(完整版)奥数等差数列教案
- 格式:doc
- 大小:28.01 KB
- 文档页数:5
三(下)奥数第11讲~等差数列初步
机智小抢答
(1) 7、10、13、16、19、22
首项( )、 末项 ( ) 、项数( ) 、公差( )
(2) 49、45、41、37、33、
首项( )、 末项 ( ) 、项数( ) 、公差( )
(3) 8、15、22、29、36、43、50、57、64
① 第1项和第9项之间有几个公差?
② 第1项和第4项之间有几个公差?
③ 第2项和第5项之间有几个公差?
④ 第3项和第7项之间有几个公差?
⑤ 第3项和第9项之间有几个公差?
⑥ 第8项和第几项之间有9个公差?
小练习
8、15、22、29、36、43、50、57、64
① 第1项和第10项之间有几个公差?
② 第1项和第100项之间有几个公差?
③ 第10项和第25项之间有几个公差?
④ 第9项和第50项之间有几个公差?
⑤ 第80项和第70项之间有几个公差?
⑥ 第1项和第几项之间有10个公差?
板书:
第二部分:“外星人”解等差数列问题
【解析】:我们知道外星人和我们一样也有两个眼睛,一个鼻子,那在我们用“外星人”的方法求解一、等差数列
首项:第1个
末项:最后1个
公差:相等的差 二、公差个数=编号相减数
三、外星人图。
小学奥数等差数列教案教案标题:小学奥数等差数列教案教案目标:1. 学生能够理解等差数列的概念和特点。
2. 学生能够找出等差数列中的公差和首项。
3. 学生能够根据已知条件计算等差数列中的任意项。
4. 学生能够应用等差数列解决实际问题。
教学准备:1. 教师准备一些小学生熟悉的数列题目,以及相关的教具如计算器、白板、彩色粉笔等。
2. 准备一些实际生活中的例子,以便学生更好地理解等差数列的应用。
教学过程:引入:1. 教师通过举例子引入等差数列的概念,如:1, 3, 5, 7, 9是一个等差数列,因为相邻的两项之间的差值都是2。
2. 教师引导学生观察数列的规律,让学生发现等差数列中的每一项都与前一项之间有相同的差值。
探究:1. 教师提供一些数列,让学生判断是否为等差数列,并找出其中的公差和首项。
2. 教师引导学生通过观察数列中的规律,找出计算公差和首项的方法。
练习:1. 教师提供一些练习题,让学生计算等差数列中的任意项。
2. 学生个别练习,教师巡回指导。
应用:1. 教师提供一些实际问题,让学生应用等差数列解决问题,如:小明每天增加2元的零花钱,他存了10天后一共有多少钱?2. 学生个别或小组完成应用题,教师巡回指导。
总结:1. 教师引导学生总结等差数列的概念和特点,以及计算公差和首项的方法。
2. 教师强调等差数列在实际生活中的应用,鼓励学生在日常生活中发现更多的等差数列。
拓展:1. 教师提供一些更复杂的等差数列问题,让学生挑战自己的思维能力。
2. 学生个别或小组完成拓展题,教师巡回指导。
评估:1. 教师布置一些练习题和应用题,以检查学生对等差数列的理解和应用能力。
2. 教师对学生的参与度、思考能力和解题方法进行评估。
教案扩展:1. 教师可以引入等差数列的求和公式,让学生进一步探究等差数列的性质。
2. 教师可以提供更多的实际问题,让学生应用等差数列解决更复杂的问题。
数学等差数列教案优秀8篇一、预习问题:1、等差数列的定义:一般地,如果一个数列从起,每一项与它的前一项的差等于同一个,那么这个数列就叫等差数列,这个常数叫做等差数列的,通常用字母表示。
2、等差中项:若三个数组成等差数列,那么A叫做与的即或。
3、等差数列的单调性:等差数列的公差时,数列为递增数列;时,数列为递减数列;时,数列为常数列;等差数列不可能是。
4、等差数列的通项公式:。
5、判断正误:①1,2,3,4,5是等差数列;()②1,1,2,3,4,5是等差数列;()③数列6,4,2,0是公差为2的等差数列;()④数列是公差为的等差数列;()⑤数列是等差数列;()⑥若,则成等差数列;()⑦若,则数列成等差数列;()⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列;()⑨等差数列的公差是该数列中任何相邻两项的差。
()6、思考:如何证明一个数列是等差数列。
二、实战操作:例1、(1)求等差数列8,5,2,的第20项。
