带电粒子在匀强磁场中运动的临界极值问题(解析版)
- 格式:doc
- 大小:574.00 KB
- 文档页数:9
2024年高中物理:带电粒子在磁场中运动的临界极值问题临界状态是指物体从一种运动状态(或物理现象)转变为另一种运动状态(或物理现象)的转折状态,它既具有前一种运动状态(或物理现象)的特点,又具有后一种运动状态(或物理现象)的特点,起着承前启后的转折作用.由于带电粒子在磁场中的运动通常都是在有界磁场中的运动,常常出现临界和极值问题.1、临界问题的分析思路临界问题的分析对象是临界状态,临界状态就是指物理现象从一种状态变化成另一种状态的中间过程,这时存在着一个过渡的转折点,此转折点即为临界状态点.与临界状态相关的物理条件则称为临界条件,临界条件是解决临界问题的突破点.临界问题的一般解题模式:(1)找出临界状态及临界条件;(2)总结临界点的规律;(3)解出临界量;(4)分析临界量列出公式.2、极值问题的分析思路所谓极值问题就是对题中所求的某个物理量最大值或最小值的分析或计算,求解的思路一般有以下两种:一是根据题给条件列出函数关系式进行分析、讨论;二是借助于几何图形进行直观分析.例、如图甲所示,在真空中坐标xOy平面的x>0区域内,有磁感应强度B=1.0×10-2T的匀强磁场,方向与xOy平面垂直,在x轴上一点P(10,0)有一放射源,能在xOy平面内向各个方向发射速率v=1.0×104m/s的带正电的粒子,粒子的质量m=1.0×10-25kg(重力不计),粒子带电荷量q=1.0×10-18C,则带电粒子能打到y轴上的范围为多少?解析:粒子的速率一定,故它在磁场中运动的半径一定,本题的关键是找出由于速度方向的变化而导致该圆周与y轴在正、负方向上交点的最高位置与最低位置。
设粒子速度方向开始沿x轴正方向沿逆时针变化,则洛伦兹力方向将沿y轴正方向向逆时针方向变化,当过P点的直径与y轴正方向相交时,粒子打在y轴上的A点距原点O的距离最大,由于x轴负方向无磁场,随着粒子速度方向的继续变化(沿逆时针),粒子打在y轴上的点距原点的距离逐渐减小(不可能打在图中虚线所示直径为PA′的圆交y轴负方向的A′点),当速度方向沿x轴负方向时,圆轨道与y轴负方向相切于C,以后轨道将不与y轴相交,粒子与y轴的交点在A、C之间,如图乙所示。
2024届物理一轮复习讲义专题强化十七带电粒子在匀强磁场中的多解和临界问题学习目标会分析带电粒子在匀强磁场中的多解问题和临界极值问题,提高思维分析综合能力。
考点一带电粒子在磁场中运动的多解问题造成多解问题的几种情况分析类型分析图例带电粒子电性不确定带电粒子可能带正电荷,也可能带负电荷,初速度相同时,正、负粒子在磁场中运动轨迹不同,形成多解如带正电,其轨迹为a;如带负电,其轨迹为b磁场方向不确定只知道磁感应强度大小,而未具体指出磁感应强度方向,由于磁感应强度方向不确定而形成多解粒子带正电,若B垂直纸面向里,其轨迹为a,若B垂直纸面向外,其轨迹为b临界状态不唯一带电粒子飞越有界磁场时,可能穿过磁场飞出,也可能转过180°从入射界面一侧反向飞出,于是形成多解运动具有周期性带电粒子在部分是电场、部分是磁场空间运动时,运动往往具有周期性,因而形成多解例1 (多选)(2022·湖北卷) 在如图1所示的平面内,分界线SP将宽度为L的矩形区域分成两部分,一部分充满方向垂直于纸面向外的匀强磁场,另一部分充满方向垂直于纸面向里的匀强磁场,磁感应强度大小均为B,SP与磁场左右边界垂直。
离子源从S处射入速度大小不同的正离子,离子入射方向与磁场方向垂直且与SP 成30°角。
已知离子比荷为k ,不计重力。
若离子从P 点射出,设出射方向与入射方向的夹角为θ,则离子的入射速度和对应θ角的可能组合为( )图1A.13kBL ,0° B.12kBL ,0° C.kBL ,60° D.2kBL ,60°答案 BC解析 若离子通过下部分磁场直接到达P 点,如图甲所示,甲根据几何关系,有R =L ,q v B =m v 2R ,可得v =qBLm =kBL ,根据对称性可知出射速度与SP 成30°角向上,故出射方向与入射方向的夹角为θ=60°。
