(今河南原阳)人)、耿寿昌(公元前73-49年,约公元前50年)等人删补,大约成书于东汉时期,至迟在公元100年。
全书246个问题,分成九章:(1)方田(土地测量),包括正方形、矩形、三角形、梯形、圆形、环形、弓形、截球体的表面积计算,另有约分、通分、四则运算,求最大公约数等运算法则;(2)粟米(粮食交易的比例方法);(3)衰分(比例分配的算法),介绍依等级分配物资或按等级摊派税收的比例分配算法;(4)少广(开平方和开立方法);(5)商功(立体形求体积法);(6)均输(征税),处理行程和合理解决征税问题,包括复比例和连比例等比较复杂的比例分配问题;(7)盈不足(盈亏类问题解法及其应用);(8)方程(一次方程组解法和正负数);(9)勾股(直角三角形),介绍利用构股定理测量计算高、深、广、远的问题。
所包含的数学成就是丰富和多方面的,主要内容包括分数四则和比例算法、面积和体积的计算、关于勾股测量的计算等,既有算术方面的,也有代数与几何方面的内容。
如方程第一题,其算筹式为它完整地叙述了当时已有的数学成就,对中国传统数学发展的影响,如同《原本》对西方数学发展的影响一样深远,在长达一千多年间,一直作为中国的数学教科书,并被公认为世界数学古典名著之一。
《九章算术》标志以筹算为基础的中国古代数学体系正式形成。
第二次高峰:数学稳步发展三国演义(中国,1998)。
从公元220年东汉分裂,到公元581年隋朝建立,史称魏晋南北朝。
这是中国历史上的动荡时期,也是思想相对活跃的时期。
在长期独尊儒学之后,学术界思辨之风再起,在数学上也兴起了论证的趋势。
许多研究以注释《周髀算经》、《九章算术》的形式出现,实质是寻求这两部著作中一些重要结论的数学证明。
这是中国数学史上一个独特而丰产的时期,是中国传统数学稳步发展的时期。
《九章算术》注释中最杰出的代表是刘徽和祖冲之父子。
刘徽(魏晋,公元3世纪)(中国,2002),淄乡(今山东邹平县)人,布衣数学家,于263年撰《九章算术注》,不仅对《九章算术》的方法、公式和定理进行一般的解释和推导,而且系统地阐述了中国传统数学的理论体系与数学原理,并且多有创造,奠定了这位数学家在中国数学史上的不朽地位,成为中国传统数学最具代表性的人物。
刘徽数学成就中最突出的是“割圆术”(圆内接正多边形面积无限逼近圆面积)。
在刘徽之前,通常认为“周三径一”,即圆周率取为3。
刘徽在《九章算术注》中提出割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,通过计算圆内接正3072边形的面积,求出圆周率为3927/1250(=)(阿基米德计算了圆内接和外切正96边形的周长)。
为方便计算,刘徽主张利用圆内接正192边形的面积求出157/50(=)作为圆周率,后人常把这个值称为“徽率”。
这使刘徽成为中算史上第一位用可靠的理论来推算圆周率的数学家,并享有国际声誉。
让我们来体会刘徽的“割圆术”。
刘徽对π的估算值(密克罗尼西亚,1999)。
刘徽利用极限思想求圆的面积,就极限思想而言,从现存中国古算著作看,在清代李善兰及西方微积分学传入中国之前,再没有人超过甚至达到刘徽的水平。
2000年国家最高科学技术奖得主吴文俊院士指出:“从对数学贡献的角度来衡量,刘徽应该与欧几里得、阿基米德相提并论”。
刘徽的数学思想和方法,到南北朝时期被祖冲之推进和发展。
祖冲之(429-500年),范阳遒县(今河北涞源)人,活跃于南朝的宋、齐两代,曾做过一些小官,但他却成为历代为数很少能名列正史的数学家之一。
祖冲之:“迟疾之率,非出神怪,有形可检,有数可推。
”祖冲之的著作《缀术》,取得了圆周率的计算和球体体积的推导两大数学成就。
祖冲之关于圆周率的贡献记载在《隋书》(唐,魏征主编)的《律历志》中:“古之九数,圆周率三,圆径率一,其术疏舛。
自刘歆、张衡、刘徽、王蕃、皮延宗之徒,各设新率,未臻折衷。
宋末,南徐州(今江苏镇江)从事史祖冲之,更开密法,以圆径一亿为一丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,朒数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈朒二限之间。
密率,圆径一百一十三,圆周三百五十五。
约率,圆径七,周二十二。
”即,祖冲之算出圆周率在与之间,并以355/113(=…)为密率,22/7(=…)为约率。