(2)是不是等差数列中的项?如果是,是第几项?(3)已知数列的公差则例2、已知数列的通项公式为,其中为常数,那么这个数列一定是等差数列吗?例3、已知5个数成等差数列,它们的和为5,平方和为求这5个数。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法,通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
教学过程:一、片头(30秒以内)前面学习了数列的概念与简单表示法,今天我们来学习一种特殊的数列-等差数列。
本节微课重点讲解等差数列的定义,并且能初步判断一个数列是否是等差数列。
30秒以内二、正文讲解(8分钟左右)第一部分内容:由三个问题,通过判断分析总结出等差数列的定义 60 秒第二部分内容:给出等差数列的定义及其数学表达式50 秒第三部分内容:哪些数列是等差数列?并且求出首项与公差。
一、教学目标1. 知识与技能:(1)理解等差数列的概念及其特点;(2)掌握等差数列的通项公式、求和公式;(3)能够运用等差数列解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳等差数列的性质;(2)培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:(2)引导学生运用数学知识解决实际问题,感受数学的应用价值。
二、教学重点与难点1. 教学重点:(1)等差数列的概念及其特点;(2)等差数列的通项公式、求和公式。
2. 教学难点:(1)等差数列的通项公式的推导;(2)等差数列求和公式的应用。
三、教学过程1. 导入新课:(1)回顾等差数列的定义;(2)引导学生思考等差数列的特点。
2. 知识讲解:(1)讲解等差数列的通项公式;(2)讲解等差数列的求和公式。
3. 例题解析:(1)分析等差数列的例题,引导学生运用通项公式和求和公式;(2)讲解解题思路和方法。
4. 课堂练习:(1)布置练习题,让学生巩固所学知识;(2)引导学生互相讨论,共同解决问题。
四、课后作业1. 巩固等差数列的概念和性质;2. 练习运用通项公式和求和公式解决实际问题。
五、教学反思1. 总结本节课的收获:(1)学生掌握了等差数列的概念和性质;(2)学生能够运用通项公式和求和公式解决实际问题。
2. 反思教学过程:(1)是否充分讲解等差数列的性质和公式;(2)是否注重学生的参与和思考;(3)是否及时给予学生反馈和指导。
3. 改进措施:(1)针对学生的薄弱环节,加强讲解和练习;(2)鼓励学生积极参与,提高课堂氛围;(3)关注学生的学习进度,及时调整教学节奏。
六、教学评价1. 评价内容:(1)等差数列的概念及其特点;(2)等差数列的通项公式、求和公式;(3)运用等差数列解决实际问题的能力。
2. 评价方式:(1)课堂问答;(2)练习题;(3)课后作业;(4)小组讨论。
七、教学资源1. 教学课件:(1)展示等差数列的定义、性质;(2)呈现通项公式、求和公式的推导过程;(3)提供丰富的例题和练习题。
《等差数列》教案一、教学目标:1. 让学生理解等差数列的概念,掌握等差数列的定义及其性质。
2. 能够运用等差数列的通项公式和求和公式解决实际问题。
3. 培养学生的逻辑思维能力和运算能力。
二、教学内容:1. 等差数列的定义:介绍等差数列的定义,通过实例让学生理解等差数列的特点。
2. 等差数列的性质:探讨等差数列的性质,如相邻两项的差是常数,任意一项都可以用首项和公差表示等。
3. 等差数列的通项公式:引导学生推导等差数列的通项公式,并解释其意义。
4. 等差数列的前n项和公式:引导学生推导等差数列的前n项和公式,并解释其意义。
5. 等差数列的应用:通过实例让学生运用等差数列的知识解决实际问题,如计算等差数列的前n项和,求等差数列的某一项等。
三、教学重点与难点:1. 教学重点:等差数列的概念、性质、通项公式和前n项和公式的理解与运用。
2. 教学难点:等差数列通项公式和前n项和公式的推导过程。
四、教学方法:1. 采用问题驱动法,通过提问引导学生思考和探索等差数列的知识。
2. 使用多媒体辅助教学,展示等差数列的图形和实例,增强学生的直观理解。
3. 利用小组讨论法,让学生分组讨论等差数列的性质和公式,促进学生的合作学习。