当粒子上下均经历一次时,如图乙所示,乙因为上下磁感应强度均为B ,则根据对称性有R =12L ,根据洛伦兹力提供向心力有q v B =m v 2R ,可得v =qBL 2m =12kBL ,此时出射方向与入射方向相同,即出射方向与入射方向的夹角为θ=0°。
高中物理求解带电粒子在有界匀强磁场中运动的临界与极值问题的方法由于带电粒子往往是在有界磁场中运动,粒子在磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件:(1)带电体在磁场中,离开一个面的临界状态是对这个面的压力为零;(2)射出或不射出磁场的临界状态是带电体运动的轨迹与磁场边界相切。
然后应用数学知识和相应物理规律分析求解。
1、两种思路一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界条件下的特殊规律和特殊解;二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。
2、两种方法一是物理方法:(1)利用临界条件求极值;(2)利用问题的边界条件求极值;(3)利用矢量图求极值。
二是数学方法:(1)利用三角函数求极值;(2)利用二次方程的判别式求极值;(3)利用不等式的性质求极值;(4)利用图像法等。
3、从关键词中找突破口:许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”等词语对临界状态给以暗示。
审题时,一定要抓住这些特定的词语挖掘其隐藏的规律。
例1、如图1所示,一带正电的质子从O点垂直射入,两个板间存在垂直纸面向里的匀强磁场,已知两板之间距离为d,板长为d,O 点是板的正中间,为使粒子能射出两板间,试求磁感应强度B的大小(质子的带电量为e,质量为m)。
图1解析:第一种极端情况从M点射出,此时轨道的圆心为O′点,由平面几何知识可得而带电粒子在磁场中的轨道半径,第二种极端情况是粒子从N点射出,此时粒子正好走了半个圆,其轨道半径为。
综合上述两种情况,得。
例2、如图2所示,一足够长的矩形区域abcd内充满磁感应强度为B、方向垂直纸面向里的匀强磁场,现从矩形区域ad边的中点O处,垂直磁场射入一速度方向与ad边夹角为30°、大小为的带电粒子。
带电粒子在匀强磁场中运动的临界极值及多解问题突破有界磁场中临界问题的处理方法考向1 “放缩法”解决有界磁场中的临界问题1.适用条件(1)速度方向一定,大小不同粒子源发射速度方向一定、大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化(2)轨迹圆圆心一一共线如图所示(图中只画出粒子带正电的情景),速度V。
越大,运动半径也越大可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直速度方向的直线PP,上.2.方法界定以入射点P为定点,圆心位于PP,直线上,将半径放缩作轨迹,从而探索出临界条件,这种方法称为“放缩法”.[典例1]如图所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd 边的中点.一个带正电的粒子仅在洛伦兹力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t。
刚好从c点射出磁场.现设法使该带电粒子从O点沿纸面以与Od成30°的方向,以大小不同的速率射入正方形内,粒子重力不计.那么下列说法中正确的是()A.若该带电粒子从ab边射出,它经历的时间可能为t。