1913年日本数学史家三上义夫(1875-1950年)在《中国和日本的数学之发展》里主张称355/113为祖率。
祖冲之如何算出如此精密结果,《隋书·律历志》写道:“所著之书,名为《缀术》,学官莫能究其深奥,是故废而不理”。
《缀术》失传了,没有任何史料流传下来。
史学家认为,祖冲之除开继续使用刘徽的“割圆术”“割之又割”外,并不存在有其它方法的可能性。
如按刘徽的方法,继续算至圆内接正12288边形和正24576边形可得出圆周率在3.与3.之间。
《缀术》的另一贡献是祖氏原理:幂势既同则积不容异,在西方文献中称为卡瓦列里原理,或不可分量原理,因为1635年意大利数学家卡瓦列里(1598-1647年)独立提出,对微积分的建立有重要影响。
在数学成就方面,整个唐代却没有产生出能够与其前的魏晋南北朝和其后的宋元时期相媲美的数学大家,主要的数学成就在于建立中国数学教育制度。
为了教学需要唐初由李淳风(604-672年)等人注释并校订了《算经十书》(约656年),即《周髀算经》、《九章算术》、《海岛算经》(刘徽)、《孙子算经》(约成书于公元400年,内有“物不知数”问题)、《夏候阳算经》(成书于公元6、7世纪,内有“百鸡问题”:今有鸡翁一,直钱五;鸡母一,直钱三;鸡雏三,直钱一。
凡百钱,买鸡翁、母、雏各几何)、《张邱建算经》(张邱建,北魏清河(今邢台市清河县)人,约成书于公元466-485年间)、《缀术》(祖冲之)、《五曹算经》(北周甄鸾(字叔遵,河北无极人)著)、《五经算经》(北周甄鸾著)和《缉古算经》(约成书于626年前后,唐王孝通,内有三次方程及其根,但没有解题方法)。
十部算经对继承古代数学经典有积极的意义,显示了汉唐千余年间中国数学发展的水平,是当时科举考试的必读书(公元587年隋文帝开创中国的科举考试制度,1905年清朝废止科举制度)。
第三次高峰:数学全盛时期社会背景:公元960年,北宋王朝的建立结束了五代十国(907-960年)割据的局面。
北宋的农业、手工业、商业空前繁荣,科学技术突飞猛进,火药、指南针、印刷术三大发明就是在这种经济高涨的情况下得到了广泛应用。
雕版印书的发达,特别是北宋中期,在宋仁宗庆历年间(约1041—1048年),毕升活字印刷术的发明(平民发明家毕升总结了历代雕版印刷的丰富的实践经验,经过反复试验,制成了胶泥活字,实行排版印刷,完成了印刷史上一项重大的革命,关于毕升的生平事迹,人们却一无所知,幸亏毕升创造活字印刷术的事迹,比较完整地记录在北宋著名科学家沈括的名著《梦溪笔谈》里),给数学著作的保存与流传带来了福音。
事实上,整个宋元时期(960—1368年),重新统一了的中国封建社会发生了一系列有利于数学发展的变化,以筹算为主要内容的中国传统数学达到了鼎盛时期。
中国传统数学以宋元数学为最高境界。
这一时期涌现许多杰出的数学家和先进的数学计算技术,其印刷出版、记载着中国传统数学最高成就的宋元算书,是世界文化的重要遗产。
下面介绍宋元时期的一些计算技术。
贾宪三角贾宪(约公元11世纪)是北宋人,在朝中任左班殿值,约1050年完成一部叫《黄帝九章算术细草》的著作,原书丢失,但其主要内容被杨辉的《详解九章算法》摘录,因能传世。
贾宪发明了“增乘开方法”,是中算史上第一个完整、可推广到任意次方的开方程序,一种非常有效和高度机械化的算法。
在此基础上,贾宪创造了“开方作法本源图”(即“古法七乘方图”或贾宪三角),西方人叫“帕斯卡三角”或“算术三角形”,因为法国数学家帕斯卡(1623-1662年)于1654年发表论文《论算术三角形,以及另外一些类似的小问题》。
算术三角形(利比里亚,1999)。
隙积术沈括(1030-1094年),北宋钱塘(今浙江杭州)人,北宋著名的科学家,1080年任延州(今陕西延安市)知州,因1082年的“永乐城(今宁夏银川附近)之战”败于西夏(1032-1227年)而结束政治生涯,经过6年的软禁之苦后,开始赋闲幽居生活。
沈括一生论著极多,其中以《梦溪笔谈》(1093年)影响最大,内容包括数学、天文、历法、地理、物理、化学等领域,被英国著名科学史家李约瑟誉为“中国科学史的里程碑”。
他对数学的主要成就有两项,会圆术(解决由弦求孤的问题)和隙积术(开创研究高阶等差级数之先河)。
天元术李冶(金、元,1192-1279年),金代真定栾城(今河北栾城)人,出生的时候,金朝(1115-1234年)正由盛而衰,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居于封龙山治学,潜心学问。