理想气体的热力过程
- 格式:ppt
- 大小:5.18 MB
- 文档页数:75
第四章 理想气体的热力过程概 述热能⇔机械能的相互转化是靠工质在热力设备中吸热、膨胀、压缩等状态变化的过程来实现的,这个状态变化的过程就是热力过程,那么,在前面第一章研究的平衡状态,第二章研究理想气体的性质以及第三章研究分析开、闭口系热力状态变化的工具——热力学第一定律都是为这一章打基础。
前面第三章已提到过相同的工质在相同的温度下,不同的热力过程,能量转化的状况是不同的。
P V q q >,00v p w w ==膨技,,因此工程上实际过程多种多样、复杂、多变,不是可逆过程,据传递能量的工质不一不可能一一加以研究,何况逐个研究不总结规律性的知识用途也不大。
因此,我们仍采用热力学常用的方法,对复杂多样的热力过程进行合理化的假设。
认为是理想气体的可逆过程,这就是我们下面要研究的理想气体○V ○P ○T ○S 。
○P :例如各种环热设备,工质一面流动一面被加热,流动中克服阻力的压力降与其压力相比小很多,故认为压力不变。
○V :汽油机工作时,火花塞一点火,气缸内已被压缩的可燃混合气即燃烧,在一瞬间烧完,这期间气缸与外界无质量交换,活塞移动极微,可近似定容过程。
○T :如往复式压气机,气体在气缸中被压缩时温度升高,为了省功气缸周围有冷却水套,若冷却效果好,气缸中温度几乎不变,可近似定温过程。
○S :例气缸中燃烧产物在气缸中膨胀对外作功过程,由于工质与外界交换的热量很少可略去不计,认为是定熵过程。
上述过程实际上是略去次要因素后的一个等同特征,就是过程中有一个状态参数不变,对理想气体()u f t = ()h f t =这研究起来就方便很多,而且只有实际意义。
4—1 研究热力过程的目的及方法一. 目的1.实现预期的能量转化,合理安排热力过程,从而来提高功力装置的热经济性。
2.对确定的过程,也可预计热→功之多少。
二.解决的问题1.根据过程特点,寻找过程方程式 2.分析状态参数在过程中的变化规律3.确定热功转化的数量关系,及过程中,,u h s ∆∆∆的变化 4.在P —V ,T —S 图上直观地表示。
十、理想气体的热力过程10.1 过程目的及分析方法实施一热力过程(热力学状态连续变化过程)之1. 实现预期的热能-机械能的相互转换目的 (如燃气轮机、制冷机等);2. 达到预期的热力状态(如压气机)。
分析方法:因实际热力过程 复杂、不可逆(存在摩擦、流阻、温差散热、内部扰动)分析热力过程,先按理想的可逆过程(忽略上述不可逆因素)计算,在实际应用时,引入经验(实验)系数对其修正,以得到最终和实际接近的结果。
理想的可逆过程中有四个便于热力学分析的典型热力过程, 定压过程 C o n s t p = (如燃气轮机燃烧室加热过程) 定容过程 C o n s t v = (如汽油机汽缸中燃烧加热过程) 定温过程 C o n s t T = (冷却压气机的压缩过程)定熵过程 C o n s t s = (气体的高速压缩、膨胀过程) 4个过程参量分别对应着两对共轭的广延量与强度量。
因一般热力设备中的热力过程都可抽象为这四种或它们的组合,上述过程称为基本热力过程。
热力过程可更一般地表为 多变过程 C o n s t pv n =()(/101C v p n c c n n n nv p '=±∞====定容)定熵,(定温,定压,κ)复杂的实际过程总可用分段(n 变化)的多变过程来逼近对于不能抽象成理想气体的实际气体(如水蒸气、氟利昂等离相变区不远的气体)的热力过程借助图表分析计算。
10.2 过程方程定压过程 C o n s t p = 定容过程 C o n s t v = 定温过程 C o n s t T =绝热(定熵)过程 C o n s t s =p dp c V dv c ds v p +=−−→−=0ds 0=+p dpv dv c c v p →0=+pdp v dv κConst pv =→κ若定比热 取vp c c =κ,γκ=若变2121t t vt t p av c c =κ,或221κκκ+=av , 1,1,1v p c c =κ,2,2,2v p c c =κ多变过程C o n s t pv n = pv1n2n3n10.3 初、终态参数间关系定压过程 12p p = 1212T T v v = 定容过程 12v v =1212T T p p = 定温过程 12T T = + T R pv g = 1122v p v p = 