5tB.若该带电粒子从bc边射出,它经历的时间可能为十3C.若该带电粒子从cd边射出,它经历的时间号2tD.若该带电粒子从ad边射出,它经历的时间可能为43[解析]作出从ab边射出的轨迹①、从bc边射出的轨迹②、从cd边射出的轨迹③和从ad边射出的轨迹④.由带正电的粒子从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t o刚好从c点射出磁场可知,带电粒子在磁场中做圆周运动的周期是2t o.由图可知,从ab边射出经历的时间一定不大片;从bc边射出经历的时间一定不大于不从cd边射...... . 5t t出经历的时间一定是丁;从ad边射出经历的时间一定不大于可,C正确.3 3[答案]C考向2 “旋转法”解决有界磁场中的临界问题1.适用条件(1)速度大小一定,方向不同带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为一.一一、 ,.一.一 mv __ _____v,则圆周运动半径为区=”0.如图所示.o qB(2)轨迹圆圆心一一共圆mv 带电粒子在磁场中做匀速圆周运动的圆心在以入射点P为圆心、半径R=京的圆上. qB2.方法界定mv将一半径为R=氤的圆绕着入射点旋转,从而探索出临界条件,这种方法称为“旋转法”.qB[典例2]如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60 T.磁场内有一块平面感光板ab,板面与磁场方向平行.在距ab为l = 16 cm处,有一个点状的a粒子放射源S,它向各个方向发射a粒子,a...................... . .. ....... q . .. ...... . . 粒子的速度都是v=3.0X106 m/s.已知a 粒子的比何m=5.0X107 C/kg,现只考虑在纸面内 运动的a 粒子,求ab 板上被a 粒子打中区域的长度.[解题指导]过S 点作ab 的垂线,根据左侧最值相切和右侧最值相交计算即可.[解析]a 粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R 表示轨迹半径, 4 c V 2有 qvB=mR由此得R 瑞代入数值得R=10 cm,可见2R>l>R因朝不同方向发射的a 粒子的圆轨迹都过S,由此可知,某一圆轨迹在下图中N 左侧与 ab 相切,则此切点、就是a 粒子能打中的左侧最远点为确定、点的位置,可作平行于ab 的直线cd, cd 到ab 的距离为R,以S 为圆心,R 为半径,作圆弧交cd 于Q 点,过Q 作ab 的 垂线,它与ab 的交点即为,即:NP=R 2—(1—R) 2 = 8 cm再考虑N 的右侧.任何a 粒子在运动中离S 的距离不可能超过2R,在N 点右侧取一点P 2, 取SP=20 cm,此即右侧能打到的最远点由图中几何关系得NP 2=M (2R) 2 — 12=12 cm所求长度为P 1P 2=NP 1+NP 2代入数值得P 1P 2 = 20 cm.[答案]20 cm考向1带电粒子电性不确定形成多解受洛伦兹力作用的带电粒子,可能带正电荷,也可能带负电荷,在相同的初速度的条件 下,正、负粒子在磁场中运动轨迹不同,导致形成多解.[典例3]如图所示,宽度为d 的有界匀强磁场,磁感应强度为B, MM,和NN’是磁场左 右的两条边界线.现有一质量为m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入.要使粒子 不能从右边界NN,射出,求粒子入射速率的最大值为多少?突破 带电粒子在磁场中运动的多解问题fl 兄 乂尹। x x J V X y K P 2 x b[解题指导]由于粒子电性不确定,所以分成正、负粒子讨论,不从NN,射出的临界条 件是轨迹与NN,相切.[解析]题目中只给出粒子”电荷量为q”,未说明是带哪种电荷,所以分情况讨论. 若q 为正电荷,轨迹是如图所示的上方与NN,相切的(圆弧,则轨道半径R \12 (2+ 2) Bqd ............... 一 一 一一 一 ......3 一 ........... 若q 为负电荷,轨迹是如图所示的下方与NN,相切的工圆弧,则轨道半径又—全解得『=(2-'⑵刎 m…… (2+ 2) Bqd (2— 2) Bqd,[答案] --- 玄 ---- (q 为正电何)或 -- m ----- (q 为负电何)考向2磁场方向不确定形成多解有些题目只告诉了磁感应强度的大小,而未具体指出磁感应强度的方向,此时必须要考 虑磁感应强度方向不确定而形成的多解.