带电粒子在磁场中的临界条件
- 格式:ppt
- 大小:704.00 KB
- 文档页数:18
2024届物理一轮复习讲义专题强化十七带电粒子在匀强磁场中的多解和临界问题学习目标会分析带电粒子在匀强磁场中的多解问题和临界极值问题,提高思维分析综合能力。
考点一带电粒子在磁场中运动的多解问题造成多解问题的几种情况分析类型分析图例带电粒子电性不确定带电粒子可能带正电荷,也可能带负电荷,初速度相同时,正、负粒子在磁场中运动轨迹不同,形成多解如带正电,其轨迹为a;如带负电,其轨迹为b磁场方向不确定只知道磁感应强度大小,而未具体指出磁感应强度方向,由于磁感应强度方向不确定而形成多解粒子带正电,若B垂直纸面向里,其轨迹为a,若B垂直纸面向外,其轨迹为b临界状态不唯一带电粒子飞越有界磁场时,可能穿过磁场飞出,也可能转过180°从入射界面一侧反向飞出,于是形成多解运动具有周期性带电粒子在部分是电场、部分是磁场空间运动时,运动往往具有周期性,因而形成多解例1 (多选)(2022·湖北卷) 在如图1所示的平面内,分界线SP将宽度为L的矩形区域分成两部分,一部分充满方向垂直于纸面向外的匀强磁场,另一部分充满方向垂直于纸面向里的匀强磁场,磁感应强度大小均为B,SP与磁场左右边界垂直。
离子源从S处射入速度大小不同的正离子,离子入射方向与磁场方向垂直且与SP 成30°角。
已知离子比荷为k ,不计重力。
若离子从P 点射出,设出射方向与入射方向的夹角为θ,则离子的入射速度和对应θ角的可能组合为( )图1A.13kBL ,0° B.12kBL ,0° C.kBL ,60° D.2kBL ,60°答案 BC解析 若离子通过下部分磁场直接到达P 点,如图甲所示,甲根据几何关系,有R =L ,q v B =m v 2R ,可得v =qBLm =kBL ,根据对称性可知出射速度与SP 成30°角向上,故出射方向与入射方向的夹角为θ=60°。
当粒子上下均经历一次时,如图乙所示,乙因为上下磁感应强度均为B ,则根据对称性有R =12L ,根据洛伦兹力提供向心力有q v B =m v 2R ,可得v =qBL 2m =12kBL ,此时出射方向与入射方向相同,即出射方向与入射方向的夹角为θ=0°。
带电粒子在强磁场中运动的多解和临界问
题
引言
带电粒子在强磁场中的运动问题一直是物理学中的重要研究方
向之一。
在强磁场中,带电粒子在受到洛伦兹力的作用下呈现出多
解和临界现象,这在某些情况下对粒子的运动轨迹和性质产生重要
影响。
多解现象
在强磁场中,由于洛伦兹力的作用,带电粒子的运动方程出现
多解的情况。
这是由于洛伦兹力与粒子运动速度与磁场方向夹角的
正弦函数关系所导致的。
当速度与磁场方向夹角为不同值时,洛伦
兹力的大小和方向也会有所变化,从而使得粒子的运动轨迹不唯一。
临界现象
在某些情况下,带电粒子在强磁场中的运动可能会出现临界现象。
临界现象是指当带电粒子的运动速度与磁场强度达到一定比例
关系时,粒子的运动状态出现急剧变化,其轨迹和动力学性质发生
显著变化。
临界现象在物理学中具有重要的理论和实际意义,在磁共振成像、粒子加速器等领域的研究中得到了广泛应用。
结论
带电粒子在强磁场中运动的多解和临界问题是一个复杂而有趣的研究领域。
多解现象使得粒子的运动轨迹不唯一,而临界现象则带来了粒子运动状态的突变。
对这些问题的深入研究和理解将有助于推动物理学和应用科学的发展,为实际应用提供更多的可能性。
数学圆法巧解磁场中的临界问题一、应用技巧1.“放缩圆”法适用条件速度方向一定,大小不同粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v越大,运动半径也越大。
可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP′上界定方法以入射点P为定点,圆心位于PP′直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法1如图所示,一束电子以大小不同的速率沿图示方向垂直飞入横截面是一正方形的匀强磁场区域,下列判断正确的是()A.电子在磁场中运动时间越长,其轨迹线越长B.电子在磁场中运动时间越长,其轨迹线所对应的圆心角越大C.在磁场中运动时间相同的电子,其轨迹线不一定重合D.电子的速率不同,它们在磁场中运动时间一定不相同【答案】 BC【解析】 由t=θ2πT知,电子在磁场中运动时间与轨迹对应的圆心角成正比,所以电子在磁场中运动的时间越长,其轨迹线所对应的圆心角θ越大,电子飞入匀强磁场中做匀速圆周运动,轨迹线弧长s=rθ,运动时间越长,θ越大,但半径r不一定大,s也不一定大,故A错误,B正确.由周期公式T=2πmqB知,电子做圆周运动的周期与电子的速率无关,所以电子在磁场中的运动周期相同,若它们在磁场中运动时间相同,但轨迹不一定重合,比如:轨迹4与5,它们的运动时间相同,但它们的轨迹对应的半径不同,由r= mvqB可知它们的速率不同,故C正确,D错误.2.“旋转圆”法适用条件速度大小一粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射定,方向不同入初速度为v0,则圆周运动半径为R=mv0qB。
如图所示轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P为圆心、半径R=mvqB的圆上界定方法将一半径为R=mv0qB的圆以入射点为圆心进行旋转,从而探索粒子的临界条件,这种方法称为“旋转圆”法2如图所示为圆形区域的匀强磁场,磁感应强度为B,方向垂直纸面向里,边界跟y轴相切于坐标原点O。
带电粒子在磁场中运动的临界问题一、“矩形”有界磁场中的临界问题【例1】如图所示,一足够长的矩形区域abcd 内充满方向垂直纸面向里、磁感应强度为B 的匀强磁场,在ad 边中点O ,方向垂直磁场向里射入一速度方向跟ad 边夹角θ=30°、大小为v 0的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力不计,求(1)粒子能从ab 边上射出磁场的v 0大小范围。
