中国数学发展史概述
- 格式:docx
- 大小:28.98 KB
- 文档页数:16
中国数学的起源与早期发展中国数学的起源可以追溯到古代的商周时期(公元前1700年-公元前221年)。
在商周时期,人们开始使用计算工具,如算筹和算盘,用于商业和日常生活中的计算。
在这个时期,数学主要是为了应用而存在的,用于解决实际问题。
中国数学在战国时期(公元前475年-公元前221年)取得了一些重要的发展。
这个时期有许多数学家和数学家创造了很多数学方法和概念。
例如,《九章算术》就是一个在战国时期编纂的重要数学书籍,其中包含了许多数学方法和问题的解法。
在秦汉时期(公元前221年-公元220年),中国数学迎来了一个重要的发展阶段。
中国的数学家开始使用一种偏重于抽象思维的方法来解决问题,这种方法成为“术数”或“曲线术”。
在这个时期,数学开始从实际问题中抽离出来,成为独立的学科。
研究数学的学者主要是通过研究数形关系和探索数的特征来推导出数学的定律和规则。
在隋唐时期(公元581年-公元907年),中国数学迎来了又一次的高潮。
隋唐时期的数学家主要关注于几何学和代数学方面的研究。
其中,最著名的数学家是李冶和郭守敬。
李冶是唐代的一位几何学家,他在《九章算术》的基础上创立了《本草几何》一书,成为了中国几何学的奠基人。
郭守敬则是一位天文学家和数学家,他的《均输术》和《秘会精义》对后世的数学研究产生了深远的影响。
宋元明清时期(公元960年-1912年)是中国数学的黄金时期。
在这个时期,中国数学在代数学、数论和解析学方面取得了重要的进展。
特别是,《数学通览》一书对数学的分类、整理和发展做出了巨大的贡献。
这本书包含了许多重要的数学内容,如线性方程、求根法和三角学等。
除了学术界的发展,中国数学也应用于日常生活中。
例如,在 Ming明代,中国的数学家们发展了一种叫做“甲骨本义”的方法,用于计算和研究卜辞中的问题。
这个方法在卜辞解释和历史研究中起到了重要的作用。
综上所述,中国数学的起源可以追溯到商周时期,经历了战国时期、秦汉时期、隋唐时期和宋元明清时期的发展。
中国数学发展史概述一、中国数学的起源与早期发展据《易·系辞》记载:「上古结绳而治,后世圣人易之以书契」。
在殷墟出土的甲骨文卜辞中有很多记数的文字。
从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。
算筹是中国古代的计算工具,而这种计算方法称为筹算。
用算筹记数,有纵、横两种方式:表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间﹝法则是:一纵十横,百立千僵,千、十相望,万、百相当﹞,并以空位表示零。
算筹为加、减、乘、除等运算建立起良好的条件。
筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。
在几何学方面《史记·夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现「勾三股四弦五」这个勾股定理﹝西方称勾股定理﹞的特例。
战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。
战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。
著名的有《墨经》中关于某些几何名词的定义和命题。
墨家还给出有穷和无穷的定义。
《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想。
这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。
此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想。
二、中国数学体系的形成与奠基这一时期包括从秦汉、魏晋、南北朝,共400年间的数学发展历史。
秦汉是中国古代数学体系的形成时期,为使不断丰富的数学知识系统化、理论化,数学方面的专书陆续出现。
现传中国历史最早的数学专著是1984年在湖北江陵张家山出土的成书于西汉初的汉简《算数书》,与其同时出土的一本汉简历谱所记乃吕后二年,所以该书的成书年代至晚是公元前186年。
数学发展历程
数学的发展历程可以大致分为四个时期:
1. 数学形成时期:这是人类建立最基本的数学概念的时期。
人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本、最简单的几何形式,算术与几何还没有分开。
2. 初等数学时期、常量数学时期:这个时期的基本的、最简单的成果构成中学数学的主要内容。
大约持续了两千年,逐渐形成了初等数学的主要分支:算数、几何、代数。
3. 变量数学时期:变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(Calculus)的创立。
4. 现代数学时期:数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征。
中国数学发展简史(一)中国古代数学的萌芽原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,考古发现,仰韶文化时期出土的陶器,上面就已刻有表示数字的符号。
到原始公社末期,就已开始用文字符号取代结绳记事了。
