手性化合物的拆分方法
- 格式:doc
- 大小:10.58 KB
- 文档页数:1
手性拆分技术手性药物的制备技术由化学控制技术和生物控制技术两部分组成。
化学控制技术:普通化学合成、不对称合成和手性源合成.生物控制技术:天然物的提取分离技术和控制酶代谢技术。
手性拆分法: 结晶法拆分、动力学拆分、色谱分离法拆分、膜拆分法、萃取拆分法1.结晶拆分法结晶法拆分包括直接结晶法拆分和非对映异构体拆分分别适用于外消旋混合物和外消旋化合物的拆分。
在一种外消旋混合物的过饱和溶液中,直接加入某一对映体的晶种,即可得到一定量的该对映体,这种直接结晶的拆分方法仅适用于外消旋混合物,其应用几率不到10%外消旋化合物较为常见, 大约占所有外消旋体的90%。
通过与非手性的酸或碱成盐可以使部分外消旋化合物转变为外消旋混合物, 扩大直接结晶法拆分的应用范围使部分外消旋化合物转变为外消旋混合物。
也可采用与另一手性化合物(即拆分剂)形成非对映异构体混合物的方法, 利用这对非对映异构体盐的溶解度和结晶速去率的差异, 通过结晶法进行分离,最后脱去拆分剂即得单一构型的异构体。
最常见的拆分剂是手性酸或手性碱。
近年出现了组合拆分、复合拆分、包合拆分和包结拆分等新技术, 是对非对映异构体拆分的有效补充.1。
1 组合拆分组合拆分是指采用结构类型相同的2~3个手性化合物构成的拆分剂家族代替单一拆分剂进行外消旋化合物拆分的新方法。
拆分剂家族一般是将常用的手性拆分剂(如α-甲基苄胺、α-氨基苯乙醇、酒石酸、扁桃酸等)进行结构修饰而形成的一组衍生物。
在拆分剂家族中, 每个化合物之间要具有非常强的结构类似性和立体化学均一性。
实际操作过程是将拆分剂家族和被拆分的外消旋化合物以物质的量比1∶1的比例溶在某一种溶剂中, 进行结晶拆分.与单一拆分剂相比,拆分剂家族以高选择性和高收率与外消旋体快速地形成非对映体的结晶。
1。
2 复合拆分如果外消旋化合物结构中无酸性或碱性官能团时, 那么结晶法拆分的应用将受到限制,复合拆分(complexresolution)便是一个补充。
2019年07月问题产生的原因具体有以下几种:开展运输操作时,受到运输本身影响导致的问题出现;低温条件导致原油资源凝固,引发管道堵塞的情况产生,进而导致浪费问题产生。
就上述问题而言,想要将其有效解决,可应用针对性较高的技术手段有效控制各环节运输操作实施时资源的流失率,具体而言,首先,可适当的减少原油资源的单次运输量,达到有效控制资源流失率的目的。
此类技术需要依靠变化管道运输量而实现,对推进原油资源的节约进程存在积极影响。
其次,经由增输改造技术及混合输送技术,对低温条件下由于原油凝固导致的管道堵塞问题加以有效解决。
其中,增输改造技术指的是经由相应技术手段的实施,使得原油的停输时间得到延长,以使得所运输原油资源的量得到保证;混合输送技术指的是经由相应技术手段的实施,有效降低原油的凝固点,以确保各环节运输操作实施时,原油资源不会出现凝固问题导致管道堵塞[4]。
2.2.2天然气天然气属清洁能源中的一种,对环境没有污染影响,随着社会的不断发展,全球范围内的各个国家对天然气具有的重视程度越来越高。
天然气具有较高的特殊性,一般需要通过线路运输。
管道运输是开展天然气线路运输的重要手段,所以,实施针对性及实效性较高的天然气管道运输技术研究操作十分具有必要性,经由有效创新管道运输技术的方式,促使运输过程中出现天然气资源浪费问题的可能性大幅度降低,有助于更好的推进天然气资源的节约进程。
现如今,研究出的高实效性天然气管道创新运输技术包括试压技术、干燥技术以及减阻技术等。
其中,试压技术指的是为了避免在开展各环节天然气运输操作时,基于压力太大导致管道线路出现损坏问题,在实际进行运输以前开展的试压操作。
现如今,应用在天然气运输过程的试压技术具体包括强度试压以及严密性试压等。
干燥技术指的是为了确保具体运输时天然气资源的质量,以保持天然气干燥为目的应用的技术手段,在现下的天然气运输工程中,此类技术发挥的作用较为重要。
减阻技术指的是经由在管道中铺设涂层的方式减少运输操作实施时的阻力,经由合理铺设涂层的方式既能够有效减少运输时天然气资源受到的阻力,且可以起到保护管道的作用,降低天然气腐蚀管道问题产生的几率,有助于提升运输实效性。