(2)若粒子速度不受上述v 0大小的限制,求粒子在磁场中运动的最长时间。
解析: (1)①假设粒子以最小的速度恰好从左边偏转出来时的速度为v 1,圆心在O 1点,如图 (甲),轨道半径为R 1,对应圆轨迹与ab 边相切于Q 点,由几何知识得:R 1+R 1sin θ=0.5L由牛顿第二定律得1211R v m B qv =; 得m qBLv =1②假设粒子以最大速度恰好从右边偏转出来,设此时的轨道半径为R 2,圆心在O 2点,如图 (乙),对应圆轨迹与dc 边相切于P 点。
由几何知识得:R 2=L由牛顿第二定律得2222R v m B qv =;得m qBLv =2粒子能从ab 边上射出磁场的v 0应满足mqBLv m qBL ≤≤3(2)如图 (丙)所示,粒子由O 点射入磁场,由P 点离开磁场,该圆弧对应运行时间最长。
粒子在磁场内运行轨迹对应圆心角为πα35=。
而απ2T t m = 由Rv mqvB 2=,得qB mv R =,qBmT π2= qBmt m 35π=【练习1】如图所示,宽度为d 的有界匀强磁场,磁感应强度为B ,MM ′和NN ′是它的两条边界线,现有质量m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入,要使粒子不能从边界NN ′射出,粒子最大的入射速度v 可能是( )A .小于mqBdB .小于()mqBd22+C .小于mqBd2 D .小于()mqBd22—解析:BD二、“角形磁场区”情景下的临界问题【例2】如图所示,在坐标系xOy 平面内,在x =0和x =L 范围内分布着匀强磁场和匀强电场,磁场的下边界AB 与y 轴成45°,其磁感应强度为B ,电场的上边界为x 轴,其电场强度为E .现有一束包含着各种速率的同种粒子由A 点垂直y 轴射入磁场,带电粒子的比荷为q /m .一部分粒子通过磁场偏转后由边界AB 射出进入电场区域.不计粒子重力,求: (1)能够由AB 边界射出的粒子的最大速率;(2)粒子在电场中运动一段时间后由y 轴射出电场,射出点与原点的最大距离. 解: (1)由于AB 与初速度成45°,所以粒子由AB 线射出磁场时速度方向与初速度成45°角.粒子在磁场中做匀速圆周运动,速率越大,圆周半径越大.速度最大的粒子刚好由B 点射出. 由牛顿第二定律Rv mB qv 2=由几何关系可知 r =L ,得 mqBLv =(2)粒子从B 点垂直电场射入后,在竖直方向做匀速运动,在水平方向做匀加速运动. 在电场中,由牛顿第二定律Eq =ma 此粒子在电场中运动时221at L =d =vt ,得mEqLBL d 2=【例3】如图所示,M 、N 为两块带异种电荷正对的金属板,其中M 板的表面为圆弧面,P 为M 板中点;N 板的表面为平面,Q 为N 板中点的一个小孔.PQ 的连线通过圆弧的圆心且与N 板垂直.PQ 间距为d ,两板间电压数值可由从0到某最大值之间变化,图中只画了三条代表性电场线.带电量为+q ,质量为m 的粒子,从点P 由静止经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直纸面向外,CD 为磁场边界线,它与N 板的夹角为α=45°,孔Q 到板的下端C 的距离为L .当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上. 不计粒子重力,求:(1)两板间电压的最大值Um ;(2)CD 板上可能被粒子打中的区域长度x ; (3)粒子在磁场中运动的最长时间tm .解: (1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,如图所示. C H =QC =L ,故半径R 1=L又1211R v m B qv = 2121mv qU m =得mL qB U m 222=(2)设轨迹与CD 板相切于K 点,半径为R 2在△AKC 中:2245sin R L R -=︒,得()L R 122-=因KC 长等于()L R 122-=,所以,CD 板上可能被粒子打中的区域长度x 为HK :()L R R x 2221-=-=(3)打在QE 段之间的粒子在磁场中运动时间最长,均为半周期:qBm T t m π==21三、“圆形磁场区”情景下的临界问题 【例4】(2012,揭阳调考)如图,相距为R 的两块平行金属板M 、N 正对放置,s 1、s 2分别为M 、N 板上的小孔,s 1、s 2、O 三点共线且水平,且s 2O =R 。
巧解三角形磁场的临界问题在研究带电粒子在有边界磁场中运动的临界条件时,一般为与该边界相切作为恰好不从该边界射出的条件,而在三角形磁场区域,由于其边长有限,相切点的确定就不容易了。
是与某条边上中间的某点相切,是恰好与该边的端点相切,还是与该边不存在相切点?学生在分析三角形磁场区域的临界问题时普遍存在疑惑。
要解决这一疑点我们可以换个思路来看。
带电粒子恰好在边界端点处相切的条件是什么?以底角为60︒的直角三角形磁场区域为例,从A点沿不同角度垂直射入磁场,在不限定速度大小的前提下,若粒子恰好从B点且与BC 边相切射出,我们来分析此时需要满足的条件。
利用在B点相切、AB 为圆周运动轨迹的一条弦,可以画出轨迹及圆心、半径。
由数学关系可得在A处射出的粒子与AB边的夹角为60︒。
同理若底角为30︒,要在B点相切射出,则在A点射入磁场时速度方向与AB边的夹角为30︒。
当然这不是巧合,在B点与BC边相切,就意味着确定了B点速度方向,A 、B 分别为在边界的入射点和出射点,由单边界磁场的规律入射、射出时速度方向与边界夹角一定相等。
规律总结:三角形区域存在与平面垂直的匀强磁场,从A 点垂直磁场方向射入磁场。
