重庆市大足城南中学校2015届高三上学期第二次月考数学(理)试卷word版无答案(精品高考模拟试卷)
- 格式:doc
- 大小:271.50 KB
- 文档页数:4
重庆市数学高三上学期理数第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018高一上·新泰月考) 设 ,且 ,则等于()A .B .C .D .2. (2分)已知命题p:,则是()A .B .C .D .3. (2分) (2016高一下·宜春期中) 若角α的终边过点(2sin30°,2cos30°),则sinα的值等于()A .B . ﹣C .D .4. (2分) (2019高三上·亳州月考) 已知扇形圆心角为,面积为,则扇形的弧长等于()A .B .C .D .5. (2分) (2018高一上·哈尔滨月考) 方程的解所在区间是()A .B .C .D .6. (2分)(2018·武邑模拟) 已知向量 ,若,则等于()A .B .C .D .7. (2分)(2018·吉林模拟) 已知 ,则的值为()A .B .C .D .8. (2分)等于()A .B .C .D .9. (2分)(2019·新疆模拟) 已知点,为坐标原点,点是圆:上一点,且,则()A .B .C .D .10. (2分) (2018高二上·湖南月考) △ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A .B .C .D .11. (2分)如图,在高速公路建设中需要确定隧道的长度,工程技术人员已测得隧道两端的两点A、B到点C的距离AC=BC=1km,且∠ACB=120°,则A、B两点间的距离为()A . kmB . kmC . 1.5kmD . 2km12. (2分) (2018高一上·惠安月考) 函数的零点所在的一个区间是()A . (-1,0)B . (-2,-1)C . (0,1)D . (1,2)二、填空题 (共4题;共4分)13. (1分) (2016高一上·东海期中) lg22+lg2•lg5+lg50=________.14. (1分)(2019·中山模拟) 已知向量夹角为,且,则________.15. (1分) (2019高三上·亳州月考) 定义运算,若,,,则 ________.16. (1分) (2018高一上·南京期中) 若关于x的方程在区间(1,4)内有解,则实数a的取值范围是________.三、解答题 (共6题;共65分)17. (10分) (2018高一上·武邑月考) 已知(1)化简(2)若是第二象限角,且 ,求的值.18. (10分) (2018高三上·黑龙江期中) 设函数(1)当时,求函数的极值.(2)若函数在区间上有唯一的零点,求实数的取值范围.19. (10分)(2019·黄山模拟) 在△ABC中,AB=2,且sinA(1-2cosB)+sinB(1-2cosA)=0.以AB所在直线为x轴,AB中点为坐标原点建立平面直角坐标系.(I)求动点C的轨迹E的方程;(II)已知定点P(4,0),不垂直于AB的动直线l与轨迹E相交于M、N两点,若直线MP、NP关于直线AB 对称,求△PMN面积的取值范围。
重庆市南开中学201 5届高三上学期12月月考数学试卷(理科)一.选择题:本大题共l0小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.关于x的不等式ax+b>0的解集不可能是( )A.R B.φC.D.考点:集合的表示法.专题:不等式的解法及应用.分析:分a等于0,小于0,大于0三种情况考虑,分别求出不等式的解集,即可做出判断.解答:解:当a=0时,b≤0,不等式无解;b>0,不等式解集为R;当a>0时,解得:x>,此时不等式的解集为;当a<0时,解得:x<,此时不等式的解集为,故选:D.点评:本题考查了含参数不等式的解法,利用了分类讨论的思想,分类讨论时考虑问题要全面,做到注意不重不漏.2.抛物线y2=4x的焦点到准线的距离为( )A.1 B.2 C.4 D.8考点:抛物线的简单性质.专题:阅读型.分析:根据抛物线的方程求得抛物线的焦点坐标和准线的方程,进而利用点到直线的距离求得焦点到准线的距离.解答:解:根据题意可知焦点F(1,0),准线方程x=﹣1,∴焦点到准线的距离是1+1=2故选B.点评:本题主要考查了抛物线的简单性质.考查了学生对抛物线标准方程的理解和运用.属基础题.3.已知,,则cosa=( )A.B.C.D.考点:二倍角的余弦.专题:计算题;三角函数的求值.分析:原式两边平方可解得sina=﹣,由,即可计算cosa的值.解答:解:∵,∴两边平方可得:1+sina=,即sina=﹣∵,∴cosa=﹣=﹣故选:A.点评:本题主要考察了二倍角的余弦公式的应用,属于基本知识的考查.4.等比数列{a n}的前n项和为S n,且4a1,2a2,a3成等差数列.若a1=1,则S4=( ) A.7 B.8 C.15 D.16考点:等差数列的性质;等比数列的前n项和.专题:计算题.分析:先根据“4a1,2a2,a3成等差数列”和等差中项的性质得到3者的关系式,然后根据等比数列的性质用a1、q表示出来代入以上关系式,进而可求出q的值,最后根据等比数列的前n项和公式可得到答案.解答:解:∵4a1,2a2,a3成等差数列∴,∴,即∴q=2∴S4===15故选C点评:本题主要考查等比数列、等差数列的基本性质.属基础题.5.已知单位向量,夹角为,则=( )A.B.C.2 D.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:由向量的模长公式,代值计算可得.解答:解:∵单位向量,夹角为,∴====故选:B点评:本题考查数量积与向量的夹角,涉及模长公式,属基础题.6.已知直线2ax﹣by+2=0(a>0,b>0)平分圆C:x2+y2+2x﹣4y+1=0的圆周长,则的最小值为( )A.B.C.4 D.6考点:基本不等式在最值问题中的应用;直线与圆的位置关系.专题:不等式的解法及应用;直线与圆.分析:利用直线2ax﹣by+2=0(a>0,b>0)始终平分圆x2+y2+2x﹣4y+1=0的圆周,可得圆的圆心(﹣1,2)在直线2ax﹣by+2=0(a>0,b>0)上,再利用“1”的代换,结合基本不等式,即可求出的最小值.解答:解:由题意,圆的圆心(﹣1,2)在直线2ax﹣by+2=0(a>0,b>0)上∴﹣2a﹣2b+2=0(a>0,b>0)∴a+b=1∴=(a+b)()=3+≥3+2=3+2,当且仅当,即a=,b=2时,的最小值为3+2.故选:B.点评:本题考查圆的对称性,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.7.已知定义在R上的偶函数f(x)满足:当x≥0时,f(x)=x3﹣8,则关于x的不等式:2f(x﹣2)>1的解集为( )A.{x|x<0或x>2} B.{x|x<0或x>4} C.{x|x<﹣2或x>4} D.{x|x<﹣2或x >2}考点:奇偶性与单调性的综合.专题:不等式的解法及应用.分析:根据函数奇偶性和单调性的关系,结合指数不等式即可得到结论.解答:解:不等式2f(x﹣2)>1的等价为f(x﹣2)>0,若x<0,则﹣x>0,即f(﹣x)=﹣x3﹣8,∵f(x)是偶函数,∴f(﹣x)=﹣x3﹣8=f(x),即f(x)=﹣x3﹣8,x<0.则不等式f(x﹣2)>0等价为①或②,由①得,即x>4.由②得,即x<0,综上不等式的解集为{x|x<0或x>4},故选:B点评:本题主要考查不等式的解法,利用函数奇偶性的性质是解决本题的关键.8.下列说法正确的个数是( )①命题“∀x∈R,x3﹣x2+1≤0”的否定是“∃x0∈R,x03﹣x02+1>0”;②“b=”是“三个数a,b,c成等比数列”的充要条件;⑨“m=﹣1”是“直线mx+(2m﹣1)y+1=0和直线3x+my+2=0垂直”的充要条件:④“复数Z=a+bi(a,b∈R)是纯虚数的充要条件是a=0”是真命题.A.1 B.2 C.3 D.4考点:命题的真假判断与应用.专题:简易逻辑.分析:①利用命题的否定即可判断出.②“b=±”是“三个数a,b,c成等比数列”的充要条件,即可判断出;⑨对m分类讨论:m=0,与当m≠0,时,即可判断出;④“复数Z=a+bi(a,b∈R)是纯虚数的充要条件是a=0,b≠0”,即可判断出.解答:解:①命题“∀x∈R,x3﹣x2+1≤0”的否定是“∃x0∈R,x03﹣x02+1>0”,正确;②“b=±”是“三个数a,b,c成等比数列”的充要条件,因此②不正确;⑨直线mx+(2m﹣1)y+1=0和直线3x+my+2=0.