(二)春秋战国之际,筹算得到普遍的应用筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。
战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。
《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如“至大无外谓之大一,至小无内谓之小一”、“一尺之棰,日取其半,万世不竭”(是我国古书中最早体现微积分思想的一段)等。
这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。
秦汉是封建社会的上升时期,经济和文化均得到迅速发展。
中国古代数学体系正是形成于这个时期,它的主要标志是算术成为一个专门的学科以及《九章算术》为代表的数学著作的出现。
《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。
例如分数四则运算,今有术(西方称三率法),开平方与开立方(包括二次方程数值解法),盈不足术(西方称双设法),各种面积和体积公式,线性方程组解法,正负数运算的加减法则,勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的,其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。
就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。
(三)中国古代数学体系的发展魏、晋时期出现的玄学有利于数学从理论上加以提高。
吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注2卷(已失传),魏末晋初刘徽撰《九章算术》注10卷(263)、《九章重差图》1卷(已失传)都是出现在这个时期,赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。
中国的数学历史中国是古代文明的重要代表之一,同时也有着光辉的数学历史。
以下是有关中国数学历史的一些重要内容:1.最早的数学发展:约在公元前11世纪,中国的商代就已开始发展数学。
商代的贡献主要包括单位的建立,长度和重量的标准化以及简单的算数。
2.数学家张丘建的贡献:在东汉末年,张丘建发表的《算经》成为了数学史上的重要经典之一。
这部作品包括594个题目,主要涵盖了算术、代数、几何和三角学四个方面的内容。
3.数学家李冶的成就:唐代数学家李冶贡献了许多重要的发现,特别是在解释和应用三角函数方面做出了重要贡献。
他还发明了多种算术方法,并开发了新的几何工具。
4.算学的发展:在宋代,算学成为了学校的主要课程之一,并且开始出现了关于代数学和几何学的研究。
宋代数学家朱世杰发明了一种新的十进制计数方法,并提出若干关于除法和乘方的原则。
5.《数学九章》的出现:明代数学家秦九韶和杨辉共同编写了《数学九章》这部长篇巨著。
这本书详细介绍了代数学、几何学和三角学的各个方面。
它不仅仍然是数学研究的必读之书,而且还影响了欧洲的数学研究。
6.数学教育的革新:在清朝,数学成为了中国的高等教育的重要课程之一。
清末时期的数学家严复通过翻译数学教材的方式,将西方的数学思想引入到中国。
总的来说,中国的数学历史相当悠久而且丰富,其成就在几何、代数以及计算机等领域对现代科学技术的发展做出了积极的贡献。
虽然现代数学已经发生了很大的变化,但中国数学所开创的理性、系统、严密的数学思想仍然有着深远的影响。
数学在中国的发展历史中国的数学发展历史可以追溯到古代,最早的数学文化可以追溯到商周时期,此时已经有扁鹊算术、卜筮等各种数学科技的应用。
接下来,随着战国时期的发展,数学逐渐形成了一些基本概念和计算方法,如乘法、几何应用等。
汉代是中国数学发展的重要时期之一,汉武帝时期出现了《九章算术》,它包含了“A+B”、“一元二次方程”、“直角三角形”等数学概念。
此外,还有另一部重要的数学著作《孙子算经》,它在数学领域的发展和应用方面都有重大的作用。
这些著作的出现标志着中国数学从此开始了一个新的时期。
唐代是中国数学史上又一个伟大的时期,数学领域的繁荣要归功于宋朝的一位伟大的数学家李冶。
他的著作“欧几里德几何原本”和“数学通轨”为中国数学发展的奠基石。
在中国数学的发展史上,唐朝还出现了用于计算圆周率的平积法、线性同余方程以及大中等肋芝麻算法等重要的数学方法。
宋朝是中国数学史上的黄金时期之一,这个时期的数学领域达到了一个新的高峰。
这一时期著名的数学家有杨辉、李之仪、祖冲之、秦九韶等,他们的数学著作成为了学术研究成果的代表。
此外,宋朝还出现了加减乘除、高次方程、三角函数以及应用微积分等数学方法。
明朝是中国数学史上的又一个重要时期,明朝时期数学家朱载堉的“借芝麻将军之名开设算术课”的做法,引发了全国的数学热潮,使中国数学进入了一个新的时代。
总的来说,中国古代数学的发展历程非常悠久,这个发展过程的关键在于它不仅继承发扬了古代数学遗产,而且还对数学的发展提供了自己的贡献,成为了中华民族数学文化的一部分。
随着时代的发展与进步,如今的中国数学正在不断发展壮大。
中国数学发展简史翻开任何一部中国数学发展史,你都不难发现,祖先们每前进一步,都伴随着奋斗的汗水。