结论一、在三角形磁场区域中,若带电粒子从边界BC 端点B 相切射出,则带电粒子与入射方向边界AB 的夹角等于B ∠,且运动半径满足02sin AB r B=∠。
反之,若入射方向与AB 的夹角等于B ∠,则带电粒子可能在B 点相切射出(需满足半径关系)。
结论二、若0r r >,则在边界BC 不存在相切点,但仍可以有粒子从端点B 射出,入射、出射方向与边界AB 的夹角相同,但在端点处一定不会相切射出,且此时入射方向与边界AB 的夹角减小。
结论三、若0r r <,则可能会在边界BC 中的某点相切。
例题1.如图,直角三角形OAC 区域内有垂直于纸面向外、磁感应强度大小未知的匀强磁场,∠A=30°、OC 边长为L,在C 点有放射源S,可以向磁场内各个方向发射速率为0V 的同种带正电的粒子,粒子的比荷为K.S 发射的粒子有可以穿过OA 边界,OA 含在边界以内,不计重力、及粒子之间的相互影响。
带电粒子在有界磁场中的临界问题示例文章篇一:哎呀,我的天呐!“带电粒子在有界磁场中的临界问题”,这听起来可真让人头疼!老师在课堂上讲的时候,我一开始简直是一头雾水。
就像我在玩拼图,怎么都找不到关键的那几块一样,我怎么也搞不懂这带电粒子在磁场里到底是咋回事。
我就问我同桌:“嘿,你能明白这带电粒子在有界磁场里的临界问题不?”我同桌皱着眉头说:“我也是糊里糊涂的,感觉就像走进了一个迷宫,找不到出口。
”老师在黑板上画来画去,又是电场线,又是磁场线的,可我看着那些线条,就好像看到了一堆乱麻,怎么也理不清楚。
我心里直嘀咕:“这带电粒子难道是有魔法吗?怎么这么难搞懂!”后来老师又举了个例子,说带电粒子就像在操场上乱跑的小朋友,而磁场就像是操场周围的围墙。
我就在想,那这围墙得什么样,小朋友才能刚好在里面或者刚好跑出去呢?下课后,我去找学习好的班长请教。
我着急地问:“班长,这带电粒子在有界磁场中的临界问题,到底咋解决呀?”班长耐心地说:“别着急,你先想想,如果这个小朋友跑得特别快,是不是就容易冲出去?如果跑得慢,是不是就一直在里面?带电粒子也一样呀。
”我好像有点明白了,又好像还是有点迷糊。
回到家,我又翻开书,看了一遍又一遍,做了几道练习题,可还是会出错。
我就纳闷了,这带电粒子在有界磁场中的临界问题怎么就这么难呢?难道我真的就学不会了?不,我才不信呢!我一定要把它搞明白!经过我不断地努力,不断地思考,不断地请教老师和同学,我终于对这个问题有了一些头绪。
我发现只要抓住关键的几个点,比如粒子的速度、磁场的强度,还有粒子进入磁场的角度,就能慢慢找到解决问题的方法。
我想说,虽然这个问题曾经让我头疼不已,但是只要不放弃,努力去钻研,就一定能攻克它!学习就是这样,会遇到各种各样的难题,可只要我们坚持,就没有什么能难倒我们!示例文章篇二:哎呀,我是个小学生,这“带电粒子在有界磁场中的临界问题”听起来可真让人头疼啊!但老师既然讲了,我就努力去搞明白。
用动态圆巧解带电粒子在磁场中运动的临界问题作者:吴苗军来源:《中学教学参考·理科版》2018年第05期[摘要]带电粒子在匀强磁场中的运动问题是高考常考问题,而其中的临界问题更是难点。
如果能够将轨迹圆进行缩放、平移、旋转,这样就可以化动为静,让动态的运动轨迹呈现出来,就能消除学生解决问题上的思维、方法障碍,突破解决带电粒子在匀强磁场中运动问题的难点。
[关键词]旋转圆;缩放圆;平移圆;临界问题[中图分类号] G633.7 [文献标识码] A [文章编号] 1674-6058(2018)14-0060-02带电粒子在匀强磁场中的运动问题是高考常考问题,而其中的临界问题更是难点。
处理带电粒子在匀强磁场中的运动问题时,需要画出带电粒子的运动轨迹,找到其圆心,然后再找出几何关系。
当带电粒子以一定的速度射入匀强磁场时,带电粒子在洛伦兹力作用下做匀速圆周运动,带电粒子的轨迹都是圆或圆弧,如果带电粒子的速度大小或者磁感应强度大小变化,那么圆的半径也将随之改变。
如果能够将轨迹圆进行缩放、平移、旋转,就可以化动为静,让动态的运动轨迹呈现出来,就能消除学生解决问题的思维、方法障碍,突破带电粒子在匀强磁场中运动的临界问题分析解答这个难点。
接下来通过三道例题说明动态圆的运用。
一、缩放圆【例1】在真空中有宽度为d、磁感应强度为B的匀强磁场,其方向如图1,带电粒子(质量为m,带电量为-q)以与CD成θ角的速度v0垂直射入匀强磁场中。
要使带电粒子能从EF射出,那么初速度v0满足什么条件?EF上有粒子射出的范围是多少?分析:如图2甲所示,当入射速度比较小时,带电粒子在磁场中运动一段圆弧之后从同一侧射出。
由粒子在磁场中运动的轨迹圆的半径公式可得:带电粒子的速率越大,其轨道半径也就越大,即当带电粒子入射速度不断变大时,其运动的轨迹圆不断变大,直到其轨迹与右边界相切,这时带电粒子恰好不能从右侧射出,当带电粒子的速率大于这个临界值时便从右侧射出,根据缩放圆的特点可以画出带电粒子的临界轨迹,再根据几何知识计算速度的临界值。
考点11:放缩圆法--带电粒子在磁场中运动的临界问题1、适用条件a.速度方向一定,大小不同粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化.b.轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v 越大,运动半径也越大.可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线CO 上.2、界定方法以入射点O 为定点,圆心位于CO 直线上,将半径放缩作轨迹,从而探索出临界条件,这种方法称为“放缩圆法”.1.如图所示,正方形区域内,有垂直于纸面向里的匀强磁场,一束质量和电荷量都相同的带正电粒子,从左上角以不同的速率,沿着相同的方向,对准正方形区域的中心射入匀强磁场,又都从该磁场中射出,若带电粒子只受洛伦兹力的作用,则下列说法正确的是 ( )A .这些粒子在磁场中运动的时间都相等B .在磁场中运动时间越短的粒子,其速率越小C .在磁场中运动时间越短的粒子,其轨迹半径越大D .在磁场中运动时间越短的粒子,其通过的路程越小答案 C解析 由于带电粒子的q 、m 均相同,由周期公式T =2πm qB 可知,粒子的周期相同,由R =m v qB知,粒子的速率越小,则粒子做圆周运动的半径越小。