当m=0时,两条直线分别化为﹣y+1=0,3x+2=0,此时两条直线垂直;当m=时,两条直线分别化为x+1=0,3x+y+2=0,此时两条直线不垂直;当m≠0,时,两条直线的斜率分别为:,,若两条直线垂直,则•()=﹣1,解得m=﹣1;∴“m=﹣1”是“直线mx+(2m﹣1)y+1=0和直线3x+my+2=0垂直”的充分不必要条件,不正确:④“复数Z=a+bi(a,b∈R)是纯虚数的充要条件是a=0,b≠0”,因此是假命题.综上可得:只有①是真命题.故选:A.点评:本题考查了简易逻辑的有关知识、相互垂直的直线与斜率之间的关系、分类讨论的思想方法、复数为纯虚数的充要条件,考查了推理能力与计算能力,属于中档题.9.设F1,F2为双曲线C:=1(a>0,b>0)的左、右焦点,过坐标原点O的直线与双曲线C在第一象限内交于点P,若|PF1|+|PF2|=6a,且△PF1F2为锐角三角形,则直线OP 斜率的取值范围是( )A.B.C.D.考点:双曲线的简单性质.专题:圆锥曲线中的最值与范围问题.分析:首先,设直线OP的方程,然后根据双曲线的定义,并结合条件|PF1|+|PF2|=6a,求解|PF1|和|PF2|的值,然后,根据△PF1F2为锐角三角形,联立方程组写出相应的点P的坐标,最后限制范围即可.解答:解:∵|PF1|+|PF2|=6a,|PF1|﹣|PF2|=2a,∴|PF1|=4a,|PF2|=2a,∵|F1F2|=2c,∵△PF1F2为锐角三角形,∴,∴,∴<e,∴3<1+()2<5,∴<<2,欲使得过坐标原点O的直线与双曲线C在第一象限内交于点P,∴k∈(,).故选:A.点评:本题重点考查了双曲线的标准方程、几何性质、直线与双曲线的位置关系等知识,属于中档题.解题关键是理解直线与双曲线的位置关系处理思路和方法.10.存在实数a,使得对函数y=g(x)定义域内的任意x,都有a<g(x)成立,则称a为g(x)的下界,若a为所有下界中最大的数,则称a为函数g(x)的下确界.已知x,y,z∈R+且以x,y,z为边长可以构成三角形,则f(x,y,z)=的下确界为( )A.B.C.D.考点:分析法的思考过程、特点及应用;函数的最值及其几何意义.专题:新定义;函数的性质及应用.分析:运用极端法,就是三角形在趋近于无法构成时,即:x→0,并令y=z,可得原式>恒成立,再由分析法证明,注意运用配方和三角形的三边关系,可得下确界为.解答:解:运用极端法,就是三角形在趋近于无法构成时,即:x→0,并令y=z,所以=,当然此值只是一个极限值,原式=>恒成立,可运用分析法证明上式.即证(x+y+z)2<4xy+4yz+4zx,即有x2+y2+z2<2xy+2yz+2zx,即有(x﹣y)2+(y﹣z)2+(z﹣x)2<x2+y2+z2,由三角形中,|x﹣y|<z,|y﹣z|<x,|z﹣x|<y,均为(x﹣y)2<z2,(y﹣z)2<x2,(z﹣x)2<y2.则上式成立.故下确界是.故选B.点评:本题考查新定义的理解和运用,考查三角形的三边的关系和不等式的证明,属于中档题.二、填空置:本大题共3小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.设实数x,y满足约束条件,则z=2x+y的最大值为14.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,即可求最大值.解答:解:作出不等式组对应的平面区域如图:(阴影部分).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(4,6),代入目标函数z=2x+y得z=2×4+6=14.即目标函数z=2x+y的最大值为14.故答案为:14点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.12.数列{a n}满足:a1=2014,a n﹣a n•a n+1=1,l n表示a n的前n项之积,则l2014=﹣2014.考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:通过化简可知递推式为a n+1=1﹣,进而逐一求出a2、a3、a4发现数列的项周期出现,进而计算可得结论.解答:解:∵a n﹣a n a n+1=1,∴a n+1=1﹣,∵a1=2014,∴a2=1﹣=,a3=1﹣=﹣,a4=1﹣=2014,∴该数列是周期为3的周期数列,且前三项之积为2014••(﹣)=﹣1,∵2014=671×3+1,∴l2014=(﹣1)671•2014=﹣2014,故答案为:﹣2014.点评:本题考查数列的通项,注意解题方法的积累,属于中档题.13.椭圆=1(a>b>0)的左、右焦点分别为F1,F2,若椭圆上存在点P使线段PF1与以椭圆短轴为直径的圆相切,切点恰为线段PF1的中点,则该椭圆的离心率为.考点:椭圆的简单性质.专题:计算题;直线与圆;圆锥曲线的定义、性质与方程.分析:设线段PF1的中点为M,另一个焦点F2,利用OM是△F1PF2的中位线,以及椭圆的定义求出直角三角形OMF1的三边之长,使用勾股定理求离心率.解答:解:设线段PF1的中点为M,另一个焦点F2,由题意知,OM=b,又OM是△F1PF2的中位线,∴OM=PF2=b,PF2=2b,由椭圆的定义知 PF1=2a﹣PF2=2a﹣2b,又 MF1=PF1=(2a﹣2b)=a﹣b,又OF1=c,直角三角形OMF1中,由勾股定理得:(a﹣b)2+b2=c2,又a2﹣b2=c2,可得2a=3b,故有4a2=9b2=9(a2﹣c2),由此可求得离心率 e==,故答案为:.点评:本题考查椭圆的定义、方程和性质,考查直线和圆相切的条件,考查运算能力,属于中档题.二、考生注意.14、15、16为选做题,请从中任选两题作答,若三题全做,则按前两题给分.14.如图,EA是圆O的切线,割线EB交圆O于点C,C在直径AB上的射影为D,CD=2,BD=4,则EA=.考点:与圆有关的比例线段.专题:立体几何.分析:由相交弦定理,得CD2=AD•BD,由△BDC∽△BAE,得,由此能求出AE.解答:解:由相交弦定理,得CD2=AD•BD,即22=AD×4,解得AD=1,∴AB=1+4=5,∵EA是圆O的切线,C在直径AB上的射影为D,∴△BDC∽△BAE,∴,∴AE===.故答案为:.点评:本题考查与圆有关的线段长的求法,是中档题,解题时要注意相交弦定理的合理运用.15.在平面直角坐标系中,曲线C的参数方程为以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的坐标方程为=0,则直线l截曲线C所得的弦长为.考点:简单曲线的极坐标方程;参数方程化成普通方程.分析:本题可以先将曲线C的参数方程消去参数,得到曲线的普通方程,再将直线l的极坐标方程化成平面直角坐标方程,然后列出方程组,由弦长公式求出弦长,得到本题结论.解答:解:∵曲线C的参数方程为,∴消去参数得:.∵直线l的极坐标方程为=0,∴y﹣x+=0,即:x﹣y﹣=0.由,得:5x2﹣8x=0,∴x=0或,∴交点坐标分别为(0,),(,),弦长为=.故答案为:.点评:本题考查了参数方程与普通方程的互化,极坐标方程与平面直角坐标方程的互化,还考查了弦长公式,本题难度不大,属于基础题.16.若不等式|3x﹣b|<4的解集中的整数有且仅有1,2,3,则b的取值范围5<b<7.考点:绝对值不等式的解法.专题:计算题;压轴题.分析:首先分析题目已知不等式|3x﹣b|<4的解集中的整数有且仅有1,2,3,求b的取值范围,考虑到先根据绝对值不等式的解法解出|3x﹣b|<4含有参数b的解,使得解中只有整数1,2,3,即限定左边大于0小于1,右边大于3小于4.即可得到答案.解答:解:因为,又由已知解集中的整数有且仅有1,2,3,故有.故答案为5<b<7.点评:此题主要考查绝对值不等式的解法问题,题目涵盖知识点少,计算量小,属于基础题型.对于此类基础考点在2015届高考中属于得分内容,同学们一定要掌握.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.已知函数f(x)=sinxcosx﹣cos2x+,△ABC三个内角A,B,C的对边分别为a,b,c且f(A)=1.(I)求角A的大小;(Ⅱ)若a=7,b=5,求c的值.考点:二倍角的余弦;二倍角的正弦;余弦定理.专题:计算题;解三角形.