中国数学的起源(上古~西汉末期)古希腊学者毕达哥拉斯(约公元约前580~约前500年)有这样一句名言:“凡物皆数”。
的确,一个没有数的世界是不堪设想的。
今天,我们会不屑一顾从1数到10这样的小事,然而上万年以前,我们祖先为了这事可煞费苦心了。
在7000年以前,我们的祖先甚至连2以上的数字还数不上来,如果要问他们所捕的4只野兽是多少,他们会回答:“很多只”。
如果当时要有人能数到10,那一定会被认为是杰出的天才了。
后来人们慢慢地会把数字和双手联系在一起了。
每只手各拿一件东西,就是2数到3时又被难住了,于是把第3件东西放在脚边,“难题”才得到解决。
先是结绳记数,然后又发展到“书契”,五六千年前就会写1~30的数字,到了2000多年前的春秋时代,祖先们不但能写3000以上的数学,还有了加法和乘法的意识。
就这样,在逐步摸索中,祖先从混混沌沌的世界中走出来了。
到了战国时期,祖先们的数学知识已远远超出了会数1~3000的水平。
这一阶段他们在算术、几何,甚至在现代应用数学的领域,都开始了耕耘播种。
算术领域,四则运算在这一时期内得到了确立,乘法中诀已经各种著作中零散出现,分数计算也开始被应用于种植土地、分配粮食等方面。
几何领域,出现了勾股定理。
代数领域,出现了负数概念的萌芽。
当历史推进到秦汉时期,我们发现,这一时期在算术方面乘除法算例明显增多,还出现了多步乘除法和趋于完整的九九乘法中诀。
在几何方面,对于长方形面积的计算以及体积计算的知识也具备了。
(2)中国数学的发展繁荣时期(西汉末期~隋朝中叶)(3)这是中国数学理论的第一个高峰期。
这个高峰的标志就是数学专著《九章算术》的诞生。
这本书的诞生,不仅说明我国古代完整的数学体系已经形成,而且在世界上,当时也很难找到另一本能同媲美的数学专著。
在这一数学理论发展的高峰期,除了《九章算术》这部巨著之外,还出现祖冲之的《缀术》等数学专著。
数学史中国数学历史发展概况中国数学的历史可以追溯到古代,最早的数学活动可以追溯到四千多年前的商代,这是中国数学的起源。
在古代,数学通常被用于实际应用,例如农业、商业和工程等领域。
商代时期的数学主要集中在商业领域,特别是在商品交易和粮食分配方面。
商代的数学主要包含了计算和测量技术的应用,例如计算面积和容积,测量土地和建筑物等。
随着时间的推移,数学的发展逐渐进入了战国时期。
这个时期是中国数学发展的重要阶段,许多学术家和哲学家开始研究数学的本质和规律。
在战国时期,数学的思想得到了广泛的发展,一些最重要的数学著作也在这个时期出现。
例如《九章算术》就是中国古代数学的经典之一,它包含了各种数学问题的解决方法,如方程、几何等。
汉代是中国数学史上的一个重要时期,有关数学的研究不断深入。
汉代的数学家最重要的贡献之一是十进位制的发明,这是现代数学中最基本的概念之一、十进位制的引入对数学的进一步发展产生了积极的影响,为后来的数学家提供了更精确的计算工具。
随着时间的推移,中国数学在隋唐时期出现了一个重要的转折点。
隋唐时期的数学研究主要集中在天文学和几何学等领域。
著名的数学家李冶在这个时期贡献了许多重要的数学成果,他的著作《数书九章》包含了五千多个数学问题的解决方法。
明清时期的数学研究主要集中在代数和概率等领域。
许多著名的数学家在这个时期提出了许多重要的数学理论和公式。
著名的数学家朱经武在明代提出了代数中的数学计算方法,他的贡献在当时引起了广泛的关注。
总结起来,中国数学的发展历程可以追溯到商代,经历了战国时期、汉代、隋唐时期、宋代和明清时期等不同的阶段。
中国数学的研究主要集中在代数、几何、概率等领域,对世界数学的发展产生了重要的影响。
中国古代数学的成就以及数学家们不断探索和创新的精神,为今天的数学研究奠定了坚实的基础。
中国传统数学史话中国的数学史不仅在东亚范围之内,而且在全世界都享有盛誉。
中国古代数学奠定了世界古代数学发展的基础,是古代数学发展史上不朽的一部到。
一、夏商时期1、夏商时代,算术发展十分迅速,用捻筒法来做算术运算,以结构较为完整的“十倍乘计”等方法计算乘法、九宫法计算除法的算法技术,使算术计算更加便捷准确。
2、夏商时代也发明了比例4:3——三角比例,从而实现了圆周率和圆面积的应用实践,并形成了计算几何和解几何的学科体系。
另外在夏商时代,是发现了“六十甲子(公历)历法”,以及“八卦”科学。
二、战国秦汉时期1、在战国时期,发明了由三角比例4:3——三角比例发展而来的圆周率,在秦汉时期得出圆周率π值,它圆周率的估算值已经达到公约的标准水平,也可以说,秦汉时期是中国数学发展史中的重要时期。
2、还有,在战国秦汉时期,发明了叫“交叉算”的算术技术,而且提出了“等比数列递推法”的历史经典,以及多个著名的数学家出现。
三、隋唐五代1、在隋唐五代时期,数学发展很快,发明了多个技术,如立方相等法、金刚石等技术,计算方法:由半径或直径及圆坐标定义圆,最早提出等比相似多边形、正多边形、螺旋线等基本几何概念。
2、同时发明了“九章算法”,一种可以用来进行继数和解几何概算的数学技术。
五代时期数学也开始应用于测量和地图,当时出现了很多的历史名人、定等比数列的定理李世民等。
四、宋元明清时期1、宋元时期,出现了许多著名的数学家,他们把一些著名的数学理论发展得更深入,还发明了“竹算术”,并将竹木算术应用到等比数列和三角函数上。
2、除此之外,也有许多发明技术:圆表面积的应用、圆的面积的几何计算、正方形根的计算,以及著名的比例锤破尺、旋转缆轮和双端拱形等。