分析可知,所有从磁场上边界射出的粒子,其对应的圆心角都相同,而从右侧射出的粒子,对应的圆心角较小,根据t =θ2πT 可知,圆心角越大,带电粒子在磁场中运动的时间越长,则选项A 错误;由图可知,在磁场中运动时间越短的粒子,其轨迹所对应的圆心角θ越小,其轨迹半径越大,速率也越大,故B 错误,C 正确;通过的路程即为轨迹圆弧的长度l =Rθ,与半径R和圆心角都有关,选项D 错误。
2.如图所示,在边长为a 的正三角形区域内存在着方向垂直于纸面向外、磁感应强度大小为B 的匀强磁场.一个质量为m 、电荷量为+q 的带电粒子(重力不计)从AB 边的中点O 以某一速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与AB 边的夹角为60°.若粒子能从AB 边穿出磁场,且粒子在磁场中运动的过程中,到AB 边有最大距离,则v 的大小为( )A.3Bqa 4m B.3Bqa 4m C.3Bqa 8m D.3Bqa 8m2.C[设从AB 边以v 射出的粒子符合题意,运动轨迹如图所示,由图知2R =OB cos 30°,OB =a 2,又有Bq v =m v 2R ,得v =3Bqa 8m.] 3.如图所示,在边长为2a 的正三角形区域内存在方向垂直于纸面向里的匀强磁场,一个质量为m 、电荷量为-q (q >0)的带电粒子(重力不计)从AB 边的中心O 以速度v 进入磁场,粒子进入磁场时的速度方向垂直于磁场且与AB 边的夹角为60°,若要使粒子能从AC 边穿出磁场,则匀强磁场磁感应强度的大小B 需满足( )A .B >3m v 3aq B .B <3m v 3aq C .B >3m v aq D .B <3m v aq答案 B解析 若粒子刚好达到C 点时,其运动轨迹与AC 相切,如图所示, 则粒子运动的半径为r 0=a tan 30°=3a .由q v B =m v 2r 得r =m v qB,粒子要能从AC 边射出,粒子运动的半径应满足r >r 0,解得B <3m v 3aq,选项B 正确. 4.如图所示,正八边形区域内有垂直于纸面的匀强磁场.一带电粒子从h 点沿图示he 方向射入磁场区域,当速度大小为v b 时,从b 点离开磁场,在磁场中运动的时间为t b .当速度大小为v d 时,从d 点离开磁场,在磁场中运动的时间为t d ,不计粒子重力.则下列正确的说法是( )A.t b ∶t d =2∶1B.t b ∶t d =1∶2C.t b ∶t d =3∶1D.t b ∶t d =1∶34.C[粒子运动轨迹如图所示.设正八边形的边长为l ,根据几何关系可知,粒子从b点离开时的轨道半径为l ,偏转角度为135°,粒子从d 点离开时的轨道半径为(2+2)l ,偏转角度为45°,洛伦兹力提供向心力q v B =m v 2r=mω2r ,则运动时间t =θω=θm qB ,所以,t b t d =θb θd =135°45°=31,故C 项正确.] 5(多选)如图所示,在半径为R 的圆形区域内充满磁感应强度为B 的匀强磁场,MN 是一竖直放置的感光板.从圆形磁场最高点P 以大小不同的速度v 垂直磁场正对着圆心O 射入带正电的粒子,且粒子所带电荷量为q 、质量为m ,不考虑粒子重力,关于粒子的运动,以下说法正确的是( ) A .粒子在磁场中通过的弧长越长,运动时间也越长B .射出磁场的粒子其出射方向的反向延长线也一定过圆心OC .射出磁场的粒子一定能垂直打在MN 上D .只要速度满足v =qBR m,入射的粒子出射后一定垂直打在MN 上 答案 BD解析 速度不同的同种带电粒子在磁场中做匀速圆周运动的周期相等,对着圆心入射的粒子,速度越大在磁场中轨道半径越大,弧长越长,轨迹对应的圆心角θ越小,由t =θ2πT 知,运动时间t 越小,故A 错误;带电粒子的运动轨迹是圆弧,根据几何知识可知,对着圆心入射的粒子,其出射方向的反向延长线一定过圆心,故B 正确;速度不同,半径不同,轨迹对应的圆心角不同,对着圆心入射的粒子,出射后不一定垂直打在MN 上,与粒子的速度有关,故C 错误;速度满足v =qBR m 时,粒子的轨迹半径为r =m v qB=R ,入射点、出射点、O 点与轨迹的圆心构成菱形,射出磁场时的轨迹半径与最高点的磁场半径垂直,粒子一定垂直打在MN 板上,故D 正确.6.(多选)如图所示,正方形abcd 区域内有垂直于纸面向里的匀强磁场,O 点是cd 边的中点,一个带正电的粒子(重力忽略不计)若从O 点沿纸面以垂直于cd 边的速度射入正方形内,经过时间t 0刚好从c 点射出磁场.现设法使该带电粒子从O 点沿纸面以与Od 成30°角的方向(如图中虚线所示),以各种不同的速率射入正方形内,那么下列说法中正确的是( )A.该带电粒子不可能刚好从正方形的某个顶点射出磁场B.若该带电粒子从ab 边射出磁场,它在磁场中经历的时间可能是23t 0 C.若该带电粒子从bc 边射出磁场,它在磁场中经历的时间可能是t 0D.若该带电粒子从bc 边射出磁场,它在磁场中经历的时间可能是53t 0 答案 ABC解析 带电粒子以垂直于cd 边的速度射入正方形内,经过时间t 0刚好从c 点射出磁场,则知带电粒子的运动周期为T =2t0.