分析:(I)由 f(x)=sinxcosx﹣cos2x+利用二倍角公式及辅助角公式对已知化简,然后结合f(A)=1,及A∈(0,π)可求A;(Ⅱ)由余弦定理a2=b2+c2﹣2bccosA可求c解答:解:(I)因为 f(x)=sinxcosx﹣cos2x+==sin(2x﹣)…又f(A)=sin(2A﹣)=1,A∈(0,π),…所以,∴…(Ⅱ)由余弦定理a2=b2+c2﹣2bccosA得到,所以c2﹣5c﹣24=0 …解得c=﹣3(舍)或c=8 …所以c=8点评:本题主要考查了二倍角公式及辅助角公式在三角函数化简中的应用,特殊角的三角函数值及余弦定理的应用18.已知点A(2,0)关于直线l1:x+y﹣4=0的对称点为A1,圆C:(x﹣m)2+(y﹣n)2=4(n>0)经过点A和A1,且与过点B(0,﹣2)的直线l2相切.(1)求圆C的方程;(2)求直线l2的方程.考点:圆的标准方程;直线的一般式方程.专题:计算题.分析:(1)由点A和A1均在圆C上且关于直线l1对称,得到圆心在直线l1上,由圆的方程找出圆心坐标,代入直线l1,得到关于m与n的方程,然后把点A的坐标代入到圆的方程中,得到关于m与n的另一个方程,联立两方程即可求出m与n的值,确定出圆C的方程;(2)当直线l2的斜率存在时,设出直线l2的方程,由直线与圆相切时圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关于k的方程,求出方程的解即可得到k的值,从而确定出直线l2的方程;当直线l2的斜率不存在时,x=0显然满足题意,综上,得到所有满足题意得直线l2的方程.解答:解:(1)∵点A和A1均在圆C上且关于直线l1对称,∴圆心在直线l1上,由圆C的方程找出圆心C(m,n),把圆心坐标直线l1,点A代入圆C方程得:,解得或(与n>0矛盾,舍去),则圆C的方程为:(x﹣2)2+(y﹣2)2=4;(2)当直线l2的斜率存在时,设直线l2的方程为y=kx﹣2,由(1)得到圆心坐标为(2,2),半径r=2,根据题意得:圆心到直线的距离d==r=2,解得k=1,所以直线l2的方程为y=x﹣2;当直线l2的斜率不存在时,易得另一条切线为x=0,综上,直线l2的方程为y=x﹣2或x=0.点评:此题考查了圆的标准方程,以及直线与圆的位置关系.要求学生会利用待定系数法求圆的方程,掌握直线与圆相切时满足的关系,在求直线l2的方程时,注意由所求直线的斜率存在还是不存在,利用分类讨论的方法得到所有满足题意得方程.19.已知函数f(x)=x2+bx为偶函数,数列{a n}满足a n+1=2f(a n﹣1)+1,且a1=3,a n>1.(1)设b n=log2(a n﹣1),求证:数列{b n+1}为等比数列;(2)设c n=nb n,求数列{c n}的前n项和S n.考点:数列的求和;等比关系的确定.专题:综合题;等差数列与等比数列.分析:(1)利用函数f(x)=x2+bx为偶函数,可得b,根据数列{a n}满足a n+1=2f(a n﹣1)+1,可得b n+1+1=2(b n+1),即可证明数列{b n+1}为等比数列;(2)由c n=nb n=n•2n﹣n,利用错位相减可求数列的和.解答:(1)证明:∵函数f(x)=x2+bx为偶函数,∴f(﹣x)=f(x),∴b=0∵a n+1=2f(a n﹣1)+1,∴a n+1﹣1=2(a n﹣1)2,∵b n=log2(a n﹣1),∴b n+1=1+2b n,∴b n+1+1=2(b n+1)∴数列{b n+1}是以2为首项,以2为公比的等比数列(2)解:由(1)可得,b n+1=2n,∴b n=2n﹣1∴c n=nb n=n•2n﹣n,∴S n=1•2+2•22+…+n•2n﹣令T=1•2+2•22+…+n•2n,2T n=1•22+2•23+…+(n﹣1)•2n+n•2n+1两式相减可得,﹣T n=2+22+23+…+2n﹣n•2n+1=(1﹣n)•2n+1﹣2∴T n=(n﹣1)•2n+1+2,∴S n=(n﹣1)•2n+1+2﹣.点评:本题主要考查了利用数列的递推公式构造等比数列求解数列的通项公式,错位相减求数列的和的应用是求解的关键20.设函数f(x)=ln(x﹣1)+.(1)求函数f(x)的单调区间;(2)已知对任意的x∈(1,2)∪(2,+∞),不等式成立,求实数a的取值范围.考点:利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.专题:计算题;分类讨论;导数的综合应用;不等式的解法及应用.分析:(1)求出函数的导数,对a讨论,①当0≤a≤2,②当a>2时,求出导数为0的根,解不等式,即可得到单调区间;(2)当x>1且x≠2时,不等式成立等价为1<x<2时,f(x)<a且x>2时,f(x)>a恒成立.分别讨论当0≤a≤2时,当a>2时,函数的单调性和最值情况,即可得到a的范围.解答:解:(1)f(x)的导数f′(x)==令g(x)=x2﹣2ax+2a(a≥0,x>1),则△=4a2﹣8a=4a(a﹣2),对称轴x=a,①当0≤a≤2,g(x)≥0,即f′(x)≥0,f(x)在(1,+∞)上递增;②当a>2时,g(x)=0的两根x1=a﹣,x2=a+,由g(1)=1﹣2a+2a=1>0,a>2,则1<x1<x2,当x∈(x1,x2),g(x)<0,f(x)递减,当x∈(1,x1)∪(x2,+∞),g(x)>0,f(x)递增;则有f(x)的增区间为(1,a﹣),(a+,+∞),减区间为(a﹣,a+);(2)当x>1且x≠2时,不等式成立等价为1<x<2时,f(x)<a且x>2时,f(x)>a恒成立.由(1)知,当0≤a≤2时,f(x)在(1,+∞)上递增,f(2)≥a且f(2)≤a,即有f(2)=a,即有ln1+=a,成立,则0≤a≤2恒成立;当a>2时,g(2)=4﹣4a+2a=4﹣2a<0,即1<x1<2<x2,x1<x<2时,f(x)递减,f(x)>f(2)=a;则存在1<x<2,f(x)>a即1<x<2时,f(x)<a不恒成立,不满足题意.综上,a的取值范围是[0,2].点评:本题考查函数的导数的运用:求单调区间,考查不等式的恒成立问题,注意转化为求函数的最值问题,考查分类讨论的思想方法,考查运算能力,属于中档题和易错题.21.已知椭圆C1的中心在坐标原点,焦点在x轴上,且经过点.(1)求椭圆C1的标准方程;(2)如图,以椭圆C1的长轴为直径作圆C2,过直线x=﹣2上的动点T作圆C2的两条切线,设切点分别为A、B,若直线AB与椭圆C1求交于不同的两点C、D,求的取值范围.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线中的最值与范围问题.分析:(1)由已知得,由此能求出椭圆的标准方程.(2)圆C2的方程为x2+y2=2,设直线x=﹣2上的动点T的坐标为(﹣2,t),(t∈R),设A (x1,y1),B(x2,y2),则直线AT的方程为x1x+y1y=2,直线BT的方程为x2x+y2y=2,直线AB的方程为﹣2x+ty=2,由此利用点到直线的距离和导数的性质能求出的取值范围.解答:解:(1)设椭圆C1的标准方程为(a>b>0),将点P(),Q(﹣1,﹣)代入,得:,解得a=,b=1,∴椭圆的标准方程为.(2)圆C2的方程为x2+y2=2,设直线x=﹣2上的动点T的坐标为(﹣2,t),(t∈R),设A(x1,y1),B(x2,y2),则直线AT的方程为x1x+y1y=2,直线BT的方程为x2x+y2y=2,又T(﹣2,t)在直线AT和BT上,即,∴直线AB的方程为﹣2x+ty=2,由原点O到直线AB的距离为d=,得|AB|=2=2,联立,消去x,得(t2+8)y2﹣4ty﹣4=0,设C(x3,y3),D(x4,y4),则,,从而|CD|==,∴=,设t2+4=m,m≥4,则==,又设.0<s,则=,设f(s)=1+6s﹣32s3,令f′(s)=6﹣96s2=0,解得,故f(s)=1+6s﹣32s3在s∈(0,]上单调递增,f(s)∈(1,2],∴∈(1,].点评:本题考查椭圆的方程的求法,考查两线段比值的取值范围的求法,解题时要认真审题,注意函数与方程思想的合理运用.22.己知数{a n}满足a1=1,a n+1=a n+2n,数列{b n}满足b n+1=b n+=1.(1)求数列{a n}的通项公式;(2)令c n=,记S n=c1+c2+…+c n,求证:<1.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(1)由已知得a n+1﹣a n=2n,由此利用累加法能求出a n=n2+n+1.(2)由已知得==,从而,进而c n<[()﹣()],由此能证明<1.解答:(1)解:∵{a n}满足a1=1,a n+1=a n+2n,∴a n+1﹣a n=2n,∴a n=a1+a2﹣a1+a3﹣a2+…+a n+1﹣a n=1+2+4+6+ (2)=1+2×=n2+n+1.(2)证明:∵b n+1=b n+=1,∴=,∴==,∴,∴c n==<=[]=[()﹣()],∴S n=c1+c2+…+c n<[(1﹣)+(+…+)] ==(2﹣)<1,又由c n==,得{c n}是增数列,∴S n=c1+c2+…+c n≥c1==,∴<1.点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意累加法和裂项求和法的合理运用.。