3、明清时期,数学研究也在不断的进步,发明了拟固线、解微分方程、应用舒尔伯斯定理解圆的方程,形成了中国历史上第一部解析几何公式。
五、新中国建立到现在1、新中国成立到现在,数学研究也在不断地进行,形成了多个数学体系,如灰色系统理论、计算数学、概率论与数理统计、拓扑学、线性空间与非线性分析等。
中国古代数学发展史中国传统数学的形成与兴盛:公元前1世纪至公元14世纪。
分成三个阶段:《周髀算经》与《九章算术》、刘徽与祖冲之、宋元数学,这反映了中国传统数学发展的三次高峰,简述9位中国科学家的数学工作。
第一次高峰:数学体系的形成秦始皇陵兵马俑(中国,1983),秦汉时期形成中国传统数学体系。
我们通过一些古典数学文献说明数学体系的形成。
1983-1984年间考古学家在湖北江陵张家山出土的一批西汉初年(即吕后至文帝初年,约为公元前170年前后)的竹简,共千余支。
经初步整理,其中有历谱、日书等多种古代珍贵的文献,还有一部数学著作,据写在一支竹简背面的字迹辨认,这部竹简算书的书名叫《算数书》,它是中国现存最早的数学专著。
经研究,它和《九章算术》(公元1世纪)有许多相同之处,体例也是“问题集”形式,大多数题都由问、答、术三部分组成,而且有些概念、术语也与《九章算术》的一样。
《周髀算经》(髀:量日影的标杆)编纂于西汉末年,约公元前100年,它虽是一部天文学著作(“盖天说”-天圆地方;中国古代正统的宇宙观是“浑天说”-大地是悬浮于宇宙空间的圆球,“天体如弹丸,地如卵中黄”),涉及的数学知识有的可以追溯到公元前11世纪(西周),其中包括两项重要的数学成就:勾股定理的普遍形式(中国最早关于勾股定理的书面记载),数学在天文测量中的应用(测太阳高或远的“陈子测日法”,陈子约公元前6、7世纪人,相似形方法)。
勾股定理的普遍形式:求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日。
中国传统数学最重要的著作是《九章算术》(东汉,公元100年)。
它不是出自一个人之手,是经过历代多人修订、增补而成,其中的数学内容,有些也可以追溯到周代。
中国儒家的重要经典著作《周礼》记载西周贵族子弟必学的六门课程“六艺”(礼、乐、射、御、书、数)中有一门是“九数”。
《九章算术》是由“九数”发展而来。
在秦焚书(公元前213年)之前,至少已有原始的本子。
中国数学发展历史中国是世界上文明发达最早的国家之一,数学这门学科在中国的发展历史源远流长。
从远古的河洛文化、到春秋战国时期的《九章算术》,再到现代的数学研究,中国数学的发展历程呈现出一种独特的风格和面貌。
中国的数学起源可以追溯到远古的河洛文化。
河洛文化是中国古代的一种计数方式,利用石子、贝壳等物进行计数,后来逐渐演变为算盘的使用。
这种计数方式利用了十进制的原理,使得计数更加方便、准确。
到了春秋战国时期,中国的数学发展迎来了一个高峰。
《九章算术》的出现标志着中国古代数学体系的形成。
这部著作包含了大量的数学问题及其解法,内容涵盖了代数、几何、概率统计等多个方面。
其中,求解线性方程组的方法、分数运算、面积和体积的计算等成果在当时世界上处于领先地位。
近代以来,中国数学的发展受到了西方数学的影响,同时也开始与西方进行交流。
清朝时期,西方数学开始被引入中国,中国的数学家开始学习西方的数学知识。
这使得中国的数学研究进入了一个新的阶段。
在现代,中国的数学研究已经取得了显著的成果。
中国的数学家们在代数、几何、拓扑、概率统计等多个领域都取得了重要的突破。
其中,中国在解析数论、代数几何、泛函分析等领域的成就尤为突出。
同时,中国的数学家们也开始将数学应用到其他领域,如物理、工程、经济等。
随着科技的进步和人类对自然界认识的深入,数学的研究也在不断地深入和发展。
在中国,数学界正在积极推动学科交叉和创新研究。
例如,将数学与物理、工程、经济等领域相结合,开展跨学科的研究,为解决实际问题提供新的思路和方法。
中国的数学教育也在不断改进和优化。
越来越多的学生开始接触和理解数学,培养出了一大批优秀的数学人才。
这些人才将在未来的数学研究和应用中发挥重要的作用。
总结:中国数学发展历史悠久,从河洛文化到《九章算术》,再到现代的数学研究,中国的数学一直在不断地发展和进步。
未来,随着科技的不断进步和创新研究的推动,中国的数学将会在更多的领域发挥重要作用。
数学史第十讲中国数学发展简史数学史第十讲:中国数学发展简史关键词:中国数学,历史发展,数学思想,古代数学,近现代数学一、引言中国是世界上最古老的文明之一,其数学发展源远流长,且在不断发展过程中,形成了自己独特的数学思想和体系。
从原始社会的结绳记事到现代数学,中国的数学发展见证了无数智慧的闪光。
本篇文章将带您探寻中国数学的发展历程,从古代的数学成果到近现代的数学发展,感受中国数学的魅力。
二、中国古代数学1、数学起源与背景在中国的远古时代,数学便已萌芽。
随着生产力的提高和土地测量、赋税、水利等实际需要的增加,数学逐渐成为人们日常生活中不可或缺的一部分。
2、春秋战国时期的数学成就春秋战国时期,中国的数学成就开始显现。
《周髀算经》和《九章算术》的问世,标志着中国古代数学体系的初步形成。
其中,《周髀算经》是世界上最古老的数学著作之一,阐述了勾股定理及其应用。
秦汉时期,中国的数学思想进一步发展。
这一时期,人们对分数、小数的认识日益深化,十进位值制记数法应运而生,勾股定理得到广泛应用。
此外,赵爽的“勾股圆方图”和刘徽的“割圆术”也是秦汉时期数学的重要成果。