[典例4](多选)一质量为m 、电荷量为q 的负电荷在磁感应强度为B 的匀强磁场中绕固mvBq又d=R 解得v=R,mv' Bq M N।■乂 ।1 ।*[典例5](多选)长为l 的水平极板间有垂直纸面向里的匀强磁场,如图所示,磁感应强 度为B,板间距离也为1,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从 左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是()定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在 负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是(不计重 力)() A. R 瘦 D. m 2qB C .— m D. qB m[解析]根据题目中条件“磁场方向垂直于它的运动平面”,磁场方向有两种可能,且 这两种可能方向相反.在方向相反的两个匀强磁场中,由左手定则可知负电荷所受的洛伦兹力 的方向也是相反的.当负电荷所受的洛伦兹力与电场力方向相同时,根据牛顿第二定律可知 _ V2 _ 4BqR v 4Bq4Bqv=m 万,得v= ,此种情况下,负电何运动的角速度为3=5=-;;当负电何所受的R m R m 洛伦兹力与电场力方向相反时,有2B qv=m V2, 丫=等,此种情况下,负电荷运动的角速度v 2Bq为3=R=/",应选A 、C.[答案]AC考向3临界状态不唯一形成多解如图所示,带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状, 因此,它可能直接穿过去了,也可能转过180°从入射界面反向飞出,于是形成了多解.如图 m所示.A.使粒子的速度v<Bq15BalB.使粒子的速度v>*C.使粒子的速度丫>平D.使粒子的速度v满足Bq^vV51a1[解析]带电粒子刚好打在极板右边缘,有r2 = (r-1)+12,又因r =%,解得v =誓;i V 12 i Bq i 4m粒子刚好打在极板左边缘,有r=l=M2,解得丫=整,故A、B正确. 2 4 Bq 2 4m[答案]AB考向4带电粒子运动的往复性形成多解空间中部分是电场,部分是磁场,带电粒子在空间运动时,运动往往具有往复性,因而形成多解.[典例6]如图所示,在x轴上方有一匀强磁场,磁感应强度为B;x轴下方有一匀强电场,电场强度为E.屏MN与y轴平行且相距L. 一质量m、电荷量为e的电子,在y轴上某点A 自静止释放,如果要使电子垂直打在屏MN上,那么:(1)电子释放位置与原点O的距离s需满足什么条件?(2)电子从出发点到垂直打在屏上需要多长时间?[解题指导]解答本题可分“两步走”:(1)定性画出粒子运动轨迹示意图.(2)应用归纳法得出粒子做圆周运动的半径r和L的关系.[解析](1)在电场中,电子从A-O,动能增加eEs=1mv0在磁场中,电子偏转,半径为mv r = o r eB据题意,有(2n+1)r=L一eL2B2 . .所以S=2Em (2n+1)2(n=0,1,2,3,”)⑵在电场中匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子总的2s T T , Ee 2nm运动时间 t=(2n+1)、: w+z+nj,其中 a=%, T=—B-■. । a 乙ui e一— .一 BL , 、nm, 、整理后得 t=^+(2n+1)族("=。
带电粒子在匀强磁场中运动的临界极值及多解问题作业题作业题目难度分为3档:三星☆☆☆(基础题目)四星☆☆☆☆(中等题目)五星☆☆☆☆☆(较难题目)本套作业题目1-10题为三星,11-15为四星。