五、教学准备:1. 准备PPT课件,包括等差数列的定义、性质、通项公式和前n项和公式的讲解。
2. 准备一些等差数列的实际问题,用于课堂练习和巩固知识。
3. 准备答案和解析,用于课堂讲解和解答学生的疑问。
六、教学过程:1. 导入:通过一个简单的等差数列实例,如自然数的序列,引导学生思考等差数列的特点。
2. 新课讲解:讲解等差数列的定义、性质、通项公式和前n项和公式,结合PPT 课件和实例进行解释。
3. 课堂练习:给出一些等差数列的实际问题,让学生运用所学知识进行计算和解答,教师进行指导和解析。
4. 小组讨论:让学生分组讨论等差数列的性质和公式,分享彼此的想法和理解,教师进行指导和点评。
5. 总结与复习:对本节课的主要内容和知识点进行总结回顾,强调重点和难点,解答学生的疑问。
等差数列的教学设计(合集5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!等差数列的教学设计(合集5篇)等差数列的教学设计(1)一、知识与技能1.了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;2.正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.二、过程与方法1.通过对等差数列通项公式的推导培养学生:的观察力及归纳推理能力;2.通过等差数列变形公式的教学培养学生:思维的深刻性和灵活性.三、情感态度与价值观通过等差数列概念的归纳概括,培养学生:的观察、分析资料的能力,积极思维,追求新知的创新意识.教学过程导入新课师:上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本P41页的4个例子)(1)0,5.10,15.20,25.…;(2)48,53.58,63.…;(3)18,15.5.13.10.5.8,5.5…;(4)10 072.10 144.10 216,10 288,10 366,….请你们来写出上述四个数列的第7项.生:第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3.第四个数列的第7项为10 510.师:我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说.生:这是由第二个数列的后一项总比前一项多 5.依据这个规律性我得到了这个数列的第7项为78.师:说得很有道理!我再请同学们仔细观察一下,看看以上四个数列有什么共同特征?我说的是共同特征.生:1每相邻两项的差相等,都等于同一个常数.师:作差是否有顺序,谁与谁相减?生:1作差的顺序是后项减前项,不能颠倒.师:以上四个数列的共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列起一个名字叫——等差数列.这就是我们这节课要研究的内容.推进新课等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)(1)公差d一定是由后项减前项所得,而不能用前项减后项来求;(2)对于数列{an},若an-a n-1=d(与n无关的数或字母),n ≥2.n∈NX,则此数列是等差数列,d叫做公差.师:定义中的关键字是什么?(学生:在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确地、深入的理解和掌握概念的重要条件,更是学好数学及其他学科的重要一环.因此教师:应该教会学生:如何深入理解一个概念,以培养学生:分析问题、认识问题的能力)生:从“第二项起”和“同一个常数”.师::很好!师:请同学们思考:数列(1)(2)(3)(4)的通项公式存在吗?如果存在,分别是什么?生:数列(1)通项公式为5n-5.数列(2)通项公式为5n+43.数列(3)通项公式为2.5n-15.5.….师:好,这位同学用上节课学到的知识求出了这几个数列的通项公式,实质上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性,下面我们来共同思考.