定熵过程 12s s =κκ1122v p v p =→ 12112-⎪⎪⎭⎫ ⎝⎛=κv v T T ,11212-⎪⎪⎭⎫ ⎝⎛=κp p T T多变过程nn v p v p 1122= 12112-⎪⎪⎭⎫ ⎝⎛=n v v T T ,11212-⎪⎪⎭⎫⎝⎛=n p p T T10.4 内能、焓、熵的变化)(12T T c u v -=∆ )(1221t t c u t t v -=∆ )(12T T c h p -=∆ )(1221t t c h t t p -=∆1212ln ln p p R T T c s g p -=∆ 1212ln ln 21p p R T T c s gT T p -=∆ 1212ln lnv vR T T c g v +=1212ln lnv v c p p c p v +=10.5 过程体积功与技术功定压过程 )()(122112T T R v vp pdv w g -=-==⎰⎰=-=210v d p w t定容过程 ⎰==210pdv w , )(2121p p v v d p wt-=-=⎰定比热变比热定温过程 12111211122121ln ln lnp p v p v v v p v v T R dv vT R pdv w g g -=====⎰⎰ 1211211221ln lnp pv p p p T R dp pT R vdp w g g t -=-=-=-=⎰⎰ t w w = 绝热过程()kv v v p vC dv v C pdv w -----=-===⎰⎰1112112121121111κκκκκκ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=--12111211111-111-1κκκκv v T R v v v p g⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=-κκκ112111-1p p T R g (也可通过能量方程去推()2211212111)(1)(v p v p T T R T T c u w w u q gv --=--=-=∆-=→-∆=κκ) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=-=-=--⎰⎰κκκκκκκκκ112112121111211111p p T R v v T R dp p C vdp w g g t or()()()22112121211)(1v p v p T T R T T c T T c h w w h q g V p t t --=--=-=-=∆-=→+∆=κκκκκw w t κ=多变过程 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=--n n g n g p p T R n v v T R n w 1121121111-111-1 ()22112111)(1v p v p n T T n R g--=--=nw w t =10.6 过程热量利用上面求得的w u ∆∆,即可由w u q +∆=得过程热量定压过程 ()())(12T T c h pv u pv u v p u q p -=∆=+∆=∆+∆=∆+∆=或 ()1221t t c q t t p-=定容过程 )(12T T c u q V -=∆= 或 ()1221t t c q t t V -=定温过程 0)(12=-=∆T T c u V1211121112ln ln ln p p v p v v v p v v T R w q g -====或 因过程可逆 121221ln ln v v T R p p T R s T Tds q g g =-=∆==⎰ 绝热过程 0=q多变过程 w u q +∆==)(1)(2112T T n R T T c gV --+- =)(1)(11-)(122112T T c n n T T c n T T c V V V ---=--+-κκ 故可得多变过程的比热V n c n n c 1--=κ10.7 过程图示IIIIIIIVvp定压0=n 定温1=n 定熵κ=n 定容±∞=np-v 图上,定容线与定压线将其分为了II 、、IV 四个区。
理想气体的基本热力过程热力设备中,热能与机械能的相互转化,通常是通过气态工质的吸热、膨胀、放热、压缩等热力过程来实现的。