1.某电子以固定的正点电荷为圆心在匀强磁场中沿逆时针方向做匀速圆周运动,磁场方向垂直于它的运动平面,电子所受正点电荷的电场力是洛伦兹力的3倍.若电子电荷量为e 、质量为m ,磁感应强度为B ,不计重力,则电子运动的角速度可能是()☆☆☆A.4Bem B.3Bem C.2Bem D.Bem答案解析:当洛伦兹力方向和电场力方向相同时,有ωmu r v m evB F ==+2电,又因为evB F 3=电,可得m eB 4=ω,当洛伦兹力和电场力方向相反时,有:ωmv evB F =-电,得meB 2=ω,故A 、C 正确。
2.如图示,边界OA 与OC 之间分布有垂直纸面向里的匀强磁场,边界OA 上有一粒子源S.某一时刻,从S 平行于纸面向各个方向发射出大量带正电的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相同,经过一段时间有大量粒子从边界OC 射出磁场.已知∠AOC =60°,从边界OC 射出的粒子在磁场中运动的最长时间等于T/2(T 为粒子在磁场中运动的周期),则从边界OC 射出的粒子在磁场中运动的时间可能为()☆☆☆A.T 3B.T 4C.T 6D.T 8答案解析:粒子在磁场中做匀速圆周运动,出射点和入射点的连线为轨迹的弦,初速度大小相同,轨迹半径qBmv R =相同,设d OS =,当射出点D 与S 点连线垂直于OA 时,DS 弦最长,轨迹对应的圆心角α最大,根据qvB rv m =2,有m qBr v =,则周期qB m v r T ππ22==周期恒定,粒子的运动时间T t πα2=,此时粒子运动时间最长为2T ,当出射点E 与S 点的连线垂直于OC 时,弦ES 最短,轨迹所对的圆心角最小,则粒子在磁场中运动的时间最短,由几何关系,得︒=60θ,所以最短时间为T 61,故粒子在磁场中运动时间范围为26T t T ≤≤,运动时间不可能为8T ,故A 正确。
物理带电粒子在匀强磁场中运动的临界极值问题由于带电粒子在磁场中的运动通常都是在有界磁场中的运动,所以常常出现临界和极值问题。
1.临界问题的分析思路临界问题分析的是临界状态,临界状态存在不同于其他状态的特殊条件,此条件称为临界条件,临界条件是解决临界问题的突破口。
2.极值问题的分析思路所谓极值问题就是对题中所求的某个物理量最大值或最小值的分析或计算,求解的思路一般有以下两种:(1)根据题给条件列出函数关系式进行分析、讨论;(2)借助几何知识确定极值所对应的状态,然后进行直观分析3.四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。
(2)当速率v一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长。
(3)当速率v变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,根据几何关系求出半径及圆心角等。
(4)在圆形匀强磁场中,当运动轨迹圆半径大于区域圆半径时,则入射点和出射点为磁场直径的两个端点时,轨迹对应的偏转角最大(所有的弦长中直径最长)。
【典例】平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外。
一带电粒子的质量为m,电荷量为q(q>0)。
粒子沿纸面以大小为v的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。
已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。
不计重力。
粒子离开磁场的出射点到两平面交线O的距离为()【应用练习】1、如图所示,半径为r的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,磁场边界上A点有一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为k,速度大小为2kBr。