[合作探究]等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得到的,若一个等差数列{an}的首项是a1.公差是d,则据其定义可得什么?生:a2-a1=d,即a2=a1+d.师:对,继续说下去!生:a3-a2=d,即a3=a2+d=a1+2d;a4-a3=d,即a4=a3+d=a1+3d;师:好!规律性·的东西让你找出来了,你能由此归纳出等差数列的通项公式吗?生:由上述各式可以归纳出等差数列的通项公式是an=a1+(n-(1)d.师:很好!这样说来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项an了.需要说明的是:此公式只是等差数列通项公式的猜想,你能证明它吗?生:前面已学过一种方法叫迭加法,我认为可以用.证明过程是这样的:因为a2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.将它们相加便可以得到:an=a1+(n-(1)d.师:太好了!真是活学活用啊!这样一来我们通过证明就可以放心使用这个通项公式了.[教师:精讲]由上述关系还可得:am=a1+(m-(1)d,即a1=am-(m-(1)d.则an=a1+(n-(1)d=am-(m-(1)d+(n-(1)d=am+(n-m)d,即等差数列的第二通项公式an=am+(n-m)d.(这是变通的通项公式) 由此我们还可以得到.[例题剖析]【例1】(1)求等差数列8,5.2,…的第20项;(2)-401是不是等差数列-5.-9,-13…的项?如果是,是第几项?师:这个等差数列的首项和公差分别是什么?你能求出它的第20项吗?生:1这题太简单了!首项和公差分别是a1=8,d=5-8=2-5=-3.又因为n=20,所以由等差数列的通项公式,得a20=8+(20-(1)X(-(3)=-49.师:好!下面我们来看看第(2)小题怎么做.生:2由a1=-5,d=-9-(-(5)=-4得数列通项公式为an=-5-4(n-(1)由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-(1)成立,解之,得n=100,即-401是这个数列的第100项.师:刚才两个同学将问题解决得很好,我们做本例的目的是为了熟悉公式,实质上通项公式就是an,a1,d,n组成的方程(独立的量有三个)说明:(1)强调当数列{an}的项数n已知时,下标应是确切的数字;(2)实际上是求一个方程的正整数解的问题.这类问题学生:以前见得较少,可向学生:着重点出本问题的实质:要判断-401是不是数列的项,关键是求出数列的通项公式an,判断是否存在正整数n,使得an=-401成立.【例2】已知数列{an}的通项公式an=pn+q,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?例题分析:师:由等差数列的定义,要判定{an}是不是等差数列,只要根据什么?生:只要看差an-an-1(n≥(2)是不是一个与n无关的常数.师:说得对,请你来求解.生:当n≥2时,〔取数列{an}中的任意相邻两项an-1与an(n ≥(2)〕an-an-1=(pn+(1)-[p(n-(1)+q]=pn+q-(pn-p+q)=p为常数,所以我们说{an}是等差数列,首项a1=p+q,公差为p.师:这里要重点说明的是:(1)若p=0,则{an}是公差为0的等差数列,即为常数列q,q,q,….(2)若p≠0,则an是关于n的一次式,从图象上看,表示数列的各点(n,an)均在一次函数y=pX+q的图象上,一次项的系数是公差p,直线在y轴上的截距为q.(3)数列{an}为等差数列的充要条件是其通项an=pn+q(p、q是常数),称其为第3通项公式.课堂练习(1)求等差数列3.7,11.…的第4项与第10项.分析:根据所给数列的前3项求得首项和公差,写出该数列的通项公式,从而求出所┣笙.解:根据题意可知a1=3.d=7-3=4.∴该数列的通项公式为an=3+(n-(1)X4.即an=4n-1(n≥1.n∈NX)∴a4=4X4-1=15.a 10=4X10-1=39.评述:关键是求出通项公式.(2)求等差数列10,8,6,…的第20项.解:根据题意可知a1=10,d=8-10=-2.