4、三国两晋南北朝时期的数学成就三国两晋南北朝时期,中国的数学成就达到了新的高度。
祖冲之的“圆周率”和王孝光的“沈括算图”是这一时期数学的杰出代表。
此外,这一时期还出现了《算经十书》等重要的数学著作。
三、中国近现代数学1、隋唐时期的数学思想和发展隋唐时期,中国的数学思想进一步发展,唐代的《算经十书》成为了一个时代的数学经典。
这一时期,人们开始关注数学的实际应用,如天文学、工程学等。
2、宋元时期的数学成就和发展宋元时期,中国的数学成就达到了一个新的高峰。
杨辉的“杨辉三角”和朱世杰的“四元术”是这一时期数学的杰出代表。
此外,这一时期还出现了《算学启蒙》等重要的数学著作。
明清时期,中国的数学思想逐渐走向封闭和保守,但仍有不少数学家在不懈探索。
这一时期,徐光启的《几何原本》、李善兰的《代数学》等著作对于中国的数学发展起到了推动作用。
数学发展史的四个阶段
中国的数学发展史可以分为四个阶段:从古典数学到现代数学,从印刷机发明到计算机的出现,从古典科学来到现代科学的产生,从哲学到数学的发展。
古典数学,是指公元前3世纪到18世纪之间,数学研究成果形
成的一个时期,它主要包括亚历山大时期的希腊数学家和拉丁数学家,古代中国的数学家,如董仲舒和张邱锡,以及16、17世纪的欧洲数
学家,例如莱布尼茨和开普勒。
古典数学的主要功能是对理论的发展,对实践的指导和技术的开展,以及利用数学方法来解决自然科学和哲学问题。
17世纪,由于印刷机的发明,使得数学家们有更多的可能性来
发展和研究,从而出现了现代数学,现代数学侧重于理论研究,着重科学技术在实际应用中使用,它有助于数学语义研究,数学实践与理论内容概念的建立,以及发展具有实际价值的技术理论,为后来的科学研究奠定了基础。
20世纪,由于计算机的出现,使得数学科学进入了一个新的时代。
计算机可以高效地计算大量复杂的数据,帮助数学研究者们做出更快、更精确的决策,也为科学和技术研究提供了前所未有的机会。
最后,从1997年起,中国出现了哲学到数学发展的过渡时期,
哲学文化开始复苏,古代的哲学思想也渐渐影响到数学发展,如现代数学规范,现代数学哲学等。
该时期的数学研究不仅利用古代的经验,而且更多的是以新的视角来看待数学的发展。
中国数学发展史的四个阶段:古典数学、现代数学、从印刷机发明到计算机的出现,及从哲学到数学发展,见证了中国数学史上蓬勃发展的历史。
这些阶段和浪潮,不仅提高了我们对数学的理解,而且也为科学发展和社会进步创造了条件。
中国数学简史引言概述中国数学作为世界上最古老、最有影响力的数学传统之一,经历了漫长的发展历程。
自古以来,中国数学家们在数理思维、数学文化、数学理论等方面作出了许多重要贡献。
本文将对中国数学的历史进行回顾,探讨其重要成就及对世界数学发展的影响。
正文内容一、古代中国数学的起源与发展1.古代中国数学概述:从原始时代到商周时期2.古代中国算术的基础:十进制、计算术与算筹3.战国时期的数学发展:几何学、勾股定理与尺规作图4.西汉时期的数学研究:数论、方程与幂等式5.晋朝与隋唐时期的数学成就:天元术、衍术与斜弧术二、古代中国数学理论的发展与贡献1.四元数的发展:杨辅之与《九章算术》2.古代中国数学的天元术:对数表的发明与应用3.衍术的研究与应用:多项式、立方与二次剩余理论4.印度数学的传入对古代数学的影响5.尺规作图的研究:《大衍经》与《测圆海镜》三、中国数学的盛世与再现1.唐宋时期数学的繁荣:李冶、宋赵爽与《数术书》2.明清时期数学的全面发展:数论、象数、解析几何等3.数学的教育与普及:《数学钥》等教材的编纂与推广4.数学的应用:计算机、测量、天文学等领域5.中国数学史的传承与发展:数学学会等机构的建立及学术交流四、中国数学在世界数学发展中的地位与影响1.中国数学对印度、波斯等地的影响与交流2.中国数学在文化传统中的地位:易经、兵法与数学的关联3.数学文化的传承与普及:书法、绘画与各类艺术形式中的数学元素4.中国数学在现代数学学科中的位置与影响5.中国数学的国际影响:世界数学大会与国际期刊的参与与领导五、现代中国数学的发展与挑战1.数学教育与研究的现状:重视理论研究与应用研究的平衡2.中国数学学科与学术团队的崛起:多个领域的重要突破3.未来的发展方向与挑战:数学交叉学科与国际竞争的压力4.数学人才培养与引进政策:培养人才的重要性与措施5.中国数学的未来:文化传统与现代科技的结合总结中国数学作为世界数学史上的重要组成部分,具有悠久的历史和独特的特点。
中国数学史(68页)一、远古至先秦时期的数学成就1. 结绳记事与原始数学早在远古时期,我国先民们就已经开始运用结绳记事的方法来处理简单的计数问题。
这种原始的计数方式,为数学的发展奠定了基础。
随着时间的推移,先民们逐渐掌握了更复杂的数学知识,如分数、乘除法等。
2. 夏商周时期的数学夏商周时期,我国的数学得到了进一步的发展。
这一时期,出现了专门从事数学研究的官员,如《周髀算经》中记载的“数为官”制度。
甲骨文、金文等古文字中,也发现了大量的数学符号和计算方法。
3. 先秦诸子与数学先秦时期,诸子百家争鸣,数学得到了前所未有的重视。
儒家、道家、墨家等学派都有涉及数学的研究。
其中,墨子及其弟子对数学的贡献尤为突出,他们在《墨经》中记载了丰富的数学知识和理论。
4. 《九章算术》的问世二、秦汉时期的数学繁荣1. 秦朝的数学统一秦始皇统一六国后,为了加强中央集权,对度量衡进行了统一,这对数学的发展产生了积极影响。