重庆市2024-2025学年高三上学期11月月考数学阶段性检测试题注意事项:1.答题前、考生先将自己的姓名、班级、考场/座位号、准考证号填写在答题卡上.2、答选择题时、必须使用2B 铅笔填涂:答非选择题时,必须使用0.5毫米的黑色签字笔书写;必须在题号对应的答题区域内作答,超出答题区域书写无效;保持答卷清洁、完整.3.考试结束后,将答题卡交回(试题卷学生保存,以备评讲).一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1. 已知集合则( ){}2128,5016x A x B x x x ⎧⎫=<<=+>⎨⎬⎩⎭A B = A.B.C.D. ()4,3-()0,3()3,0-()4,0-2. 已知点,若A ,B ,C 三点共线,则x 的值是()()()()1,2,1,4,,1A B C x -A. 1B. 2C. 3D. 43. “”是“”的( )1x >11x -<A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4. 若,则a ,b ,c 的大小关系为( )0.10.13125,,log 352a b c --⎫⎫⎛⎛=== ⎪⎪⎝⎝⎭⎭A .B. C. D. a c b<<c a b<<b c a<<c b a<<5. 设m ,n 是不同的直线,为不同的平面,下列命题正确的是( ),αβA. 若,则.,,n m n αβαβ⊥⋂=⊥m α⊥B. 若,则.,//,//n m n m αβα= //m βC. 若,则.,,//,//m n m n ααββ⊂⊂//αβD. 若,则.//,,m n m n αβ⊥⊥//αβ6. 若曲线在处的切线的倾斜角为,则( )1()ln f x x x =+2x =α()sin cos cos 1sin2αααα-=-A. B. C. D. 1712-56-175-7. 已知数列的首项,前n 项和,满足,则( ){}n a 12025a =n S 2n n S n a =2024a =A. B. C. D. 120251202411012110138. 已知是函数的零点,是函数的零1x ()()2ln 1f x x x =---2x ()2266g x x ax a =+--点,且满足,则实数的取值范围是( )1234x x-<a A. B.)3,-+∞253,8⎫-⎪⎭C. D. 7125,,568⎫⎫⎛⎛-∞-+∞ ⎪ ⎪⎝⎝⎭⎭ 7125,568⎫⎛- ⎪⎝⎭二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9. 在下列函数中,最小正周期为π且在为减函数的是( )π0,2⎛⎫⎪⎝⎭A.B.()cos f x x=()1πsin 23f x x ⎛⎫=- ⎪⎝⎭C.D.()22cos sin f x x x=-()πtan 4f x x ⎫⎛=- ⎪⎝⎭10. 中,BC 边上的中线,则下列说法正确的有( )ABC V BC =2AD =A.B. 为定值4AB AC +=AB AC ⋅C. D. 的最大值为2220AC AB +=BAD ∠45︒11. 在正方体中,,分别为和的中点,M 为线段1111ABCD A B C D -6AB =,P Q 11C D 1DD 上一动点,N 为空间中任意一点,则下列结论正确的有( )1B C A .直线平面1BD ⊥11A C DB. 异面直线与所成角的取值范围是AM 1A D ππ,42⎡⎤⎢⎥⎣⎦C. 过点的截面周长为,,B PQ +D. 当时,三棱锥体积最大时其外接球的体积为AN BN ⊥A NBC-三、填空题:本题共3小题,每小题5分,共15分.12. 复数(i 是虚数单位),则复数z 的模为________.221i z =--13. 在数列中,,若对于任意的恒成立,{a n }111,34n n a a a +==+()*,235n n k a n ∈+≥-N 则实数k 的最小值为______.14. 若定义在的函数满足,且有()0,+∞()f x ()()()6f x y f x f y xy +=++对恒成立,则的最小值为________.()3f n n≥n *∈N 81()i f i =∑四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 平面四边形中,已知ABCD 4,120,AB BC ABC AC =∠=︒=(1)求的面积;ABC V (2)若的大小.150,BCD AD ∠=︒=ADC ∠16. 如图,在直三棱柱中,分别为111ABC A B C -1,3,4,,,AB AC AC AB AA M N P ⊥===的中点.11,,AB BC A B(1)求证:平面;//BP 1C MN (2)求二面角的余弦值.1P MC N --17. 已知双曲线的一条渐近线方程为,点在2222:1(0,0)x y C a b a b -=>>y x =()4,3P 双曲线C 上.(1)求双曲线C 的方程.(2)设过点的直线l 与双曲线C 交于M ,N 两点,问在x 轴上是否存在定点Q ,使()10-,得为常数?若存在,求出Q 点坐标及此常数的值;若不存在,说明理由.QM QN ⋅18. 已知函数.()2sin cos f x x x x x=--(1)求在处的切线方程;()f x πx =(2)证明:在上有且仅有一个零点;()f x ()0,2π(3)若时,的图象恒在的图象上方,求a 的取值()0,x ∞∈+()sin g x x =()2h x ax x=+范围.19. 数列满足,的前n 项和为,等差数列满足{}n b 32121222n n b b b b n -++++= {}n b n T {}n a ,等差数列前n 项和为.1143,a b a T ==n S (1)求数列的通项公式;{}{},n n a b (2)设数列中的项落在区间中的项数为,求数列的{}n a ()21,1m m T T ++()m c m N *∈{}m c 前n 和;n H (3)是否存在正整数m ,使得是或中的项.若有,请求出全部的m 并3m m mm S T S T +++{}n a {}n b 说明理由;若没有,请给出证明.。
一、(本大题共4小题,每小题3分,共12分) 1.选出下列选项中字形和加点字的注音全部正确的一项( ) A.食不裹腹 无耻(ln)言.伛()游目(chng)怀.倔强juè) 水乳交融 沐猴而冠(guān) .()弱 A.子曰:“不义而富且贵,于我如浮云”。
强调的是人应当为道义而活着,突显的是人的道德 价值。
B.家训、家规、家教传承的是中国文化的传统美德,这种历史的沉淀和传承是无言的教育,也是一种无声的力量。
C.记忆是一个很难捉摸的东西:有些强迫记忆,急时用,不是丢三落四,就是“千呼万唤” 不出来,有的却是另一种情况,一句偶发的戏语,竟变成“永不消失的电波”。
D.最近网络“文言神翻译”风潮引发热议,是古典文化回归?还是纯粹的网友文言游戏?众人 对这股“最炫文言风”褒贬不一。
4.下列句子中,没有语病的一项是( ) A.专家认为,如果全国实行统一的药品编码,就可以建立药品信息系统及用计算机对种类繁 多的药品进行科学管理打下坚实基础。
B.越来越多的证据表明氢化植物油中的反式脂肪酸对于人体没有任何积极作用反而会增多心血管等疾病的风险。
尽管中国奶业屡陷信任危机,但越来越多消费者重视奶制品给自己带来好处的情况下,市场需求仍旧呈现扩大趋势。
二、(本大题共3小题,共11分) 阅读下文,完成第5-7题。
考察民俗节日中秋节的内核,团圆、平等、诗意都成为其重要内涵,而团圆又是最为核心的内涵。
南宋吴自牧《梦粱录》说到当时的中秋节,家家户户“安排家宴,团圆子女”。