所以该数列的通项公式为an=10+(n-(1)X(-(2)即an=-2n+12.所以a20=-2X20+12=-28.评述:要求学生:注意解题步骤的规范性与准确性.(3)100是不是等差数列2.9,16,…的项?如果是,是第几项?如果不是,请说明理由.分析:要想判断一个数是否为某一个数列的其中一项,其关键是要看是否存在一个正整数n值,使得an等于这个数.解:根据题意可得a1=2.d=9-2=7.因而此数列通项公式为an=2+(n-(1)X7=7n-5.令7n-5=100,解得n=15.所以100是这个数列的第15项.(4)-20是不是等差数列0,-7,…的项?如果是,是第几项?如果不是,请说明理由.解:由题意可知a1=0,因而此数列的通项公式为.令,解得.因为没有正整数解,所以-20不是这个数列的项.课堂小结师:(1)本节课你们学了什么?(2)要注意什么?(3)在生:活中能否运用?(让学生:反思、归纳、总结,这样来培养学生:的概括能力、表达能力)生:通过本课时的学习,首先要理解和掌握等差数列的定义及数学表达式a n-a n-1=d(n≥(2);其次要会推导等差数列的通项公式an=a1+(n-(1)d(n≥(1)等差数列的教学设计(2)【教学目标】一、知识与技能1.掌握等差数列前n项和公式;2.体会等差数列前n项和公式的推导过程;3.会简单运用等差数列前n项和公式。
小学奥数等差数列教案【篇一:小学奥数《等差数列》及其练习[1]】等差数列练习知识点1、数列定义:若干个数排成一列,像这样一串数,称为数列。
数列中的每一个数称为一项,其中第一个数称为首项(我们将用 a1 来表示),第二个数叫做第二项以此类推,最后一个数叫做这个数列的末项(我们将用 an 来表示),数列中数的个数称为项数,我们将用n 来表示。
如:2,4,6,8,,1002、等差数列:从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列。
我们将这个差称为公差(我们用 d 来表示),即:d=a2-a1=a3-a2= =an-2-an-1=an-an-1例如:等差数列:3、6、9……96,这是一个首项为3,末项为96,项数为32,公差为3的数列。
(省略号表示什么?)练习1:试举出一个等差数列,并指出首项、末项、项数和公差。
3、计算等差数列的相关公式:即:an=a1+(n-1)?d在等差数列中,如果已知首项、末项、公差。
求总和时,应先求出项数,然后再利用等差数列求和公式求和。
例1:求等差数列3,5,7,的第 10 项,第 100 项,并求出前100 项的和。
【解析】我们观察这个等差数列,可以知道首项 a1=3,公差d=2,直接代入通项公式,即可求得解:由已知首项 a1=3,公差d=2,所以由通项公式an=a1+(n-1)?d,得到a10=a1+(10-1)?d=3+9?2=21a100=a1+(100-1)?d=3+99?2=201。
同理,由已知,a1=3,a100=201,项数n=100练习2:1、求出你已经写出的等差数列的各项和。
2、有一个数列,4、10、16、22……52,这个数列有多少项?3、一个等差数列,首项是3,公差是2,项数是10。
它的末项是多少?4、求等差数列1、4、7、10……,这个等差数列的第30项是多少?例2:在1、2两数之间插入一个数,使其成为一个等差数列。
那么第三项 a3=a1+2d,即:2=1+2d,所以d=0.5 故等差数列是,1、2、2。
一、教学目标1. 知识与技能:使学生理解等差数列的概念,掌握等差数列的通项公式和前n 项和公式,能够运用等差数列的性质解决实际问题。
2. 过程与方法:通过探究等差数列的性质,培养学生抽象概括能力、逻辑思维能力和创新能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神,使学生感受到数学在生活中的广泛应用。
二、教学重点与难点1. 教学重点:等差数列的概念、通项公式、前n项和公式及性质。
2. 教学难点:等差数列通项公式的推导和前n项和公式的应用。
三、教学准备1. 教师准备:教材、教案、PPT、例题及练习题。
2. 学生准备:预习等差数列相关知识,准备好笔记本和文具。
四、教学过程1. 导入新课:通过生活中的实例引入等差数列的概念,激发学生的学习兴趣。
