带电粒子在磁场中的临界条件
- 格式:ppt
- 大小:704.00 KB
- 文档页数:18
2024届物理一轮复习讲义专题强化十七带电粒子在匀强磁场中的多解和临界问题学习目标会分析带电粒子在匀强磁场中的多解问题和临界极值问题,提高思维分析综合能力。
考点一带电粒子在磁场中运动的多解问题造成多解问题的几种情况分析类型分析图例带电粒子电性不确定带电粒子可能带正电荷,也可能带负电荷,初速度相同时,正、负粒子在磁场中运动轨迹不同,形成多解如带正电,其轨迹为a;如带负电,其轨迹为b磁场方向不确定只知道磁感应强度大小,而未具体指出磁感应强度方向,由于磁感应强度方向不确定而形成多解粒子带正电,若B垂直纸面向里,其轨迹为a,若B垂直纸面向外,其轨迹为b临界状态不唯一带电粒子飞越有界磁场时,可能穿过磁场飞出,也可能转过180°从入射界面一侧反向飞出,于是形成多解运动具有周期性带电粒子在部分是电场、部分是磁场空间运动时,运动往往具有周期性,因而形成多解例1 (多选)(2022·湖北卷) 在如图1所示的平面内,分界线SP将宽度为L的矩形区域分成两部分,一部分充满方向垂直于纸面向外的匀强磁场,另一部分充满方向垂直于纸面向里的匀强磁场,磁感应强度大小均为B,SP与磁场左右边界垂直。
离子源从S处射入速度大小不同的正离子,离子入射方向与磁场方向垂直且与SP 成30°角。
已知离子比荷为k ,不计重力。
若离子从P 点射出,设出射方向与入射方向的夹角为θ,则离子的入射速度和对应θ角的可能组合为( )图1A.13kBL ,0° B.12kBL ,0° C.kBL ,60° D.2kBL ,60°答案 BC解析 若离子通过下部分磁场直接到达P 点,如图甲所示,甲根据几何关系,有R =L ,q v B =m v 2R ,可得v =qBLm =kBL ,根据对称性可知出射速度与SP 成30°角向上,故出射方向与入射方向的夹角为θ=60°。
当粒子上下均经历一次时,如图乙所示,乙因为上下磁感应强度均为B ,则根据对称性有R =12L ,根据洛伦兹力提供向心力有q v B =m v 2R ,可得v =qBL 2m =12kBL ,此时出射方向与入射方向相同,即出射方向与入射方向的夹角为θ=0°。
带电粒子在强磁场中运动的多解和临界问
题
引言
带电粒子在强磁场中的运动问题一直是物理学中的重要研究方
向之一。
在强磁场中,带电粒子在受到洛伦兹力的作用下呈现出多
解和临界现象,这在某些情况下对粒子的运动轨迹和性质产生重要
影响。
多解现象
在强磁场中,由于洛伦兹力的作用,带电粒子的运动方程出现
多解的情况。
这是由于洛伦兹力与粒子运动速度与磁场方向夹角的
正弦函数关系所导致的。
当速度与磁场方向夹角为不同值时,洛伦
兹力的大小和方向也会有所变化,从而使得粒子的运动轨迹不唯一。
临界现象
在某些情况下,带电粒子在强磁场中的运动可能会出现临界现象。
临界现象是指当带电粒子的运动速度与磁场强度达到一定比例
关系时,粒子的运动状态出现急剧变化,其轨迹和动力学性质发生
显著变化。
临界现象在物理学中具有重要的理论和实际意义,在磁共振成像、粒子加速器等领域的研究中得到了广泛应用。
结论
带电粒子在强磁场中运动的多解和临界问题是一个复杂而有趣的研究领域。
多解现象使得粒子的运动轨迹不唯一,而临界现象则带来了粒子运动状态的突变。
对这些问题的深入研究和理解将有助于推动物理学和应用科学的发展,为实际应用提供更多的可能性。
数学圆法巧解磁场中的临界问题一、应用技巧1.“放缩圆”法适用条件速度方向一定,大小不同粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v越大,运动半径也越大。
可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP′上界定方法以入射点P为定点,圆心位于PP′直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法1如图所示,一束电子以大小不同的速率沿图示方向垂直飞入横截面是一正方形的匀强磁场区域,下列判断正确的是()A.电子在磁场中运动时间越长,其轨迹线越长B.电子在磁场中运动时间越长,其轨迹线所对应的圆心角越大C.在磁场中运动时间相同的电子,其轨迹线不一定重合D.电子的速率不同,它们在磁场中运动时间一定不相同【答案】 BC【解析】 由t=θ2πT知,电子在磁场中运动时间与轨迹对应的圆心角成正比,所以电子在磁场中运动的时间越长,其轨迹线所对应的圆心角θ越大,电子飞入匀强磁场中做匀速圆周运动,轨迹线弧长s=rθ,运动时间越长,θ越大,但半径r不一定大,s也不一定大,故A错误,B正确.由周期公式T=2πmqB知,电子做圆周运动的周期与电子的速率无关,所以电子在磁场中的运动周期相同,若它们在磁场中运动时间相同,但轨迹不一定重合,比如:轨迹4与5,它们的运动时间相同,但它们的轨迹对应的半径不同,由r= mvqB可知它们的速率不同,故C正确,D错误.2.“旋转圆”法适用条件速度大小一粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射定,方向不同入初速度为v0,则圆周运动半径为R=mv0qB。