明代田汝城也说:中秋日,民间以月饼相送,取团圆之意。
同时代刘侗则云:“女归宁,是日必返其夫家,曰团圆节也”。
这些记载都揭示出中秋团圆的主题。
中华民族一向有追求和谐圆满的人生理想,而中秋节的形成正满足了人民的这一愿望。
今天,随着社会经济的发展,城市化已经成为普遍趋势,人口流动频繁,很多人长期离家在外,漂泊成为了一种常态。
因此我们更应注重节庆的社会调节功能。
重庆市南开中学2015届高三数学二诊模拟考试试题 理(扫描版,无答案)重庆南开中伽加二诊模拟考试粤试说明1 *试卷分第I 卷(J&M )和第U 堆(非透择題)两部纽 満分150分.号试时何120分计*<1>答JHHL 考生先将自已旳姓客、准才证号码填写清楚;(2) 進择題必須便用2B 船笔填涂.非选择•在殖使用0, 5 ■米黑色字迹的签字塔 ”写,字体工廉”字迹(3) 谡按SUB 号龈序在各豊目的删区城内作答.超出答甩区城书写的菩秦无效, 在卓粮紙、试屋卷上答島无Ah(4) 葦持卡園構洁,巾得斬,、不要弄破、弄皱,不准便用涂改液、刮纸刀.-本大JH 共山创甌 毎小JK5分,共50乩 在毎小題给出的四牛备选项中,一只有 一项悬符合JH 目要求的.1.若全 = {1,233.5,6). M = {1,4.3} T ^ = {2+4}.则集合(3,6}等于()B, M\JN1.若码B 为实敷则"0<o*<l ”是“b<-”的(儿己知肪机变 11硏~“軒,1),若P(^>3)=a.<5)=〔軾设旧”}楚首项为I,公差兀为零的等慕数兀 耳为其前”项和,若&,斗成 諄比就儿 剧故列{斗}的公差肖() A. 2 氐 4 率C. -2D. -40^2» j=JF —awfi 学二遼離拉曹试试卷«i 页c. GM )n (qN )D (G"]U(GN) A.充命不必委寮件C.充耍条件 B.必更不充分董件D. EE 非充分文菲必姜痒件5.罠忏右m 所示的稈庠欄国.輸岀的血为【>3K3艮与sm 鶴2一彳7=1共渐近毎且与摊胸线丘=12片菲准蝴的观曲馋方稈为() 16 24*已如函數少=/(兀-1)关于亶^x = lWA^ = /(r )在[0旳o )上单谓递减.左卜【逍上任取一卖数宀在[3]上托取一实数鸟「则溝足”仗)土/饮)肿概率为(>优己輻;石卜|疋卜2, 乔应=2氐 呼面区域D 由撕有満足AP^XAB^^AC曲克尸构成.其面积为趴 则*冴1■占的嶽小值为< >第H 卷(非堆择聽共1W 分)-,填空亀:*丸■共5小JH,擁小最苗分・共站分.把警豪換写在善JB 卡梅磁检覽王.1K 血是虚散单位.则1-2# = ______________ 仏若(F 十石『啓幵戎中菇三顼与第五磧的系捡之比为£・剧展开式中常嶽顷 14为 ■理和联畔二慘播拟嚼试蛊# »211£2垃 Br D./-2d UA. 13 氐 12 G ?占 D. 6^2懺 已知在ZUBC 申・删抓取匚成公善宾于0的等差數外 且淌足董4 + 2 Vi □十件± 1*0叮刑Y0S2OC0S 鮎g$2C==^・刻一^一訥值掏(<? 4 A. Jti + I ■HL D” 2A. 8.如图,U.如图:正六边形初CDEF的中心为点G,舒—7这七个数字分别放在逼七个点刮位乩毎个点只放一个数乳使得对^AGD,BG£,CGF上的数字玄和均相熱则不風的放置方法舟考生注14. 15. 16为选做翹,请从中任选两題作膂.若三既全做,團按前两题给分.1无如HL 是捉。
重庆市大足中学高考数学模拟考试卷二人教版说明:1、本试卷分第 Ⅰ 卷(选择题)和第 Ⅱ 卷(非选择题)两部分;2、试卷总分: 150 分 考试时间: 2006 年 3 月 1 日(周三) 15: 20—— 17:20.第Ⅰ卷(选择题共50分). 本卷共 10 小题,共 50 分.一. 选择题 ( 本大题共 10 题, 每题 5 分, 共 50 分 . 在每题给出的四个选项中,只有一项为哪一项符合题目要求的 .) 2-111.已知会合 ={ | x x -12<0}, 会合 ={ | x =2(3 n +1), n ∈ N} 则 ∩ 等于A xB xA BA . {2}B .{2 ,8}C . {4 ,10}D .{2 , 4,8, 10}2.“ 0< <5”是“不等式 | x - 2|<3 ”建立的xA .充足不用要条件B .必需不充足条件C .充要条件D .不充足不用要条件3.方程 x 2+y 2+2ax-2ay =0 所表示的圆A 、对于 x 轴对称B 、对于 y 轴对称C 、对于直线 x-y=0 对称D、对于直线 =0 对称x+y 4. ( 文 ) 已知函数 y =sin 2ω x +1( ω>0) 的最小正周期是2 ,则 ω=C .1A . 1B . 2D . 4( 理 ) 已知函数 y =|sin 2x | ,则它的最小正周期是 2A . πB . 2C . 2πD .45.已知函数 y=f ( x ), x ∈[-1,1] 的图象以下图 ,则不等式的 f (- x )> f ( x ) +23x 的解集为A . [-1,-1 ) ∪(0, 1 )B .(-1,0) ∪ [1,1 )2 222C . [-1,-1)∪(1,1)D . (-1,0) ∪ (0,1 )22 22aab6.已知向量 = (2cos α ,2sin α ), = (3cos β ,3sin β ), 与 的b夹角为 60°,则直线x cos α -y sin α+ 1=0 与圆 ( x -cos β) 2+( y +sin β ) 2=1的地点关22系是A .2,4,6B .4,8,12C . 3,6,9D . 5 ,10,15(理)如图, A 、 B 、 C 是表面积为 48π的球面上三点, AB=2,BC=4,∠ ABC=60o , O 为球心, 则直线 OA 与截面 ABC 所成的角是A .arcsin 3B.arccos 3C.arcsin668.( 文)不等式组x 2 2的解集为log 2 ( x 21) 13D.arccos333A . (0, 3) B. ( 3,2)C. ( 3,4)D.(2,4)(理)设 0x1 ,则函数 y1 1 的最小值为x 1 xA .4 B. 3 C. 2D. 19.如图,已知 c 是椭圆x 2y 2 1(ab 0) 的半焦距 , 则a2b 2b c的取值范围是aA. (1, +∞) B. ( 2, ) C.(1, 2 ) D.(1, 2 ]10.计算机中常用十六进制是逢16 进 1 的计数制,采纳数字0~9 和字母 A ~F 共 16 个计数符号,这些符号与十进制的数的对应关系以下表:16进制 012345 6789 A B C D E F 10 进制 0 1 2345678910 1112131415比如,用十六进制表示:E+D=1B ,则 A × C=A . 6EB . 78C . 5FD . B0第Ⅱ卷(非选择题 共 100 分)本卷共 12 小题,共 100分 .二、填空题 ( 本大题共 6小题,每题4分,共24 分. 把答案填在答卷中的横线上.)11.已知 f (x) 2x3,函数 y=g ( x ) 图象与 y= f -1 ( x+1) 的图象对于直线 y=x 对称,求 g (11) 的x1值为12.二项式( 3x -1)10的睁开式中常数项为_____________(用数字作答) .x) ,则 tan =13.已知, 均为锐角,且 cos( ) sin(.14.(文 )已知 ( x -1) 2+( y -1) 2 =1,则 x+y 的最大值为 .(理)黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第 n 个图案中有白色地面砖 _________________块 .15.(文 )一枚硬币连掷三次起码出现一次正面的概率为.(理)在 100, 101, 102, , 999 这些数中各位数字按严格递加(如“ 145”)或严格递减 (如 “ 321”)次序摆列的数的个数共有 个 .16.对于曲线 C : x 2+y 4=1 的以下说法:(1)对于点( 0, 0)对称;(2)对于直线 y =x 对称;A .2,4,6B .4,8,12C . 3,6,9D . 5 ,10,15(理)如图, A 、 B 、 C 是表面积为 48π的球面上三点, AB=2,BC=4,∠ ABC=60o , O 为球心,则直线 OA 与截面 ABC 所成的角是A .arcsin 3B.arccos 3C.arcsin668.( 文)不等式组x 2 2的解集为log 2 ( x 21) 1A . (0, 3) B. ( 3,2)C. ( 3,4)D.