2. 知识讲解:讲解等差数列的定义、性质、通项公式和前n项和公式,引导学生理解并掌握相关概念。
3. 例题解析:分析并解答典型例题,让学生体会等差数列在实际问题中的应用。
4. 课堂练习:布置练习题,让学生巩固所学知识,教师及时解答疑问。
5. 总结提高:对本节课的内容进行总结,强调等差数列的重要性质和应用。
五、课后作业1. 完成课后练习题,巩固等差数列的相关知识。
2. 查找生活中运用等差数列的实例,下节课分享。
3. 预习下一节课内容,做好学习准备。
六、教学评估1. 课堂讲解:关注学生的听课情况,观察学生对等差数列概念和公式的理解程度。
2. 练习题解答:检查学生对练习题的完成情况,了解学生对知识的掌握情况。
3. 课后作业:审阅课后作业,评估学生对课堂所学知识的消化吸收程度。
七、教学拓展1. 等差数列在实际生活中的应用:举例说明等差数列在金融、统计等方面的应用,拓宽学生的知识视野。
2. 等差数列与其他数列的关系:介绍等差数列与等比数列等其他数列的联系和区别,提高学生的数学素养。
八、教学反思1. 课堂讲解:反思教学过程中是否存在讲解不清楚、学生理解困难的问题,针对性地调整教学方法。
《等差数列》教学方案一、教学目标知识与理解:使学生理解等差数列的概念、通项公式和前n项和公式的含义及推导过程,并能准确识别等差数列。
技能与方法:培养学生观察、分析、归纳的能力,以及运用等差数列公式解决实际问题的能力。
情感、态度与价值观:通过互动环节和例题讲解,激发学生对等差数列的兴趣,培养学生的探索精神和合作精神。
二、教学准备准备黑板或多媒体展示设备,用于展示公式、例题和解题步骤。
准备学生互动所需的道具,如卡片、答题板等。
收集或设计一些与等差数列相关的实际问题,用于课堂讨论和练习。
三、教学过程1. 导入新课以一个有趣的故事或生活中的实例引入等差数列的概念,如“国王与棋盘”的故事,激发学生的好奇心。
提问学生:你们在生活中遇到过哪些等差数列的例子?引导学生思考并分享。
2. 公式展示与解释展示等差数列的通项公式:an = a1 + (n - 1)d,解释公式中各个字母的含义,并举例说明如何应用该公式。
展示等差数列的前n项和公式:Sn = n/2 ×[2a1 + (n - 1)d],同样解释公式含义,并举例说明。
通过图形或动画展示等差数列的形成过程,帮助学生直观理解等差数列的特点。
3. 学生互动环节一:找规律填数准备一系列等差数列的卡片,每张卡片上缺少一个或几个数字。
将学生分成若干小组,每组分发一套卡片。
学生需通过观察和推理,找出等差数列的规律,并填上缺失的数字。
每组完成后,展示答案,并解释找规律的过程。
4. 例题讲解选择几个典型的等差数列例题进行讲解,包括求通项、求和以及实际应用问题。
关于等差数列的具体例题和知识点,以下是一些详细的例子和解释:一、知识点等差数列的定义:等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
这个常数叫做等差数列的公差,通常用字母d表示。
通项公式:an = a1 + (n - 1)d,其中an表示第n项,a1表示首项,d表示公差,n表示项数。
这个公式用于计算等差数列中任意一项的值。
等差数列的主要内容
1等差数列的基本知识
2等差数列的项
3等差数列的和
一等差数列的基本知道
(一)数列的基本知识
(1)1,2,3,4,5,6,....
(2)2,4,6.8.10,12......
(3)5,10,15,20,25,30
像这样按一定的顺序排列的一列数叫做数列。
其中每一个数叫做这个数列的项,在第1个位置上的数叫做这个数列的第1项(首项),在最后1个位置上的数叫做这个数列的末项,在第几个位置上的数叫做这个数列的第几项。
(二)等差数列的基本知识
(1)1,,2,3,,4,5,6........
1 1 1 1 1 每项与前一项都差1
(2)2,,4,6,,8,10,21..........
2 2 2 2 2 每项与前一项都差2
(3)5,10,15,20,25,30
5 5 5 5 5 每项与前一项都差5
从第2项起,每一项与前一项的差都相等,像这样的数列叫做等差数列,这个差叫做等差数列的公差。
数列:1.3.5.7.9.11..........