统一的度量衡制度为数学的传播和应用提供了便利,使得数学知识在更广泛的范围内得到应用。
2. 汉代数学家的贡献汉代,我国数学家层出不穷,如张苍、耿寿昌等,他们在继承和发展《九章算术》的基础上,提出了许多新的数学理论和方法。
其中,张苍的《算术经》和耿寿昌的《算术》都是当时颇具影响力的数学著作。
3. 《周髀算经》与古代天文学汉代,另一部数学名著《周髀算经》问世。
这部著作不仅包含了丰富的数学知识,还与古代天文学密切相关。
它通过数学方法解释了天文现象,为后世数学在天文学领域的应用奠定了基础。
4. 刘徽与极限思想东汉时期,数学家刘徽在《九章算术》的基础上,提出了“割圆术”,用以计算圆周率。
他的方法体现了极限思想,为后世数学家探索圆周率及其他数学问题提供了新的思路。
三、魏晋南北朝时期的数学发展1. 数学家群体的兴起魏晋南北朝时期,我国数学家群体日益壮大,如王弼、郭象等,他们在数学理论研究方面取得了显著成果。
这一时期的数学研究,更加注重理论探索和抽象思考。
中国数学发展历史中国的数学发展可以追溯到古代,丰富而独特的发展史代表了中国古代数学的独特性和深厚的数学学问。
最早的数学发现可以追溯到公元前2000年左右的殷商时期,当时的数学主要应用于贸易、天文和农业。
在中国早期的数学发展中,标有准确的日期的最早数学文献是《九章算术》(公元前202年)和《海峡术》(公元前202年)。
这两部著作首次系统地记录了许多数学原理,并成为后来中国数学发展的基础。
在中国古代数学的发展中,最具代表性的是三国时期的“张爱玲算术”和隋唐时期的“数学算术”。
《九章算术》中记录了许多代数和几何方面的内容,如线性方程、方程求解、求根、等价转换等。
而《海韵术》则引入了很多基本的几何概念和方法。
唐代是中国古代数学发展的巅峰时期。
数学在这一时期得到很大的推动和发展。
唐代数学家刘徽的《九章算术注》和杨文韬的《算法宝鉴》都是唐代数学的重要著作,对解决问题和解决实际问题的方法进行了深入的研究。
宋代是中国数学发展的重要时期。
数学家秦九韶的《数书乘舆图说》是中国古代的一部重要数学著作。
这本书主要介绍了中国古代的天文数学、应用数学和阿拉伯数字。
此外,数学家李冶的《数书九章》也是中国古代数学的重要文献之一明代是中国数学发展的又一个重要时期。
数学家朱圣府的《数学九章》是明代中国古代数学研究的重要成果。
这本书首次提出了三角函数和对数函数的概念,并与目前所使用的三角函数和对数函数将近相同。
中国古代数学的发展还可以追溯到元代的李喜和明代的李俊楠等数学家。
李喜的《剑桥大学历数书》是一部重要的数学著作,其中主要研究了代数学、几何学和曲线学等领域的问题。
而李命南的《太学数理概要》是中国古代数学研究的重要著作之一,介绍了二次方程、角度和三角函数的基本原理和方法。
总体而言,中国古代数学发展历史丰富多样,早在几千年前就出现了一些重要的数学原理和方法。
这些数学原理和方法在古代中国的贸易、天文、农业等领域得到了广泛的应用。
中国古代数学的研究为现代数学的发展奠定了坚实的基础。
中国古代数学发展史中国传统数学的形成与兴盛:公元前1 世纪至公元14 世纪。
分成三个阶段:《周髀算经》与《九章算术》、刘徽与祖冲之、宋元数学,这反映了中国传统数学发展的三次高峰,简述9 位中国科学家的数学工作。
第一次高峰:数学体系的形成秦始皇陵兵马俑(中国,1983),秦汉时期形成中国传统数学体系。
我们通过一些古典数学文献说明数学体系的形成。
1983-1984 年间考古学家在湖北江陵张家山出土的一批西汉初年(即吕后至文帝初年,约为公元前170 年前后)的竹简,共千余支。
经初步整理,其中有历谱、日书等多种古代珍贵的文献,还有一部数学著作,据写在一支竹简背面的字迹辨认,这部竹简算书的书名叫《算数书》,它是中国现存最早的数学专著。
经研究,它和《九章算术》(公元1 世纪)有许多相同之处,体例也是“问题集”形式,大多数题都由问、答、术三部分组成,而且有些概念、术语也与《九章算术》的一样。
《周髀算经》(髀:量日影的标杆)编纂于西汉末年,约公元前100 年,它虽是一部天文学著作(“盖天说-天圆地方;中国古代正统的宇宙观是“浑天说”-大地是悬浮于宇宙空间的圆球,“天体如弹丸,地如卵中黄”),涉及的数学知识有的可以追溯到公元前11 世纪(西周),其中包括两项重要的数学成就:勾股定理的普遍形式(中国最早关于勾股定理的书面记载),数学在天文测量中的应用(测太阳高或远的“陈子测日法”,陈子约公元前6、7 世纪人,相似形方法)。
勾股定理的普遍形式:求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日。
中国传统数学最重要的著作是《九章算术》(东汉,公元100 年)。
它不是出自一个人之手,是经过历代多人修订、增补而成,其中的数学内容,有些也可以追溯到周代。
中国儒家的重要经典著作《周礼》记载西周贵族子弟必学的六门课程“六艺”(礼、乐、射、御、书、数)中有一门是“九数”。
《九章算术》是由“九数”发展而来。
在秦焚书(公元前213 年)之前,至少已有原始的本子。
中国数学发展史概述中国是世界文明古国之一,地处亚洲东部,濒太平洋西岸。
黄河流域和长江流域是中华民族文化的摇篮,大约在公元前2000年,在黄河中下游产生了第一个奴隶制国家──夏朝(前2033-前1562),共经历十三世、十六王。
其后又有奴隶制国家商(前562年1066年,共历十七世三十一王)和西周﹝前1027年前771年,共历约二百五十七年,传十一世、十二王﹞。