(2,4)(理)设 0x1 ,则函数 y1 1 的最小值为x 1 xA .4 B. 3 C. 2D. 19.如图,已知 c 是椭圆x 2y 2 1(ab 0) 的半焦距 , 则a2b 2b c的取值范围是aA. (1, +∞) B. ( 2, ) C.(1, 2 ) D.(1, 2 ]10.计算机中常用十六进制是逢16 进 1 的计数制,采纳数字0~9 和字母 A ~F 共 16 个计数符号,这些符号与十进制的数的对应关系以下表:16进制 012345 6789 A B C D E F 10 进制 0 1 2345678910 1112131415比如,用十六进制表示:E+D=1B ,则 A × C=A . 6EB . 78C . 5FD . B0第Ⅱ卷(非选择题 共 100 分)本卷共 12 小题,共 100分 .二、填空题 ( 本大题共 6小题,每题4分,共24 分. 把答案填在答卷中的横线上.)11.已知 f (x) 2x3,函数 y=g ( x ) 图象与 y= f -1 ( x+1) 的图象对于直线 y=x 对称,求 g (11) 的x1值为12.二项式( 3x -1)10的睁开式中常数项为_____________(用数字作答) .x) ,则 tan =13.已知, 均为锐角,且 cos( ) sin(.14.(文 )已知 ( x -1) 2+( y -1) 2 =1,则 x+y 的最大值为 .(理)黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第 n 个图案中有白色地面砖_________________块 .15.(文 )一枚硬币连掷三次起码出现一次正面的概率为.(理)在 100, 101, 102, , 999 这些数中各位数字按严格递加(如“145”)或严格递减专心爱心专心123 号编写220.(本小题满分 13 分)设函数 f ( x)4x b, 且不等式 | f ( x) | c 的解集为{ x | 1 x 2}.( 1)求b的值;( 2)解对于x的不等式(4x m) f ( x) 0(m R).21.(本小题满分 12 分)在平面直角坐标系 x Oy中,抛物线y= x2上异于坐标原点O的两不一样动点A、B知足AO⊥BO, 以下图 .(Ⅰ)求△ AOB的重心 G(即三角形三条中线的交点)的轨迹方程;(Ⅱ)△ AOB的面积能否存在最小值?若存在,恳求出最小值;若不存在,请说明原因.yABO x22.(本小题满分 12 分)等比数列 {a n } 同时满足下列三个条件:① a 1a633; ②a 3a432;③三个数 4a 2,2a3,a4挨次成等差数列 .(1)试求数列 {a n } 的通项公式;(2)(文)记b n n,求数列 {b n} 的前 n 项和 T n;a n(2)(理)设 S n是数列 {a n } 的前 n 项和,证明S n·S n2≤1. S n21[ 参照答案 ]一、选择题1.B 由 x2 -11x -12<0, 得 -1< x <12. 令 -1<2(3 n +1)<12, 可得 - 1 <n < 5( n ∈N), 进而 n =0或 n =1, 代入 B 得 A ∩ B ={2 ,238}, 应选 B.2.A3.D 方程可配方为x a 2 ( y a) 22a 2 ,由于方程表示一个圆,则 a 0 ,且圆心坐标为 (a, a)半径为 2a 。
重庆市大足城南中学校2015届高三上学期第二次月考生物试卷1、下列现代生物科技的应用中,不需要进行检测与筛选的是( )A.对植物的茎尖进行组织培养获得脱毒苗B.将鼠的骨髓瘤细胞与B淋巴细胞融合,制备单克隆抗体C.利用植物体细胞杂交技术培育“萝卜—甘蓝”D.将抗虫基因导入植物细胞,培育具有抗虫特性的新植株2、下列说法中不正确的有( )①限制酶主要是从真核生物中分离纯化出来的②DNA连接酶都是从原核生物中分离得到的③所有限制酶识别的核苷酸序列均由6个核苷酸组成④不同限制酶切割DNA的位点不同⑤有的质粒是单链DNAA.①②④⑤ B.①②③⑤ C.②③④⑤ D.①③④⑤3.下列关于细胞结构和功能的叙述,正确的是A. 原核生物的细胞结构中没有线粒体,只能通过厌氧呼吸获得能量B. 细胞分化、衰老和癌变都会导致细胞形态、结构和功能发生变化C.核糖体是细胞内蛋白质的“装配机器”,由蛋白质和mRNA组成D.蓝藻细胞有丝分裂前后,染色体数目一般不发生改变4.组成细胞的元素和化合物是生命活动的物质基础,下列关于细胞内元素和化合物的叙述,错误的是A.组成细胞干重中含量最多的化学元素是碳B.磷是磷脂、ATP、DNA等化合物的组成元素,是组成生物体的大量元素C.线粒体、叶绿体和核糖体中都能产生水D.在人的一生中,细胞中的自由水/结合水的值逐渐上升5.下列有关物质进出细胞的运输方式的判断,正确的是A.不消耗能量的运输方式一定为被动运输B.消耗能量的运输方式一定是主动运输C.顺浓度梯度的运输方式一定为自由扩散D.需要载体蛋白协助的运输方式一定为协助扩散6.在观察藓类叶片细胞的叶绿体、观察DNA在口腔上皮细胞中的分布、观察植物细胞的质壁分离与复原三个实验中,其共同点是A.都要用到显微镜B.都要对实验材料进行染色C.提高温度都能使实验现象更明显D.都要使实验材料保持活性第Ⅱ卷非选择题(每空2分,共54分)7.(16分)下图是单克隆抗体制备流程阶段示意图。
2015-2016学年某某省马某某市红星中学高三(上)第二次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.设全集U是实数集R,M={x|y=ln(x2﹣2x) },N={y|y=},则图中阴影部分表示的集合是( )A.{x|﹣2≤x<2} B.{x|1<x≤2}C.{x|1≤x≤2}D.{x|x<1}2.已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=( ) A.﹣B.﹣C.﹣D.﹣3.给出如下命题,正确的序号是( )A.命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠xB.命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5C.若ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件D.命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>04.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.B.C.D.5.设F1、F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,•的值等于( )A.0 B.2 C.4 D.﹣26.设a=log37,b=21.1,c=0.83.1,则( )A.b<a<c B.c<a<b C.c<b<a D.a<c<b7.执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是( )A.2 B.3 C.9 D.278.若点(16,tanθ)在函数y=log2x的图象上,则=( ) A.B.C.4 D.49.已知函数f(x)=()x﹣log3x,若实数x0是方程f(x)=0的解,且x0<x1,则f(x1)的值( )A.恒为负B.等于零C.恒为正D.不大于零10.已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,则a2+a4+a5+a9的值等于( )A.52 B.40 C.26 D.2011.函数y=e|lnx|﹣|x﹣1|的图象大致是( )A.B. C.D.12.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(﹣x),若g(x)=x2f(x),则不等式g(x)<g(1﹣3x)的解集是( )A.(,+∞)B.(﹣∞,)C.(0,)D.(﹣∞,)∪(,+∞)二、填空题:本大题共4小题,每小题5分.13.计算:()+lg+lg70+=__________.14.设变量x,y满足约束条件,则z=x﹣3y的最小值是__________.15.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=__________.16.