如图所示轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P为圆心、半径R=mvqB的圆上界定方法将一半径为R=mv0qB的圆以入射点为圆心进行旋转,从而探索粒子的临界条件,这种方法称为“旋转圆”法2如图所示为圆形区域的匀强磁场,磁感应强度为B,方向垂直纸面向里,边界跟y轴相切于坐标原点O。
带电粒子在磁场中运动的临界问题一、“矩形”有界磁场中的临界问题【例1】如图所示,一足够长的矩形区域abcd 内充满方向垂直纸面向里、磁感应强度为B 的匀强磁场,在ad 边中点O ,方向垂直磁场向里射入一速度方向跟ad 边夹角θ=30°、大小为v 0的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力不计,求(1)粒子能从ab 边上射出磁场的v 0大小范围。
(2)若粒子速度不受上述v 0大小的限制,求粒子在磁场中运动的最长时间。
解析: (1)①假设粒子以最小的速度恰好从左边偏转出来时的速度为v 1,圆心在O 1点,如图 (甲),轨道半径为R 1,对应圆轨迹与ab 边相切于Q 点,由几何知识得:R 1+R 1sin θ=0.5L由牛顿第二定律得1211R v m B qv =; 得m qBLv =1②假设粒子以最大速度恰好从右边偏转出来,设此时的轨道半径为R 2,圆心在O 2点,如图 (乙),对应圆轨迹与dc 边相切于P 点。
由几何知识得:R 2=L由牛顿第二定律得2222R v m B qv =;得m qBLv =2粒子能从ab 边上射出磁场的v 0应满足mqBLv m qBL ≤≤3(2)如图 (丙)所示,粒子由O 点射入磁场,由P 点离开磁场,该圆弧对应运行时间最长。
粒子在磁场内运行轨迹对应圆心角为πα35=。
而απ2T t m = 由Rv mqvB 2=,得qB mv R =,qBmT π2= qBmt m 35π=【练习1】如图所示,宽度为d 的有界匀强磁场,磁感应强度为B ,MM ′和NN ′是它的两条边界线,现有质量m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入,要使粒子不能从边界NN ′射出,粒子最大的入射速度v 可能是( )A .小于mqBdB .小于()mqBd22+C .小于mqBd2 D .小于()mqBd22—解析:BD二、“角形磁场区”情景下的临界问题【例2】如图所示,在坐标系xOy 平面内,在x =0和x =L 范围内分布着匀强磁场和匀强电场,磁场的下边界AB 与y 轴成45°,其磁感应强度为B ,电场的上边界为x 轴,其电场强度为E .现有一束包含着各种速率的同种粒子由A 点垂直y 轴射入磁场,带电粒子的比荷为q /m .一部分粒子通过磁场偏转后由边界AB 射出进入电场区域.不计粒子重力,求: (1)能够由AB 边界射出的粒子的最大速率;(2)粒子在电场中运动一段时间后由y 轴射出电场,射出点与原点的最大距离. 解: (1)由于AB 与初速度成45°,所以粒子由AB 线射出磁场时速度方向与初速度成45°角.粒子在磁场中做匀速圆周运动,速率越大,圆周半径越大.速度最大的粒子刚好由B 点射出. 由牛顿第二定律Rv mB qv 2=由几何关系可知 r =L ,得 mqBLv =(2)粒子从B 点垂直电场射入后,在竖直方向做匀速运动,在水平方向做匀加速运动. 在电场中,由牛顿第二定律Eq =ma 此粒子在电场中运动时221at L =d =vt ,得mEqLBL d 2=【例3】如图所示,M 、N 为两块带异种电荷正对的金属板,其中M 板的表面为圆弧面,P 为M 板中点;N 板的表面为平面,Q 为N 板中点的一个小孔.PQ 的连线通过圆弧的圆心且与N 板垂直.PQ 间距为d ,两板间电压数值可由从0到某最大值之间变化,图中只画了三条代表性电场线.带电量为+q ,质量为m 的粒子,从点P 由静止经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直纸面向外,CD 为磁场边界线,它与N 板的夹角为α=45°,孔Q 到板的下端C 的距离为L .当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上. 不计粒子重力,求:(1)两板间电压的最大值Um ;(2)CD 板上可能被粒子打中的区域长度x ; (3)粒子在磁场中运动的最长时间tm .