作出粒子从O 点沿纸面以与Od 成30°角的方向射入恰好从各边射出的轨迹,如图所示发现粒子不可能经过正方形的某顶点,故A 正确;作出粒子恰好从ab 边射出的临界轨迹③④,由几何关系知圆心角不大于150°,在磁场中经历的时间不大于512个周期,即56t 0;圆心角不小于60°,在磁场中经历的时间不小于16个周期,即13t 0,故B 正确;作出粒子恰好从bc 边射出的临界轨迹②③,由几何关系知圆心角不大于240°,在磁场中经历的时间不大于23个周期,即43t 0;圆心角不小于150°,在磁场中经历的时间不小于512个周期,即56t 0,故C 正确;若该带电粒子在磁场中经历的时间是56个周期,即53t 0.粒子轨迹的圆心角为θ=53π,速度的偏向角也为53π,根据几何知识得知,粒子射出磁场时与磁场边界的夹角为30°,必定从cd 边射出磁场,故D 错误.7.如图所示,左侧两平行金属板上、下水平放置,它们之间的电势差为U 、间距为L ,其中有匀强磁场;右侧为“梯形”匀强磁场区域ACDH ,其中,AH ∥CD, AH =72L .一束电荷量大小为q 、质量不等的带电粒子(不计重力、可视为质点),从小孔S 1射入左侧装置,恰能沿水平直线从小孔S 2射出,接着粒子垂直于AH 、由AH 的中点M 射入“梯形”区域,最后全部从边界AC 射出.若两个区域的磁场方向均垂直于纸面向里、磁感应强度大小均为B ,“梯形”宽度 MN=L ,忽略电场、磁场的边缘效应及粒子间的相互作用.(已知sin 53°=0.8,cos53°=0.6)(1)求出粒子速度的大小,判定粒子的电性;(2)这束粒子中,粒子质量最小值和最大值各是多少.6.(1)U BL 正电 (2)m min =7qB 2L 29U m max =qB 2L 2U解析 (1)粒子全部从边界AC 射出,则粒子进入“梯形”磁场时所受洛伦兹力竖直向上,由左手定则可知,粒子带正电;粒子在两极板间做匀速直线运动,由平衡条件得:q v B =q U L ,解得:v =U BL; (2)在“梯形”区域内,粒子做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:q v B =m v 2R ,粒子轨道半径:R =m v qB .由R =m v qB可知:当粒子质量有最小值时,R 最小,粒子运动轨迹恰与AC 相切(见图甲);当粒子质量有最大值时,R 最大,粒子运动轨迹恰过C 点(见图乙),甲图中,由几何关系得:R 1sin 53°+R 1=74L ,解得:R 1=79L , 乙图中,NC +L tan 53°=74L ,解得R 2=NC =L ,解得:m min =7qB 2L 29U ,m max =qB 2L 2U. 8.如图所示,在某电子设备中分布有垂直纸面向里的匀强磁场,磁感应强度的大小为B 。
九、带电粒子在有界电场、磁场中临界问题带电粒子在有界电场、磁场中的临界问题是带电粒子在电磁场中运动问题的难点与易错点,分析解答此类问题的关键在于正确找出临界点,具体方法:分析带电粒子在电场、磁场中运动轨迹与电场、磁场边界的关系。
1.带电粒子在有界电场中的临界问题典例1 (多选)如图所示,水平放置的平行板电容器与某一电源相连,它的极板长L=0.4 m,两板间距离d=4×10-3 m,有一束由相同带电微粒组成的粒子流以相同的速度v 0从两板中央平行极板射入,开关S 闭合前,两极板不带电,由于重力作用,微粒能落到下极板的正中央。
已知微粒质量m=4×10-5 kg,电荷量q=+1×10-8 C,则下列说法正确的是( )A.微粒的入射速度v 0=10 m/sB.电容器上极板接电源正极时微粒有可能从平行板电容器的右边射出电场C.电源电压为180 V 时,微粒可能从平行板电容器的右边射出电场D.电源电压为100 V 时,微粒可能从平行板电容器的右边射出电场答案 AC 开关S 闭合前,两极板不带电,微粒落到下极板的正中央,由d 2=12gt 2,L2=v 0t,得v 0=10 m/s,A 正确;电容器上极板接电源正极时,微粒的加速度更大,竖直方向运动时间更短,水平位移将更小,还将打在下极板,B 错误;设微粒恰好从平行板右边缘下侧飞出时的加速度为a,微粒所受电场力竖直向上,则d 2=12at 2,L=v 0t,mg-Uqd =ma,得U=120 V,同理微粒在平行板右边缘上侧飞出时,可得U=200 V,所以平行板上板带负电,电源电压为120 V≤U≤200 V 时微粒可以从平行板电容器的右边射出电场,C 正确,D 错误。
反思总结本题中当微粒与电场右侧上、下边界相切是解题的临界点,由此可以找出电压的变化范围。
2.带电粒子在有界磁场中的临界问题典例2(多选)如图所示,一粒子发射源P位于足够长绝缘板AB的上方d处,能够在纸面内向各个方向发射速率为v、比荷为k的带正电的粒子,空间存在垂直纸面的匀强磁场,不考虑粒子间的相互作用和粒子重力。
带电粒子在有界磁场中运动的临界问题当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。
粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。
如何分析这类相关的问题是本文所讨论的内容。
一、带电粒子在有界磁场中运动的分析方法1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。
2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。
②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。
3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。
4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。
a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。
②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。