则粒子在磁场中运动的最长时间为()3.如图所示,直角坐标系中y轴右侧存在一垂直纸面向里、宽为a的有界匀强磁场,磁感应强度为B,右边界PQ平行于y轴,一粒子(重力不计)从原点O以与x轴正方向成θ角的速率v垂直射入磁场,当斜向上射入时,粒子恰好垂直PQ射出磁场,当斜向下射入时,粒子恰好不从右边界射出,则粒子的比荷及粒子恰好不从右边界射出时在磁场中运动的时间分别为( )4、如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B。
带电粒子在匀强磁场中运动的临界极值及多解问题带电粒子在匀强磁场中的临界问题可以通过“放缩法”解决。
当速度方向一定,大小不同时,带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化。
通过以入射点为定点,将半径放缩作轨迹,探索出临界条件。
另一种解决有界磁场中的临界问题的方法是“旋转法”。
当速度大小一定,方向不同时,带电粒子在磁场中做匀速圆周运动的半径相同。
圆心在以入射点为圆心、半径为mv/qB的圆上。
通过旋转圆心,将问题转化为无界磁场中的问题。
旋转法”是一种探索临界条件的方法,它通过让圆绕着入射点旋转来实现。
在一个真空室内,存在一个垂直于纸面向里的匀强磁场,磁感应强度为B=0.60 T。
在磁场内有一块平面感光板ab,板面与磁场方向平行。
距离ab为l=16cm处有一个点状的α粒子放射源S,它向各个方向发射速度为v=3.0×10m/s的α粒子。
已知α粒子的比荷为5.0×10C/kg,现只考虑在纸面内运动的α粒子,求ab板上被α粒子打中区域的长度。
解题思路是过S 点作ab的垂线,根据左侧最值相切和右侧最值相交计算。
由于带电粒子的电性不确定,可能带正电荷,也可能带负电荷。
在相同的初速度的条件下,正、负粒子在磁场中运动轨迹不同,导致形成多解。
在一个宽度为d的有界匀强磁场中,磁感应强度为B,MM′和NN′是磁场左右的两条边界线。
现有一质量为m、电荷量为q的带电粒子沿图示方向垂直磁场射入。
要使粒子不能从右边界NN′射出,需要求粒子入射速率的最大值。
由于粒子电性不确定,所以分成正、负粒子讨论,不从NN′射出的临界条件是轨迹与NN′相切。
题目描述:一个正方形的匀强磁场区域abcd,e是ad的中点,f是cd 的中点,如果在a点沿对角线方向以速度v射入一带负电的粒子,恰好从e点射出,则()。
解题思路:根据题目描述,可以画出如下示意图:image.png](/upload/image_hosting/ed6v3v6v.png)由于粒子带负电,所以在磁场中会受到洛伦兹力的作用,从而偏转方向垂直于速度方向和磁场方向的方向。
带电粒子在匀强磁场中运动的临界极值问题由于带电粒子往往是在有界磁场中运动,粒子在磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件,然后应用数学知识和相应物理规律分析求解.1.临界条件的挖掘(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。
(2)当速率v一定时,弧长(或弦长)越长,圆心角越大(前提条件是劣弧),则带电粒子在有界磁场中运动的时间越长。
(3)当速率v变化时,轨迹圆心角越大,运动时间越长。
(4)当运动轨迹圆半径大于圆形磁场半径时,则以磁场直径的两端点为入射点和出射点的轨迹对应的偏转角最大。
2.不同边界磁场中临界条件的分析(1)平行边界:常见的临界情景和几何关系如图所示。
(2)矩形边界:如图所示,可能会涉及与边界相切、相交等临界问题。
(3)三角形边界:如图所示是正△ABC区域内某正粒子垂直AB方向进入磁场的粒子临界轨迹示意图。
粒子能从AB间射出的临界轨迹如图甲所示,粒子能从AC间射出的临界轨迹如图乙所示。
3. 审题技巧许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”等词语对临界状态给以暗示.审题时,一定要抓住这些特定的词语挖掘其隐藏的规律,找出临界条件.【典例1】如图所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd边的中点。