手性化合物的色谱法分离周丽华中师范大学化学学院2011级摘要:本文综述了手性化合物的四种拆分方法—薄层色谱法(TLC)、气相色谱法(GC)、高效液相色谱法(HPLC)、毛细管电色谱法(CEC),及每种方法的作用机理关键字:手性化合物色谱法分离Chromatographic Separation of Chiral Compounds Abstract: This paper reviewed four methods for separation of chiral compounds , such as TLC、GC、HPLC、CEC , introduced mechanism of each method.Key word : Chiral Compounds Chromatographic Separation1.引言手性是用来表达化合物分子结构不对称性的术语,被认为是三维物体的一个基本属性。
有很多化合物分子,构成它们的元素完全相同,但原子排列方式不同,彼此如同镜子内外世界的对应,也就是具有手性,它们就互称为“对映体”。
在自然界中,手性现象无处不在。
化合物分子含有某些不对称因素时,该化合物被称为手性化合物。
随着人类在生物工程和生命科学上的发展,科学家己经认识到,手性化合物例如手性药物异构体尽管其物理和化学性质几乎完全相同,只有旋光性不同,但他们在生物体内的生理活性和药理作用却存在很大的差别。
最经典的例子是thahdomide[l],也叫反应停。
其不同的构型却存在不同的生理效应:R构型具有良好的镇静作用而S构型却导致胎儿畸形。
在农药方面,手性问题也受到广泛的关注。
这主要是因为在外消旋体的农药中,其中一半可能是没有活性的,如果用于洒播在农田,既造成资源浪费,又污染环境。
但随着对环境安全、高效、安全的要求,含单一对映体的手性农药将会不断的发展。
鉴于有机分子的构型与其生物活性的的特殊关系,有必要对手性化合物的各个异构体分别进行考察,了解他们各自的生理活性,以便达到高效、安全、无污染的用药目的。
手性化合物的拆分技术研究进展摘要本文综述了分离外消旋体的几种主要拆分方法的优缺点及其应用情况。
分别有:化学拆分法、膜拆分法、色谱拆分法以及毛细管电泳拆分法。
关键词:手性物;拆分;外消旋体Technical Progress of Chiral SeparationAbstractThis article reviews separation methods of chiral which include chemical,membranous,chromatographic and electrophoretic methods.Key words:chiral compounds;chiral separation;raceme目前获得手性物的主要方法还是通过拆分外消旋体。
早期的拆分方法主要有机械拆分,结晶拆分以及手性溶剂结晶拆分。
这三种方法都是利用外消旋混合物的两种对应体结晶性能不一样的特点进行分离。
已经有较成熟工业应用,但一次性收率较差,在此不做赘述还是本文综述了今年来手性拆分方法中使用较多的化学拆分法、膜拆分、色谱拆分以及毛细管电泳拆分四种拆分技术。
1化学拆分[1]1.1生成非对映体拆分此方法是利用外消旋混合物与手性试剂反应后生成有不同性质的非対映体,从而利用生成物的不同物理性质(溶解度、蒸汽压、结晶速率等)将其分离,再将分离后的物质分别还原成之前的対映体。
还可以使用拆分剂家族代替单一拆分剂进行拆分,所谓拆分剂家族是指有类似结构的2~3个手性剂拆分剂。
组合拆分提高了产品收率和纯度。
1998年Hulsho F L A等人[2]就使用一定量的(S,S)酒石酸衍生物的拆分剂家族拆分3-(1,4-亚乙基哌啶基)苯甲酸酯和3,4-二笨基四氢吡咯,经过一定处理后,两种対映体的纯度(ee值)分别达到了99%和98%。
如果拆分剂不能和対映体反应,就可以利用拆分剂的空穴与两种対映体之间形成氢键或者范德华力能力的不同,将一种対映体优先包裹以达到分离的目的。