关于函数f(x)=(x≠0),有下列命题:①f(x)的最小值是lg2;②其图象关于y轴对称;③当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;④f(x)在区间(﹣1,0)和(1,+∞)上是增函数,其中所有正确结论的序号是__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,某某数m的取值X围.18.已知函数f(x)=﹣x2+2ex+m﹣1,g(x)=x+(x>0).(1)若y=g(x)﹣m有零点,求m的取值X围;(2)确定m的取值X围,使得g(x)﹣f(x)=0有两个相异实根.19.已知函数f(x)=log a(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时,总有f(x)+g(x)≥m成立,求m的取值X围.20.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.21.已知函数f(x)=+xlnx,g(x)=x3﹣x2﹣3.(1)讨论函数h(x)=的单调性;(2)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,某某数a的取值X围.四、选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.已知曲线C1的参数方程是(θ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=﹣4cosθ.(1)求曲线C1与C2交点的极坐标;(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).23.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.某某数a的取值X围.2015-2016学年某某省马某某市红星中学高三(上)第二次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.设全集U是实数集R,M={x|y=ln(x2﹣2x) },N={y|y=},则图中阴影部分表示的集合是( )A.{x|﹣2≤x<2} B.{x|1<x≤2}C.{x|1≤x≤2}D.{x|x<1}【考点】Venn图表达集合的关系及运算.【专题】应用题;集合思想;定义法;集合.【分析】由图知,阴影部分表示的集合中的元素是在集合N中的元素但不在集合M中的元素组成的,即N∩C U M.【解答】解:由韦恩图知阴影部分表示的集合为N∩(C U M)M={x|y=ln(x2﹣2x) }∴x2﹣2x>0,解得x<0,或x>2,∴M={x|x<0,或x>2},∴C U M={x|0≤x≤2}=[0,2],N={y|y=}={y|y≥1}=[1,+∞),∴N∩(C U M)=[1,2],故选:C【点评】本小题主要考查Venn图表达集合的关系及运算、二次不等式的解法等基础知识,属于基础题2.已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=( ) A.﹣B.﹣C.﹣D.﹣【考点】分段函数的应用;函数的零点.【专题】函数的性质及应用.【分析】由f(a)=﹣3,结合指数和对数的运算性质,求得a=7,再由分段函数求得f(6﹣a)的值.【解答】解:函数f(x)=且f(a)=﹣3,若a≤1,则2a﹣1﹣2=﹣3,即有2a﹣1=﹣1<0,方程无解;若a>1,则﹣log2(a+1)=﹣3,解得a=7,则f(6﹣a)=f(﹣1)=2﹣1﹣1﹣2=﹣.故选:A.【点评】本题考查分段函数的运用:求函数值,主要考查指数和对数的运算性质,属于中档题.3.给出如下命题,正确的序号是( )A.命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠xB.命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5C.若ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件D.命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>0【考点】命题的真假判断与应用.【专题】计算题;规律型;简易逻辑.【分析】利用命题的否定判断A的正误;四种命题的逆否关系判断B的正误;充要条件判断C 的正误;命题的真假判断D的正误;【解答】解:对于A,命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠x0,不满足命题的否定形式,所以不正确;对于B,命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5,不满足否命题的形式,所以不正确;对于C,若ω=1是函数f(x)=cosx在区间[0,π]上单调递减的,而函数f(x)=cosωx在区间[0,π]上单调递减的,ω≤1,所以ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件,正确.对于D,命题:∃x0∈R,x02+a<0为假命题,则命题:a≥0,∀x∈R,x2+a≥0是真命题;所以,命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>0,不正确;故选:C.【点评】本题考查命题的真假的判断与应用,基本知识的考查.4.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.B.C.D.【考点】由三视图求面积、体积.【专题】图表型.【分析】先由三视图还原成原来的几何体,再根据三视图中的长度关系,找到几何体中的长度关系,进而可以求几何体的体积.【解答】解:由三视图可得该几何体的上部分是一个三棱锥,下部分是半球,所以根据三视图中的数据可得:V=××=,故选C.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是组合体的体积,一般组合体的体积要分部分来求.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.5.设F1、F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,•的值等于( )A.0 B.2 C.4 D.﹣2【考点】椭圆的简单性质.【专题】计算题.【分析】通过题意可推断出当P、Q分别在椭圆短轴端点时,四边形PF1QF2面积最大.进而可根据椭圆的方程求得焦点的坐标和P的坐标,进而求得和,则•的值可求得.【解答】解:根据题意可知当P、Q分别在椭圆短轴端点时,四边形PF1QF2面积最大.这时,F1(﹣,0),F2(,0),P(0,1),∴=(﹣,﹣1),=(,﹣1),∴•=﹣2.故选D【点评】本题主要考查了椭圆的简单性质.考查了学生数形结合的思想和分析问题的能力.6.设a=log37,b=21.1,c=0.83.1,则( )A.b<a<c B.c<a<b C.c<b<a D.a<c<b【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】分别讨论a,b,c的取值X围,即可比较大小.【解答】解:1<log37<2,b=21.1>2,c=0.83.1<1,则c<a<b,故选:B.【点评】本题主要考查函数值的大小比较,根据指数和对数的性质即可得到结论.7.执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是( )A.2 B.3 C.9 D.27【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序,依次写出每次循环得到的R,P,Q的值,当Q=0时,满足条件Q=0,退出循环,输出P的值为3.【解答】解:模拟执行程序,可得P=153,Q=63不满足条件Q=0,R=27,P=63,Q=27不满足条件Q=0,R=9,P=27,Q=9不满足条件Q=0,R=0,P=9,Q=0满足条件Q=0,退出循环,输出P的值为9.故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的R,P,Q的值是解题的关键,属于基本知识的考查.8.若点(16,tanθ)在函数y=log2x的图象上,则=( ) A.B.C.4 D.4【考点】三角函数的化简求值.【专题】计算题;转化思想;转化法;三角函数的求值.【分析】先根据对数的运算性质求出tanθ,再化简代值计算即可.