一个带正电的粒子仅在磁场力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t0后刚好从c点射出磁场。
现设法使该带电粒子从O点沿纸面以与Od成30°角的方向,以大小不同的速率射入正方形内,下列说法中正确的是( )A .若该带电粒子在磁场中经历的时间是53t 0,则它一定从cd 边射出磁场B .若该带电粒子在磁场中经历的时间是23t 0,则它一定从ad 边射出磁场C .若该带电粒子在磁场中经历的时间是54t 0,则它一定从bc 边射出磁场D .若该带电粒子在磁场中经历的时间是t 0,则它一定从ab 边射出磁场 【答案】 AC 【解析】 如图所示,【典例2】放置在坐标原点O 的粒子源,可以向第二象限内放射出质量为m 、电荷量为q 的带正电粒子,带电粒子的速率均为v ,方向均在纸面内,如图8-2-14所示.若在某区域内存在垂直于xOy 平面的匀强磁场(垂直纸面向外),磁感应强度大小为B ,则这些粒子都能在穿过磁场区后垂直射到垂直于x 轴放置的挡板PQ 上,求:(1)挡板PQ 的最小长度; (2)磁场区域的最小面积. 【答案】 (1)mv Bq (2)⎝⎛⎭⎫π2+1m 2v 2q 2B2【解析】 (1)设粒子在磁场中运动的半径为R ,由牛顿第二定律得qvB =mv 2R ,即R =mvBq【跟踪短训】1. 在xOy 平面上以O 为圆心、半径为r 的圆形区域内,存在磁感应强度为B 的匀强磁场,磁场方向垂直于xOy 平面.一个质量为m 、电荷量为q 的带电粒子,从原点O 以初速度v 沿y 轴正方向开始运动,经时间t 后经过x 轴上的P 点,此时速度与x 轴正方向成θ角,如图8-2-24所示.不计重力的影响,则下列关系一定成立的是( ).A .若r <2mv qB ,则0°<θ<90° B .若r ≥2mv qB ,则t ≥πmqBC .若t =πm qB ,则r =2mv qBD .若r =2mv qB ,则t =πmqB【答案】 AD【解析】 带电粒子在磁场中从O 点沿y 轴正方向开始运动,圆心一定在垂直于速度的方向上,即在x 轴上,轨道半径R =mv qB .当r ≥2mvqB 时,P 点在磁场内,粒子不能射出磁场区,所以垂直于x 轴过P 点,θ最大且为90°,运动时间为半个周期,即t =πm qB ;当r <2mvqB 时,粒子在到达P 点之前射出圆形磁场区,速度偏转角φ在大于0°、小于180°范围内,如图所示,能过x 轴的粒子的速度偏转角φ>90°,所以过x 轴时0°<θ<90°,A 对、B 错;同理,若t =πmqB ,则r ≥2mv qB ,若r =2mv qB ,则t 等于πm qB,C 错、D 对. 2. 如图所示,磁感应强度大小为B =0.15 T 、方向垂直纸面向里的匀强磁场分布在半径为R =0.10 m 的圆形区域内,圆的左端跟y 轴相切于直角坐标系原点O ,右端跟很大的荧光屏MN 相切于x 轴上的A 点。
置于原点的粒子源可沿x 轴正方向以不同的速度射出带正电的粒子流,粒子的重力不计,比荷qm =1.0×108C/kg 。
(1)请判断当粒子分别以v 1=1.53×106 m/s 和v 2=0.53×106 m/s 的速度射入磁场时,能否打到荧光屏上;(2)要使粒子能打在荧光屏上,求粒子的速度v 0的大小应满足的条件;(3)若粒子的速度v 0=3.0×106 m/s ,且以过O 点并垂直于纸面的直线为轴,将圆形磁场逆时针缓慢旋转90°,求此过程中粒子打在荧光屏上离A 的最远距离。
【答案】 (1)速度为v 1时,能 速度为v 2时,不能 (2)v 0>1.5×106 m/s (3)0.15 m 【解析】 (1)粒子以不同速度射入磁场的轨迹如图甲所示,同理,当粒子的速度为v 2时,解得r 2=33R <R ,故不能打到屏上。
(2)设当v 0=v 3时,粒子恰好打不到荧光屏上,则这时粒子沿图甲中轨迹②从磁场的最高点竖直向上射出磁场。
由几何关系可知,粒子在磁场中的轨迹半径r 3=R 。