专题八带电粒子在磁场中运动的临界和多解问题考点一带电粒子在磁场中运动的临界极值问题多维探究解决带电粒子在磁场中的临界极值问题的关键(1)以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,运用动态思维,寻找临界点,确定临界状态,由磁场边界和题设条件画好轨迹、定好圆心,建立几何关系.(2)寻找临界点常用的结论:①刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.②当速度v一定时,弧长(或弦长)越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长.③当速度v变化时,圆心角越大,运动时间越长.题型1|求运动时间的极值例1 [2020·全国卷Ⅰ,18]一匀强磁场的磁感应强度大小为B,方向垂直于纸面向外,其边界如图中虚线所示,ab̂为半圆,ac、bd与直径ab共线,ac间的距离等于半圆的半径.一束质量为m、电荷量为q(q>0)的粒子,在纸面内从c点垂直于ac射入磁场,这些粒子具有各种速率.不计粒子之间的相互作用.在磁场中运动时间最长的粒子,其运动时间为( )A.7πm6qB B.5πm4qBC.4πm3qBD.3πm2qB题型2|求磁感应强度的极值例2 [2020·全国卷Ⅲ,18]真空中有一匀强磁场,磁场边界为两个半径分别为a和3a的同轴圆柱面,磁场的方向与圆柱轴线平行,其横截面如图所示.一速率为v的电子从圆心沿半径方向进入磁场.已知电子质量为m,电荷量为e,忽略重力.为使该电子的运动被限制在图中实线圆围成的区域内,磁场的磁感应强度最小为( )A.3mv2ae B.mvaeC.3mv4ae D.3mv5ae题型3 |求运动速度的极值例3 如图所示,在直角三角形abc区域(含边界)内存在垂直于纸面向外的匀强磁场,磁感应强度大小为B,∠a=60°,∠b=90°,边长ac=L.一个粒子源在a点将质量为m、电荷量为q的带正电粒子以大小和方向不同的速度射入磁场,在磁场中运动时间最长的粒子中,速度的最大值是( )A.qBL2m B.√3qBL6mC.√3qBL4mD.qBL6m题型4|带电粒子通过磁场时的最大偏角例4 如图所示,半径R=10 cm的圆形区域内有匀强磁场,其边界跟y轴在坐标原点O处相切,磁感强度B=0.33 T,方向垂直纸面向里.在O处有一放射源S,可沿纸面向各方向射出速率均为v=3.2×106m/s的α粒子,已知α粒子的质量m=6.6×10-27 kg,电荷量q=3.2×10-19 C,则该α粒子通过磁场空间的最大偏转角为( ) A.30° B.45°C.60° D.90°题型5|求区域的长度范围例5 如图所示,在荧光屏MN上方分布了水平方向的匀强磁场,磁感应强度的大小B=0.1 T、方向与纸面垂直.距离荧光屏h=16 cm处有一粒子源S,以速度v=1×106=1×108C/kg的带正电粒子,不计粒子的重m/s不断地在纸面内向各个方向发射比荷qm力.则粒子打在荧光屏范围的长度为( )A.12 cm B.16 cmC.20 cm D.24 cm练1 [最小边界]如图所示,一带电质点质量为m,电荷量为q,以平行于x轴的速度v从y轴上的a 点射入图中第一象限所示的区域.为了使该质点能从x轴上的b点以垂直于x轴的速度v射出,可在适当的地方加一个垂直于xOy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径.(重力忽略不计)练2 [2020·全国卷Ⅱ,24] 如图,在0≤x≤h,-∞<y<+∞区域中存在方向垂直于纸面的匀强磁场,磁感应强度B的大小可调,方向不变.一质量为m、电荷量为q(q>0)的粒子以速度v0从磁场区域左侧沿x轴进入磁场,不计重力.(1)若粒子经磁场偏转后穿过y轴正半轴离开磁场,分析说明磁场的方向,并求在这种情况下磁感应强度的最小值B m;,粒子将通过虚线所示边界上的一点离开磁场.求粒子(2)如果磁感应强度大小为B m2在该点的运动方向与x轴正方向的夹角及该点到x轴的距离.题后反思解决临界极值问题的方法技巧(1)数学方法和物理方法的结合:如利用“矢量图”“边界条件”等求临界值,利用“三角函数”“不等式的性质”“二次方程的判别式”等求极值.(2)一个“解题流程”突破临界问题考点二带电粒子在匀强磁场中的运动的多解问题多维探究题型1|带电性质不确定例6 如图所示,宽度为d 的有界匀强磁场,磁感应强度为B ,MM ′和NN ′是它的两条边界.现有质量为m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入.要使粒子不能从边界NN ′射出,则粒子入射速率v 的最大值可能是多少?题型2|磁场方向不确定例7 (多选)一质量为m ,电荷量为q 的负电荷在磁感应强度为B 的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是( )A. 4qB mB. 3qB mC. 2qB mD. qBm题型3|临界状态不唯一例8 匀强磁场区域由一个半径为R的半圆和一个长为2R、宽为R的矩形组成,磁场2的方向如图所示.一束质量为m、电荷量为+q的粒子(粒子间的相互作用和重力均不计)以速度v从边界AN的中点P垂直于AN和磁场方向射入磁场中.(1)当磁感应强度为多大时,粒子恰好从A点射出?(2)对应于粒子可能射出的各段磁场边界,磁感应强度应满足什么条件?题型4|带电粒子的周期性运动形成多解解决带电粒子在磁场中的周期性运动与多解问题,关键是对运动过程进行准确分析,找出周期性运动的规律,并用数学通式表达多解性.分析运动过程要注意两点:(1)注意磁场大小或方向的变化引起粒子运动轨迹的变化.(2)注意粒子的运动方向改变而使粒子的运动具有周期性和对称性.例9 [2021·广东韶关调研]如图所示,在无限长的竖直边界AC和DE间,上、下方分别充满方向垂直于平面ADEC向外的匀强磁场,上方磁场区域的磁感应强度大小为B0,OF为上、下方磁场的水平分界线.