解: (1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,如图所示. C H =QC =L ,故半径R 1=L又1211R v m B qv = 2121mv qU m =得mL qB U m 222=(2)设轨迹与CD 板相切于K 点,半径为R 2在△AKC 中:2245sin R L R -=︒,得()L R 122-=因KC 长等于()L R 122-=,所以,CD 板上可能被粒子打中的区域长度x 为HK :()L R R x 2221-=-=(3)打在QE 段之间的粒子在磁场中运动时间最长,均为半周期:qBm T t m π==21三、“圆形磁场区”情景下的临界问题 【例4】(2012,揭阳调考)如图,相距为R 的两块平行金属板M 、N 正对放置,s 1、s 2分别为M 、N 板上的小孔,s 1、s 2、O 三点共线且水平,且s 2O =R 。
巧解三角形磁场的临界问题在研究带电粒子在有边界磁场中运动的临界条件时,一般为与该边界相切作为恰好不从该边界射出的条件,而在三角形磁场区域,由于其边长有限,相切点的确定就不容易了。
是与某条边上中间的某点相切,是恰好与该边的端点相切,还是与该边不存在相切点?学生在分析三角形磁场区域的临界问题时普遍存在疑惑。
要解决这一疑点我们可以换个思路来看。
带电粒子恰好在边界端点处相切的条件是什么?以底角为60︒的直角三角形磁场区域为例,从A点沿不同角度垂直射入磁场,在不限定速度大小的前提下,若粒子恰好从B点且与BC 边相切射出,我们来分析此时需要满足的条件。
利用在B点相切、AB 为圆周运动轨迹的一条弦,可以画出轨迹及圆心、半径。
由数学关系可得在A处射出的粒子与AB边的夹角为60︒。
同理若底角为30︒,要在B点相切射出,则在A点射入磁场时速度方向与AB边的夹角为30︒。
当然这不是巧合,在B点与BC边相切,就意味着确定了B点速度方向,A 、B 分别为在边界的入射点和出射点,由单边界磁场的规律入射、射出时速度方向与边界夹角一定相等。
规律总结:三角形区域存在与平面垂直的匀强磁场,从A 点垂直磁场方向射入磁场。
结论一、在三角形磁场区域中,若带电粒子从边界BC 端点B 相切射出,则带电粒子与入射方向边界AB 的夹角等于B ∠,且运动半径满足02sin AB r B=∠。
反之,若入射方向与AB 的夹角等于B ∠,则带电粒子可能在B 点相切射出(需满足半径关系)。
结论二、若0r r >,则在边界BC 不存在相切点,但仍可以有粒子从端点B 射出,入射、出射方向与边界AB 的夹角相同,但在端点处一定不会相切射出,且此时入射方向与边界AB 的夹角减小。
结论三、若0r r <,则可能会在边界BC 中的某点相切。
例题1.如图,直角三角形OAC 区域内有垂直于纸面向外、磁感应强度大小未知的匀强磁场,∠A=30°、OC 边长为L,在C 点有放射源S,可以向磁场内各个方向发射速率为0V 的同种带正电的粒子,粒子的比荷为K.S 发射的粒子有可以穿过OA 边界,OA 含在边界以内,不计重力、及粒子之间的相互影响。
带电粒子在有界磁场中的临界问题示例文章篇一:哎呀,我的天呐!“带电粒子在有界磁场中的临界问题”,这听起来可真让人头疼!老师在课堂上讲的时候,我一开始简直是一头雾水。
就像我在玩拼图,怎么都找不到关键的那几块一样,我怎么也搞不懂这带电粒子在磁场里到底是咋回事。
我就问我同桌:“嘿,你能明白这带电粒子在有界磁场里的临界问题不?”我同桌皱着眉头说:“我也是糊里糊涂的,感觉就像走进了一个迷宫,找不到出口。
”老师在黑板上画来画去,又是电场线,又是磁场线的,可我看着那些线条,就好像看到了一堆乱麻,怎么也理不清楚。
我心里直嘀咕:“这带电粒子难道是有魔法吗?怎么这么难搞懂!”后来老师又举了个例子,说带电粒子就像在操场上乱跑的小朋友,而磁场就像是操场周围的围墙。
我就在想,那这围墙得什么样,小朋友才能刚好在里面或者刚好跑出去呢?下课后,我去找学习好的班长请教。
我着急地问:“班长,这带电粒子在有界磁场中的临界问题,到底咋解决呀?”班长耐心地说:“别着急,你先想想,如果这个小朋友跑得特别快,是不是就容易冲出去?如果跑得慢,是不是就一直在里面?带电粒子也一样呀。
”我好像有点明白了,又好像还是有点迷糊。
回到家,我又翻开书,看了一遍又一遍,做了几道练习题,可还是会出错。
我就纳闷了,这带电粒子在有界磁场中的临界问题怎么就这么难呢?难道我真的就学不会了?不,我才不信呢!我一定要把它搞明白!经过我不断地努力,不断地思考,不断地请教老师和同学,我终于对这个问题有了一些头绪。
我发现只要抓住关键的几个点,比如粒子的速度、磁场的强度,还有粒子进入磁场的角度,就能慢慢找到解决问题的方法。
我想说,虽然这个问题曾经让我头疼不已,但是只要不放弃,努力去钻研,就一定能攻克它!学习就是这样,会遇到各种各样的难题,可只要我们坚持,就没有什么能难倒我们!示例文章篇二:哎呀,我是个小学生,这“带电粒子在有界磁场中的临界问题”听起来可真让人头疼啊!但老师既然讲了,我就努力去搞明白。