随后出现了中国历史上的第一次全国性大分裂形成的时期──春秋(前770年-前476年)战国(前403年-前221年),春秋后期,中国文明进入封建时代,到公元前221年秦王赢政统一全国,出现了中国历史上第一个封建帝制国家──秦朝(前221年前206年),在以后的时间里,中国封建文明在秦帝国的封建体制的基础不断完善地持续发展,经历了统一强盛的西汉(公元前206年公元8年)帝国、东汉王朝(公元25年公元220年)、战乱频仍与分裂的三国时期(公元208年-公元280年)、西晋(公元265年公元316年)与东晋王朝(公元317年公元420年)、汉民族以外的少数民族统治的南朝(公元420年公元589年)与北朝(公元386年公元518年)。
到了公元581年,由隋再次统一了全国,建立了大一统的隋朝(公元581618年),接着经历了强大富庶文化繁荣的大唐王朝(公元618年907年)、北方少数民族政权辽(公元916年-公元1125年)、经济和文化发达的北宋(公元960年~公元1127年)与南宋(公元1127年-公元1279年)、蒙古族建立的控制范围扩张至整个西亚地区的疆域最大的元朝(公元1271年-1368年)、元朝灭亡后,汉族人在华夏大地上重新建立起来的封建王朝──明朝(公元1368年-公元1644年),明王朝于17世纪中为少数民族女真族(满族)建立的清朝(公元1616年-公元1911年)所代替。
清朝是中国最后一个封建帝制国家。
自此之后,中国脱离了帝制而转入了现代民主国家。
中国文明与古代埃及、美索不达米亚、印度文明一样,都是古老的农耕文明,但与其他文明截然不同,它其持续发展两千余年之久,在世界文明史上是绝无仅有的。
这种文明十分注重社会事务的管理,强调实际与经验,关心人和自然的和谐与人伦社会的秩序,儒家思想作为调解社会矛盾、维系这一文明持续发展的重要思想基础。
一、中国数学的起源与早期发展据《易系辞》记载:「上古结绳而治,后世圣人易之以书契」。
在殷墟出土的甲骨文卜辞中有很多记数的文字。
从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。
算筹是中国古代的计算工具,而这种计算方法称为筹算。
算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。
用算筹记数,有纵、横两种方式:表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间﹝法则是:一纵十横,百立千僵,千、十相望,万、百相当﹞,并以空位表示零。
算筹为加、减、乘、除等运算建立起良好的条件。
筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。
在几何学方面《史记夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现「勾三股四弦五」这个勾股定理﹝西方称勾股定理﹞的特例。
战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。
战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。
著名的有《墨经》中关于某些几何名词的定义和命题,例如:「圆,一中同长也」、「平,同高也」等等。
墨家还给出有穷和无穷的定义。
《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如「至大无外谓之大一,至小无内谓之小一」、「一尺之棰,日取其半,万世不竭」等。
这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。
此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想。
二、中国数学体系的形成与奠基这一时期包括从秦汉、魏晋、南北朝,共400年间的数学发展历史。
秦汉是中国古代数学体系的形成时期,为使不断丰富的数学知识系统化、理论化,数学方面的专书陆续出现。
现传中国历史最早的数学专著是1984年在湖北江陵张家山出土的成书于西汉初的汉简《算数书》,与其同时出土的一本汉简历谱所记乃吕后二年(公元前186年),所以该书的成书年代至晚是公元前186年(应该在此前)。
西汉末年﹝公元前一世纪﹞编纂的《周髀算经》,尽管是谈论盖天说宇宙论的天文学著作,但包含许多数学内容,在数学方面主要有两项成就:(1)提出勾股定理的特例及普遍形式;(2)测太阳高、远的陈子测日法,为后来重差术(勾股测量法)的先驱。
此外,还有较复杂的开方问题和分数运算等。
《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年﹝公元前一世纪﹞。
全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。
主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。
在代数方面,《方程》章中所引入的负数概念及正负数加减法法则,在世界数学史上都是最早的记载;书中关于线性方程组的解法和现在中学讲授的方法基本相同。
就《九章算术》的特点来说,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。