质量为m、所带电荷量为+q的粒子从AC边界上与O 点相距为a 的P 点垂直于AC 边界射入上方磁场区域,经OF 上的Q 点第一次进入下方磁场区域,Q 点与O 点的距离为3a .不考虑粒子重力.(1)求粒子射入时的速度大小;(2)若下方区域的磁感应强度B =3B 0,粒子最终垂直于DE 边界飞出,求边界DE 与AC 间距离的可能值.练3 (多选)如图所示,两方向相反、磁感应强度大小均为B 的匀强磁场被边长为L 的等边三角形ABC 理想分开,三角形内磁场垂直纸面向里,三角形顶点A 处有一质子源,能沿∠BAC 的角平分线发射速度不同的质子(质子重力不计),所有质子均能通过C点,质子比荷q m =k ,则质子的速度可能为( )A.2BkLB. BkL 2C. 3BkL 2D. BkL8练4 如图所示,在平面直角坐标系xOy 的第一象限y ≤a 范围内,存在垂直纸面向里磁感应强度为B 的匀强磁场.一质量为m 、电荷量为q 且带负电的粒子从坐标原点O 以速度大小为v 0=2qBa m沿不同方向射入磁场,不计粒子的重力,下列说法正确的是( )A .若粒子初速度沿y 轴正方向,则粒子在磁场中的运动时间为πm 3qBB .若粒子初速度沿y 轴正方向,则粒子在磁场中的运动时间为2πm 3qBC.粒子在磁场中运动的最长时间为πm3qBD.粒子在磁场中运动的最长时间为2πm3qB思维拓展“几何圆”模型在磁场临界极值问题中的应用模型1 “放缩圆”模型的应用如图所示(图中只画出粒子带正电的情景),速度v越大,运动半径也越大.可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP′上为定点,圆心位于PP′直线上,将半径放缩作轨迹例1 (多选)如图所示,正方形abcd区域内有垂直于纸面向里的匀强磁场,O点是cd边的中点.若一个带正电的粒子(重力忽略不计)从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t0刚好从c点射出磁场.现设法使该带电粒子从O点沿纸面以与Od成30°的方向(如图中虚线所示),以各种不同的速率射入正方形内,那么下列说法正确的是( )A.该带电粒子不可能刚好从正方形的某个顶点射出磁场B.若该带电粒子从ab边射出磁场,它在磁场中经历的时间可能是t0t0 C.若该带电粒子从bc边射出磁场,它在磁场中经历的时间可能是32t0 D.若该带电粒子从cd边射出磁场,它在磁场中经历的时间一定是53模型2 “旋转圆”模型的应用粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为v0,则轨迹半径为R=mv0.如图所qB示带电粒子在磁场中做匀速圆周运动的圆心在以入射点、速度例2 如图所示,匀强磁场垂直于纸面,磁感应强度大小为B,一群比荷为qm大小为v的离子以一定发散角α由原点O出射,y轴正好平分该发散角,离子束偏转为( )后打在x轴上长度为L的区域MN内,则cosα2A .1-BqL 4mvB .12-BqL 4mvC .1-BqL 2mvD .1-BqLmv专题八 带电粒子在磁场中运动的临界和多解问题考点突破例1 解析:如图所示,设某一粒子从磁场圆弧ab̂上的e 点射出磁场,粒子在磁场中转过的圆心角为π+θ=π+2α,由于所有粒子在磁场中运动周期相同,粒子在磁场中做匀速圆周运动时,运动轨迹对应的圆心角越大,则运动时间越长.由几何关系可知,α最大时,ce 恰好与圆弧ab ̂相切,此时sin α=eO cO =12,可得α=π6,θ=2α=π3,设粒子在磁场中做匀速圆周运动的周期为T ,粒子在磁场中运动的最长时间t =T 2+T 6,又T =2πm qB ,解得t =4πm 3qB,故选C.答案:C例2 解析:为使该电子的运动被限制在图中实线圆围成的区域内,且磁感应强度最小,由qvB =mv 2r可知,电子在匀强磁场中的轨迹半径r =mv eB,当r 最大时,B 最小,故临界情况为电子轨迹与有界磁场外边界相切,如图所示,由几何关系知a 2+r 2=(3a-r )2,解得r =43a ,联立可得最小的磁感应强度B =3mv4ae,选项C 正确.答案:C例3 解析:由分析知,粒子沿着ab 边入射且运动轨迹与bc 边相切时满足题意,粒子运动轨迹如图所示.由几何关系知,粒子运动轨迹半径r =ab =12L ,则粒子速度的最大值v =2πr T =qBL 2m,A 正确. 答案:A例4 解析:放射源发射的α粒子的速率一定,则它在匀强磁场中的轨道半径为定值,即r =mv qB =6.6×10−27×3.2×1063.2×10−19×0.33m =0.2 m =20 cmα粒子在圆形磁场区的圆弧长度越大,其偏转角度也越大,而最长圆弧是两端点在圆形磁场区的直径上,又r =2R ,则此圆弧所对的圆心角为60°,也就是α粒子在此圆形磁场区的最大偏转角为60°.轨迹如图所示.选项C 正确.答案:C例5 解析:如图所示,粒子在磁场中做圆周运动的半径为R =mv qB =10 cm ,若粒子打在荧光屏的左侧,当弦长等于直径时,打在荧光屏的最左侧,由几何关系有x 1=√(2R )2−h 2=12 cm ;粒子的运动轨迹与荧光屏右侧相切时,打在荧光屏的最右侧,由几何关系有x 2=√R 2−(h −R )2=8 cm.根据数学知识可知打在荧光屏上的范围长度为x =x 1+x 2=12 cm +8 cm =20 cm ,选项C 正确.答案:C 练1解析:由于已知初速度与末速度的方向,可得偏向角φ=π2.设粒子由M 点进入磁场,由于φ=2β,可沿粒子偏转方向β=π4来补弦MN ,如图所示.由“切线、弦”可得圆心O 1,从而画轨迹弧MN .显然M 、N 为磁场边界上两点,而磁场又仅分布在一圆形区域内.欲使磁场面积最小,则弦MN 应为磁场边界所在圆的直径(图中虚线图),即得2r =MN .