第2项3=1+2 首项+公差*1
第3项5=1+2*2 首项+公差*2
第4项7=1+2*3 首项+公差*3
第5项9=1+2*4 首项+公差*(5-1)
第6项11=1+2*5 首项+公差*(6-1)
等差数列的莫一项=首项+公差*(项数-1)
首先要判定是否是等差数列才能使用这个公式
例1 已知数列2,5,,8,11,14.......求(1)它的第10项是多少?(2)它的第98项是多少?(3)197是这个数列中的第几项?(4)这个数列各项被几除有相同的余数?
分析首项=2 公差=3
解:(1)第10项:2+3*(10-1)=29
(2)第98项:2+3*(98-1)=293
(3)2+3*(a-1)=197
3*(a-1)=197-2
a-1=(197-2)/3
A=(197-2)/3=66
等差数列的项数=(末项-首项)*公差+1
(4)分析:被除数=余数+除数*商
等差数列的某一项=2+3*(项数-1)
这个熟练的每1项除以3都余2
等差数列的每1项除以它的公差,余数相同。
答。
三等差数列的和
例2 6+10+14+18+22+26+30+34+38
分析一:首项=6 末项=38 公差=4
原数列的和:6+10+14+18+22+26+30+34+38
倒过来的和:38+34+30+26+22+18+14+10+6
44---------------------------------44
两数列之和=(6+38)*9
解一:原数列之和=(6+38)*9/2
=44*9/2
=98
等差数列的和=(首项+末项)*项数/2
分析二:当等差数列的项数为奇数时,它的正中项与其他项有什么关系
6 10 14
6 10 14 18 22
6 10 14 18 22 26 30
正中项=各项的平均数
解二:原数列之和=22*9=198
等差数列的和=正中项*项数(奇数)
例3 已知三个连续奇数的和是243,求这三个数
分析:正中项=各项的平均数
解:正中数:243/3=81
最小数:81-2=79
最大数:81+2=83
答。
例4 右边的图形中最小的三角形有多少个(1,3,5,7。
)
分析:1 3 5 7 9 11 13 15
首项=1 末项=15 公差=2
解一:1+3+5+7+9+11+13+15
=(1+15)*8/2
=64个答。
分析二:1=1*1
1+3=2*2
1+3+5=3*3
1+3+5+7= 4*4
1+3+5+7+9=5*5
.............
解二:1+3+5+7+9+11+13+15
=8*8=64个答。
例5 计算1+6+11+16+21+26........+276
分析首项=1 末项=276 公差=5
等差数列的和=(首项+末项)*项数/2
?
解:等差数列的项数:(276-1)/5+1=56项
原数列之和=(1+276)*56/2
=7756
例6 在1到200的整数中,被7除余2的数有多少个?它们的和是多少?分析:等差数列的每1项除以它的公差,余数相同。
首项=2 公差=7
等差数列的某一项=首项+公差*(项数-1)
解:因为:200/7=28 (4)
所以:1到200除以7余2最大的数是:2
200-2=198=2+7*28
共有28+1=29个
他们的和是:(2+198)*29/2=2900 答。
等差数列知识小结
1怎样判断一个数列是等差数列
2怎样求出等差数列的任意一项或项数
3怎样求出等差数列前几项的和
4必须牢记等差数列的基本公式额重要结论
课上例题:
1 已知数列2,5,,8,11,14.......求(1)它的第10项是多少?(2)它的第98项是多少?(3)197是这个数列中的第几项?(4)这个数列各项被几除有相同的余数?
2 6+10+14+18+22+26+30+34+38求和
3 已知三个连续奇数的和是243,求这三个数
4 图形中最小的三角形有多少个
5 计算1+6+11+16+21+26........+276
6 在1到200的整数中,被7除余2的数有多少个?它们的和是多少
课后练习
1.一串数:5,8,11,14,17,。
197.(1)它的第21项是多少?(2)这串数有多少?
2有一串数组成等差数列,第一项是4,第51项是154.(1)它的公差是多少?(2)它的第90项是多少?
3一列数:7,12,17,22。
,(1)它的第60项是多少?(2)92是这个数的第几项?(3)这个数列各项被几除有相同的余数?。