手性胺的拆分的操作方法
手性胺的拆分操作方法可以通过以下几种方式实现:
1. 应用手性分离柱:首先,将手性胺溶解于某种适合的溶剂中,然后通过手性分离柱进行分离。
手性分离柱是填充有手性配体的柱子,例如偏酸性纤维素(Pirkle)柱或手性配体固定的液相柱。
将溶解好的手性胺溶液通过这些柱子进行洗脱操作,不同的对映体将以不同的速度通过柱子洗脱,从而实现手性胺的拆分。
2. 应用手性化合物结晶法:将手性胺与适合的手性化合物按照一定的摩尔比进行结晶反应。
由于手性胺和手性化合物成分的差异,导致结晶时形成不同的晶体形式。
通过收集和分离这些不同的晶体形式,可以得到手性胺的不同对映体。
3. 应用糖醇法:手性胺通常可以与某些手性糖醇反应生成二元络合物。
这些二元络合物在熔点上表现出不同的特性,例如熔点的可测性以及不同对映体的熔化温度偏差。
通过测定这些熔点数据,可以对手性胺进行分离。
无论通过哪种方式进行手性胺的拆分,最终目标是得到手性纯的对映体,并且这些方法在实际操作中还需根据具体情况进行具体选择。
手性药物拆分技术及分析手性药物(chiral drugs)是指分子内部有一个或多个不对称碳原子的药物,即具有手性结构的药物。
手性药物由于具有左右旋异构体,使得其药理学效应、药效学性质、药代动力学以及安全性能等方面出现差异。
因此,手性药物的拆分技术及分析对于药物的研发、生产和应用具有重要意义。
手性药物的拆分技术主要有下述几种方法:晶体化学方法、酶法、化学拆分、色谱法和光学活性检测。
首先是晶体化学方法,该方法是利用手性药物晶体的对称性差异完成拆分。
通过晶体中的尖、刃、拱等特征差异,将手性药物分离为晶体异构体。
其次是酶法,手性药物的拆分可以通过酶的催化作用实现。
酶是具有高选择性、高催化效率和高效底物转化率的催化剂。
通过选择合适的酶,可以将手性药物转化为对应的手性异构体或原生态精细化靶化合物。
化学拆分是指通过特定的化学反应将手性药物分解为不对称碳原子具有相反手性的产物。
该方法较为常用,但对于存储稳定性较差的手性药物较不适宜。
色谱法是利用不同手性列进行手性分离,如手性HPLC(高效液相色谱)和手性毛细管电泳等。
这些方法主要是利用手性固定相对手性药物进行分离,可达到手性药物的拆分效果。
光学活性检测是通过光学活性的手性试剂或手性染料,以手性化合物的吸光性能差异检测手性药物的拆分效果。
根据手性分析原理,通过手性分析仪器对手性药物进行检测和分析。
手性药物的分析对于药物研发、生产和应用非常重要。
分析手性药物的关键是确保其纯度和药效学性质,并且有助于合理掌握手性药物在体内的吸收、分布、代谢和排泄的信息。
以下是手性药物分析的一些常用方法。
首先是纳米液相色谱法,该方法是将分离的手性药物样品通过微量泵输送到纳米柱中,在极小的流速和流体容量下进行分离。
该方法对于手性药物样品的需求量很小,因此可以减少手性药物样品的消耗。
其次是循环偏振负压电流法,该方法通过测量手性药物样品对光的旋光性质,直接反应其手性结构。
该方法准确、快速,适用于灵敏度高的手性药物分析。
手性化合物的拆分方法
手性化合物的拆分方法主要有对映体分离法和酶催化法两种。
对映体分离法是指通过物理或化学方法将手性化合物中的对映体分离开来。
常用的物理方法有晶体分离法和对映体选择性结晶法。
晶体分离法是指利用手性化合物结晶时的差异,通过适当的选择溶剂和结晶条件,使其中一个对映体结晶出来,而另一个对映体仍保持在溶液中。
对映体选择性结晶法则是利用对映体结晶时晶体生长速度的差异,通过选择合适的溶液浓度和温度,使其中一个对映体的晶体生长速度比另一个对映体快,从而实现对映体的分离。
酶催化法是利用手性化合物和酶之间的反应性差异进行对映体分离的方法。
酶催化法主要通过酶的手性选择性来实现对映体的分离,其中最常用的是立体选择性催化酶。
这种酶具有对手性底物具有高选择性催化作用的特点,通过调节反应条件和酶底物比例,可以将手性化合物中的对映体分离开来。
除了以上的方法,还有一些其他的手性化合物拆分方法,如手性色谱法、手性电泳法、手性转换法等。
这些方法则是通过物理、化学或生物学手段对手性化合物进行选择性的分离和转化,以实现对映体的分离。