由几何知识,在Rt△MO 1O 2中可知R =√2r ,又因为R =mv qB,所以,这圆形磁场区域的最小半径 =√22R =√2mv 2qB . 答案:√2mv 2qB练2 解析:(1)由题意,粒子刚进入磁场时应受到方向向上的洛伦兹力,因此磁场方向垂直于纸面向里.设粒子进入磁场中做圆周运动的半径为R ,根据洛伦兹力公式和圆周运动规律,有qv 0B =m v 02 R ①由此可得R =mv 0qB② 粒子穿过y 轴正半轴离开磁场,其在磁场中做圆周运动的圆心在y 轴正半轴上,半径应满足R ≤h ③由题意,当磁感应强度大小为B m 时,粒子的运动半径最大,由此得B m =mv 0qh④(2)若磁感应强度大小为B m 2,粒子做圆周运动的圆心仍在y 轴正半轴上,由②④式可得,此时圆弧半径为R ′=2h ⑤粒子会穿过图中P 点离开磁场,运动轨迹如图所示.设粒子在P 点的运动方向与x 轴正方向的夹角为α,由几何关系sin α=h 2h =12⑥则α=π6⑦由几何关系可得,P 点与x 轴的距离为y =2h (1-cos α)⑧联立⑦⑧式得y =(2-√3)h ⑨答案:见解析 例6解析:题目中只给出粒子“电荷量为q ”,未说明是带哪种电荷,所以分情况讨论.若带电粒子带正电荷,则轨迹是图中与NN ′相切的14圆弧,轨迹半径R =mv Bq又d =R -R ·sin 45°解得v =(2+√2)Bqd m若带电粒子带负电荷,则轨迹是图中与NN ′相切的34圆弧,轨迹半径R ′=mv ′Bq 又d =R ′+R ′sin 45°解得v ′=(2−√2)Bqd m答案:(2+√2)Bqd m (q 为正电荷) 或(2-√2)Bqd m(q 为负电荷) 例7 解析:依题中条件“磁场方向垂直于它的运动平面”,磁场方向有两种可能,且这两种方向相反.在方向相反的两个匀强磁场中,由左手定则可知负电荷所受的洛伦兹力的方向也是相反的.当负电荷所受的洛伦兹力与电场力方向相同时,根据牛顿第二定律可知4Bqv =m v 2R ,得v =4BqR m .此种情况下,负电荷运动的角速度为ω=v R =4Bq m ;当负电荷所受的洛伦兹力与电场力方向相反时,有2Bqv =m v 2R ,v =2BqR m ,此种情况下,负电荷运动的角速度为ω=v R =2Bq m.故AC 正确.答案:AC例8 解析:(1)由左手定则判定,粒子向左偏转,只能从PA 、AC 和CD 三段边界射出,如图所示.当粒子从A 点射出时,运动半径r 1=R 2.由qvB 1=mv 2r 1 得B 1=2mv qR. (2)当粒子从C 点射出时,由勾股定理得:(R -r 2)2+(R 2)2=r 22,解得r 2=58R 由qvB 2=mv 2r 2,得B 2=8mv 5qR据粒子在磁场中运动半径随磁场减弱而增大,可以判断:当B >2mv qR 时,粒子从PA 段射出;当8mv 5qR <B <2mv qR时,粒子从AC 段射出; 当B <8mv 5qR 时,粒子从CD 段射出.答案:(1)2mv qR(2)见解析例9 解析:(1)粒子在OF 上方的运动轨迹如图甲所示, 设粒子做圆周运动的半径为R ,由几何关系得R 2-(R -a )2=(3a )2,解得R =5a由牛顿第二定律得qvB 0=m v 2R解得v =5aqB 0m.(2)当B =3B 0时,粒子的运动轨迹如图乙所示,粒子在OF 下方的运动半径为r =53a .设粒子的速度方向再次与射入磁场时的速度方向一致时的位置为P 1,则P 与P 1的连线一定与OF 平行,根据几何关系知PP 1=4a若粒子最终垂直于DE 边界飞出,则边界DE 与AC 间的距离为L =nPP 1=4na (n =1,2,3,…).答案:(1)5aqB 0m(2)4na (n =1,2,3,…)练3 解析:因质子带正电,且经过C 点,其可能的轨迹如图所示,所有圆弧所对圆心角均为60°,所以质子运行半径r =L n (n =1,2,3…),由洛伦兹力提供向心力得Bqv =m v 2r ,即v =Bqr m =Bk ·L n(n =1,2,3…),选项B 、D 正确. 答案:BD 练4解析:本题考查带电粒子在平行边界磁场中运动的临界问题.粒子运动的速度为v 0=2qBa m ,则粒子运动的轨迹半径为r =mv 0qB =2a ,若粒子初速度沿y 轴正方向,由几何关系知粒子在磁场中运动偏转的角度为30°,则运动时间为t 1=30°360°T =112×2πr v 0=πm 6qB ,选项A 、B 错误;当轨迹与磁场上边界相切时,粒子在磁场中运动的时间最长,由几何关系可知,此时粒子在磁场中偏转的角度为120°,时间为t m =120°360°T =2πm 3qB,故选D. 答案:D 思维拓展 典例1解析:由题意可知带电粒子以垂直于cd 边的速度射入正方形内,经过时间t 0刚好从c 点射出磁场,则知带电粒子的运动周期为T =2t 0.随粒子速度逐渐增大,轨迹由①→②→③→④依次渐变,由图可以知道粒子在四个边射出时,射出范围分别为OG 、FE 、DC 、BA 之间,不可能从四个顶点射出,所以A 项正确;当粒子从O 点沿纸面垂直于cd 边射入正方形内,轨迹恰好为半个圆周,即时间t 0刚好为半周期,从ab 边射出的粒子所用时间小于半周期t 0,从bc 边射出的粒子所用时间小于23T =4t 03,所有从cd 边射出的粒子圆心角都是300°,所用时间为5T 6=5t 03,故B 、C 项错误,A 、D 项正确.答案:AD典例2 解析:根据洛伦兹力提供向心力,有qvB =m v 2R ,得R =mvqB,离子通过M 、N 点的轨迹如图所示,由几何关系知MN =ON -OM ,过M 点两圆圆心与原点连线与x 轴夹角为α2,圆心在x 轴上的圆在O 点时的速度沿y 轴正方向,由几何关系可知L =2R -2R cos α2,解得cos α2=1-BqL 2mv,故选项C 正确.答案:C。