由洛伦兹力提供向心力,得qv 3B =m v 32r 3,解得v 3=1.5×106 m/s 。
由题意可知,当v 0>1.5×106 m/s 时,粒子能打到荧光屏上。
课后作业1. 如图所示,圆形区域半径为R ,区域内有一垂直纸面向外的匀强磁场,磁感应强度的大小为B ,P 为磁场边界上的最低点。
大量质量为m 、电荷量大小为q 的带负电粒子,以相同的速率从P 点射入磁场区域,速度方向沿位于纸面内的各个方向。
粒子的轨道半径为2R ,A 、C 为圆形区域水平直径的两个端点,粒子重力不计,空气阻力不计,则( )A .粒子射入磁场的速率为v =2RqB mB .粒子在磁场中运动的最长时间为t =πm3qBC .不可能有粒子从C 点射出磁场D.若粒子的速率可以变化,则可能有粒子从A点水平射出【答案】ABD2. 如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60 T,磁场内有一块平面感光板ab,板面与磁场方向平行,在距ab的距离l=16 cm处,有一个点状的α放射源S,它向各个方向发射α粒子,α粒子的速率都是v=3.0×106 m/s。
已知α粒子的电荷量与质量之比qm=5.0×107 C/kg,现只考虑在图纸平面中运动的α粒子,求ab上被α粒子打中的区域的长度。
【答案】20 cm【解析】α粒子从S点垂直磁场以一定大小的速度朝各个方向射入,在磁场中均沿逆时针方向做匀速圆周运动,可求出它们的运动轨迹半径R,由qvB=m v2R,得R=vq/m B,代入数值得R=10 cm,可见2R>l>R.由于朝不同方向发射的α粒子的圆轨迹都过S,可先考查速度沿负y方向的α粒子,其轨迹圆心在x轴上的A1点,将α粒子运动轨迹的圆心A1点开始,沿着“轨迹圆心圆”逆时针方向移动,如图所示。
由图可知,当轨迹圆的圆心移至A3 点时,粒子运动轨迹与ab相交处P2 到S 的距离为2R,P2 即为粒子打中ab上区域的右边最远点,由题中几何关系得:NP2 =2R2-l2.当α粒子的轨迹的圆心由A3点移至A4点的过程中,粒子运动轨迹均会与ab相交,当移动A4点后将不再与ab相交了,这说明圆心位于A4点的轨迹圆,与ab相切的P1点为粒子打中区域的左边最远点。
可过A4点作平行于ab的直线cd,再过A4作ab的垂线,它与ab的交点即为P1,同样由几何关系可知:NP1=则所求长度为P1P2=NP1+NP2,代入数值得P1P2=20 cm.3. 如图所示,在平面直角坐标系xOy的第四象限有垂直纸面向里的匀强磁场,一质量为m=5.0×10-8 kg、电量为q=+1.0×10-6 C的带电粒子,从静止开始经U0=10 V的电压加速后,从P点沿图示方向进入磁场,已知OP=30 cm(粒子重力不计,sin 37°=0.6,cos 37°=0.8),求:(1)粒子到达P点时速度v的大小;(2)若磁感应强度B=2.0 T,粒子从x轴上的Q点离开磁场,求OQ的距离;(3)若粒子不能进入x轴上方,求磁感应强度B′满足的条件。
【答案】:(1)20 m/s(2)0.90 m (3)B′>5.33 T(取“≥”也可)而OPsin 37°=R=0.50 m由几何关系知,粒子的轨迹圆心一定在x轴上,粒子到达Q点时速度方向垂直于x轴,轨迹如图甲所示。
由几何关系可知:OQ=R+R cos 37°故OQ=0.90 m。
(3)若粒子恰好不从x轴射出,如图乙所示,由几何关系得:OP>R′+R′sin 37°R′=mv qB′联立以上两式并代入数据得:B′>163T≈5.33 T(取“≥”也可)。
4. 如图,图中坐标原点O(0,0)处有一带电粒子源,沿xOy平面向y≥0、x≥0的区域内的各个方向发射粒子。
粒子的速率均为v、质量均为m、电荷量均为+q。
有人设计了方向垂直于xOy平面向里、磁感应强度为B的匀强磁场区域,使上述所有带电粒子从该区域的边界射出时均能沿y轴负方向运动,不考虑粒子间相互作用,不计粒子重力。
求:(1)粒子与x轴相交的坐标范围;(2)粒子与y轴相交的坐标范围;(3)该匀强磁场区域的最小面积。