它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。
魏晋时期中国数学在理论上有了较大的发展。
其中赵爽(生卒年代不详)和刘徽(生卒年代不详)的工作被认为是中国古代数学理论体系的开端。
三国吴人赵爽是中国古代对数学定理和公式进行证明的最早的数学家之一,对《周髀算经》做了详尽的注释,在《勾股圆方图注》中用几何方法严格证明了勾股定理,他的方法已体现了割补原理的思想。
赵爽还提出了用几何方法求解二次方程的新方法。
263年,三国魏人刘徽注释《九章算术》,在《九章算术注》中不仅对原书的方法、公式和定理进行一般的解释和推导,系统地阐述了中国传统数学的理论体系与数学原理,而且在其论述中多有创造,在卷1《方田》中创立割圆术(即用圆内接正多边形面积无限逼近圆面积的办法),为圆周率的研究工作奠定理论基础和提供了科学的算法,他运用割圆术得出圆周率的近似值为3927/1250(即3.1416);在《商功》章中,为解决球体积公式的问题而构造了牟合方盖的几何模型,为祖暅获得正确结果开辟了道路;为建立多面体体积理论,运用极限方法成功地证明了阳马术;他还撰著《海岛算经》,发扬了古代勾股测量术----重差术。
南北朝时期的社会长期处于战争和分裂状态,但数学的发展依然蓬勃。
出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作。
约于公元四-五世纪成书的《孙子算经》给出「物不知数」问题并作了解答,导致求解一次同余组问题在中国的滥畅;《张丘建算经》的「百鸡问题」引出三个未知数的不定方程组问题。
公元五世纪,祖冲之、祖暅父子的工作在这一时期最具代表性,他们在《九章算术》刘徽注的基础上,将传统数学大大向前推进了一步,成为重视数学思维和数学推理的典范。
他们同时在天文学上也有突出的贡献。
其著作《缀术》已失传,根据史料记载,他们在数学上主要有三项成就:(1)计算圆周率精确到小数点后第六位,得到3.1415926 3.1415927,并求得的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值,欧洲直到十六世纪德国人鄂图(valentinus otto)和荷兰人安托尼兹(a.anthonisz)才得出同样结果;(2)祖暅在刘徽工作的基础上推导出球体体积的正确公式,并提出幂势既同则积不容异的体积原理,即二立体等高处截面积均相等则二体体积相等的定理。
欧洲十七世纪意大利数学家卡瓦列利(bonaventura cavalieri)才提出同一定理;(3)发展了二次与三次方程的解法。
同时代的天文历学家何承天创调日法,以有理分数逼近实数,发展了古代的不定分析与数值逼近算法。
三、中国数学教育制度的建立隋朝大兴土木,客观上促进了数学的发展。
唐初王孝通撰《缉古算经》,主要是通过土木工程中计算土方、工程的分工与验收以及仓库和地窖计算等实际问题,讨论如何以几何方式建立三次多项式方程,发展了《九章算术》中的少广、勾股章中开方理论。
隋唐时期是中国封建官僚制度建立时期,随着科举制度与国子监制度的确立,数学教育有了长足的发展。
656年国子监设立算学馆,设有算学博士和助教,由太史令李淳风等人编纂注释《算经十书》﹝包括《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《张丘建算经》、《夏侯阳算经》、《缉古算经》、《五曹算经》、《五经算术》和《缀术》﹞,作为算学馆学生用的课本。
对保存古代数学经典起了重要的作用。
由于南北朝时期的一些重大天文发现在隋唐之交开始落实到历法编算中,使唐代历法中出现一些重要的数学成果。
公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式,这在数学史上是一项杰出的创造,唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。
唐朝后期,计算技术有了进一步的改进和普及,出现很多种实用算术书,对于乘除算法力求简捷。
四、中国数学发展的高峰唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。
从公元十一世纪到十四世纪﹝宋、元两代﹞,筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。
这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》﹝11世纪中叶﹞,刘益的《议古根源》﹝12世纪中叶﹞,秦九韶的《数书九章》﹝1247﹞,李冶的《测圆海镜》﹝1248﹞和《益古演段》﹝1259﹞,杨辉的《详解九章算法》﹝1261﹞、《日用算法》﹝1262﹞和《杨辉算法》﹝1274-1275﹞,朱世杰的《算学启蒙》﹝1299﹞和《四元玉鉴》﹝1303﹞等等。
宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰。
其中主要的工作有:公元1050年左右,北宋贾宪(生卒年代不详)在《黄帝九章算法细草》中创造了开任意高次幂的增乘开方法,公元1819年英国人霍纳(william george horner)才得出同样的方法。
贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的巴斯加三角。