实际的热力过程都很复杂,而且几乎都是非平衡、非可逆的过程。
但若仔细观察会发现,某些常见过程非常近似一些简单的可逆过程。
常见的主要有四种简单可逆过程-基本热力过程,指系统某一状态参数保持不变的可逆过程。
包括定容过程、定压过程、定温过程和绝热过程。
我们以1kg理想气体的闭口系统为例来分析这几种基本热力过程,分析方法包括5点:(1)依据过程特点建立过程方程式;(2)由过程方程和理想气体状态方程确定初、终态基本状态参数之间的关系,即P1、v1、T1和P2、v2、T2之间的关系;(3)绘制过程曲线;我们主要绘制两种坐标图P-v图和T-s图,因为P-v图上可以表示过程中做功量的多少,而T-s图上可以表示过程中吸收或放出热量的多少;(4)分析计算△u,△h,△s;(5)分析计算过程的热量q和功w。
一、定容过程定容过程即工质的容积在整个过程中维持不变,dv=0,通常是一定量的气体在刚性容器中进行定容加热或定容放热。
(1)依据过程特点建立过程方程式定容过程的特点是体积保持不变,所以建立过程方程式:v=常数;或dv=0或v1=v2(2)由过程方程和理想气体状态方程确定初、终态基本状态参数之间的关系过程方程式:v1=v2理想气体状态方程:112212Pv P v T T = 由以上两个方程可以得到初末基本状态参数之间的关系:122211v v P T P T =⎧⎪⎨=⎪⎩ 即定容过程中工质的压力与温度成正比。
(3)绘制过程曲线;定容过程有两种情况:定容加热和定容放热。
(4)分析计算△u ,△h ,△s ;2211v v u u u c dT c T ∆=-==∆⎰ 2211p p h h h c dT c T ∆=-==∆⎰ 222111ln ln ln p v v v P P s c c c v P P ∆=+=或222111ln ln ln v v T v T s c R c T v T ∆=+= (5)分析计算过程的热量q 和功w 。
理想气体的典型热力过程
1. 等压过程:在恒定的压力下,气体的体积增加或减少,热量从气体传给环境或从环境传给气体。
这类过程也称作“伯努利过程”。
2. 等温过程:在恒定的温度下,气体随着压力的变化而膨胀或收缩,此时所吸收或释放的热量与温度成正比例。
这类过程也称作“卡诺过程”。
3. 等体过程:在恒定的体积下,气体的压强增加或减少,需要向气体注入或从气体中抽取热能。
这类过程也称作“热容过程”。
4. 绝热过程:在没有热量交换的情况下,气体的压强、温度和体积都同时变化。
这类过程也称作“奥托过程”。
1第四章 理想气体的热力过程能量转换装置中工质通过不同的热力过程而实现能量转换。
因此研究各种热力过程的特点,确定热力过程中工质状态变化的规律及能量转换的规律,是热力分析的重要内容。
不同性质的工质,同一热力过程中的参数变化规律也不同。
本章只讨论理想气体的热力过程。
4-1 热力过程分析概述为了从理论上研究能量转换装置中的能量转换过程,热力学中把装置的工作循环概括为工质的热力循环,通过对热力循环的分析,找出装置中能量转换的规律。
在分析热力循环时,通常把整个循环分成几个典型的热力过程,并逐一地分析各个热力过程中能量转换的规律。
能量转换装置中工质状态变化的热力过程常可近似地看作定容过程、定压过程、定温过程、绝热过程及其它多变过程等,因此本章将主要讨论这些典型的热力过程。
分析热力过程的主要目的是要确定过程中能量转换的关系,也就是要确定热力过程中系统对外作的功、系统从外界接受的热量、系统本身的热力学能及焓的变化等。
为此,还必须分析该过程中系统的状态参数如温度、压力、比体积及熵的变化规律,并把压力随比体积变化的关系作为工质状态变化的特征关系式,称为过程方程式。
工程上通常所用的能量转换设备,按其常用工作情况,都可看作热力学上的闭口系统或稳定流动的开口系统。
对于一个闭口第四章 理想气体的热力过程·82·系统,当它和外界间发生作用时,系统的状态就发生一系列的变化而实现能量转换。
对应于一定的状态变化过程就有一定的能量转换规律。
对于一个稳定流动的开口系统,则是依靠不断地流过系统的工质,在由进口流到出口的过程中和外界间发生作用,其状态发生连续的变化而实现能量转换。
按照稳定流动过程的性质可知,相继流过系统的工质,其状态变化过程及能量转换均保持相同,并且对应于一定的状态变化过程有一定的能量转换规律。
因此,从工质的状态变化过程、能量转换规律和这两者间的关系来说,闭口系统和稳定流动的开口系统的情况是完全一样的。