【解答】解:点(16,tanθ)在函数y=log2x的图象上,∴tanθ=log216=4,∴====,故选:B.【点评】本题考查了二倍角公式,函数值的求法,以及对数的运算性质,属于基础题.9.已知函数f(x)=()x﹣log3x,若实数x0是方程f(x)=0的解,且x0<x1,则f(x1)的值( )A.恒为负B.等于零C.恒为正D.不大于零【考点】函数的零点与方程根的关系.【专题】函数的性质及应用.【分析】由函数的性质可知,f(x)=()x﹣log3x在(0,+∞)上是减函数,且可得f(x0)=0,由0<x0<x1,可得f(x1)<f(x0)=0,即可判断【解答】解:∵实数x0是方程f(x)=0的解,∴f(x0)=0.∵函数y()x,y=log3x在(0,+∞)上分别具有单调递减、单调递增,∴函数f(x)在(0,+∞)上是减函数.又∵0<x0<x1,∴f(x1)<f(x0)=0.∴f(x1)的值恒为负.故选A.【点评】本题主要考查了函数的单调性的简单应用,解题的关键是准确判断函数f(x)的单调性并能灵活应用.10.已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,则a2+a4+a5+a9的值等于( )A.52 B.40 C.26 D.20【考点】数列的求和.【专题】等差数列与等比数列.【分析】首先根据题中的已知条件已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,进一步求出数列的通项公式,然后根据通项公式求出各项的值,最后确定结果.【解答】解:已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2则:∴a n=3n﹣5a2+a4+a5+a9=40故选:B【点评】本题考查的知识点:根据点的斜率求出数列的通项公式,由通项公式求数列的项.11.函数y=e|lnx|﹣|x﹣1|的图象大致是( )A.B. C.D.【考点】对数的运算性质;函数的图象与图象变化.【分析】根据函数y=e|lnx|﹣|x﹣1|知必过点(1,1),再对函数进行求导观察其导数的符号进而知原函数的单调性,得到答案.【解答】解:由y=e|lnx|﹣|x﹣1|可知:函数过点(1,1),当0<x<1时,y=e﹣lnx﹣1+x=+x﹣1,y′=﹣+1<0.∴y=e﹣lnx﹣1+x为减函数;若当x>1时,y=e lnx﹣x+1=1,故选D.【点评】本题主要考查函数的求导与函数单调性的关系.12.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(﹣x),若g(x)=x2f(x),则不等式g(x)<g(1﹣3x)的解集是( )A.(,+∞)B.(﹣∞,)C.(0,)D.(﹣∞,)∪(,+∞)【考点】函数奇偶性的性质.【专题】转化思想;数学模型法;函数的性质及应用;导数的综合应用.【分析】f(x)是定义在R上的奇函数,可得:f(﹣x)=﹣f(x).对任意正实数x满足xf′(x)>2f(﹣x),可得:xf′(x)+2f(x)>0,由g(x)=x2f(x),可得g′(x)>0.可得函数g(x)在(0,+∞)上单调递增.即可得出.【解答】解:∵f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x).对任意正实数x满足xf′(x)>2f(﹣x),∴xf′(x)+2f(x)>0,∵g(x)=x2f(x),∴g′(x)=2xf(x)+x2f′(x)>0.∴函数g(x)在(0,+∞)上单调递增.又g(0)=0,g(﹣x)=x2f(﹣x)=﹣g(x),∴函数g(x)是R上的奇函数,∴g(x)是R上的增函数.由不等式g(x)<g(1﹣3x),∴x<1﹣3x,解得.∴不等式g(x)<g(1﹣3x)的解集为:.故选:B.【点评】本题考查了函数的奇偶性与单调性,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共4小题,每小题5分.13.计算:()+lg+lg70+=.【考点】对数的运算性质;有理数指数幂的化简求值.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】根据对数和幂的运算性质计算即可.【解答】解:()+lg+lg70+=+lg()+1﹣lg3=+lg+1=+1+1=,故答案为:.【点评】本题考查了对数和幂的运算性质,关键是掌握性质,属于基础题.14.设变量x,y满足约束条件,则z=x﹣3y的最小值是﹣8.【考点】简单线性规划.【专题】不等式的解法及应用.【分析】将z=x﹣3y变形为,此式可看作是斜率为,纵截距为的一系列平行直线,当最大时,z最小.作出原不等式组表示的平面区域,让直线向此平面区域平移,可探求纵截距的最大值.【解答】解:由z=x﹣3y,得,此式可看作是斜率为,纵截距为的直线,当最大时,z最小.画出直线y=x,x+2y=2,x=﹣2,从而可标出不等式组表示的平面区域,如右图所示.由图知,当动直线经过点P时,z最小,此时由,得P(﹣2,2),从而z min=﹣2﹣3×2=﹣8,即z=x﹣3y的最小值是﹣8.故答案为:﹣8.【点评】本题考查了线性规划的应用,为高考常考的题型,求解此类问题的一般步骤是:(1)作出已知不等式组表示的平面区域;(2)运用化归思想及数形结合思想,将目标函数的最值问题转化为平面中几何量的最值问题处理.15.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=﹣8.【考点】奇偶性与单调性的综合;函数的周期性.【专题】数形结合.【分析】由条件“f(x﹣4)=﹣f(x)”得f(x+8)=f(x),说明此函数是周期函数,又是奇函数,且在[0,2]上为增函数,由这些画出示意图,由图可解决问题.【解答】解:此函数是周期函数,又是奇函数,且在[0,2]上为增函数,综合条件得函数的示意图,由图看出,四个交点中两个交点的横坐标之和为2×(﹣6),另两个交点的横坐标之和为2×2,所以x1+x2+x3+x4=﹣8.故答案为﹣8.【点评】数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.16.关于函数f(x)=(x≠0),有下列命题:①f(x)的最小值是lg2;②其图象关于y轴对称;③当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;④f(x)在区间(﹣1,0)和(1,+∞)上是增函数,其中所有正确结论的序号是①②④.【考点】命题的真假判断与应用;奇偶性与单调性的综合.【专题】函数思想;定义法;函数的性质及应用.【分析】是结合复合函数单调性的关系进行判断.②根据基本由函数奇偶性的定义判断函数为偶函数判断;③利用对勾函数的单调性判断;④由对勾函数的最值及函数奇偶性的性质进行判断即可.【解答】解:①函数f(x)=lg,(x∈R且x≠0).∵=2,∴f(x)=lg≥2,即f(x)的最小值是lg2,故①正确,②∵f(﹣x)==f(x),∴函数f(x)为偶函数,图象关于y轴对称,故②正确;③当x>0时,t(x)=,在(0,1)上单调递减,在(1,+∞)上得到递增,∴f(x)=lg在(0,1)上单调递减,在(1,+∞)上得到递增,故③错误;④∵函数f(x)是偶函数,由③知f(x)在(0,1)上单调递减,在(1,+∞)上得到递增,∴在(﹣1,0)上单调递增,在(﹣∞,﹣1)上得到递减,故④正确,故答案为:①②④【点评】本题考查了命题的真假判断与应用,考查了函数奇偶性的性质,考查了复合函数的单调性,是中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,某某数m的取值X围.【考点】必要条件;绝对值不等式的解法.【专题】规律型.【分析】先求出命题p,q的等价条件,利用¬p是¬q的必要不充分条件转化为q是p的必要不充分条件,建立条件关系即可求出m的取值X围.【解答】解:由||=,得|x﹣4|≤6,即﹣6≤x﹣4≤6,∴﹣2≤x≤10,即p:﹣2≤x≤10,由x2+2x+1﹣m2≤0得[x+(1﹣m)][x+(1+m)]≤0,即1﹣m≤x≤1+m,(m>0),∴q:1﹣m≤x≤1+m,(m>0),∵¬p是¬q的必要不充分条件,∴q是p的必要不充分条件.即,且等号不能同时取,∴,解得m≥9.【点评】本题主要考查充分条件和必要条件的应用,将¬p是¬q的必要不充分条件转化为q 是p的必要不充分条件是解决本题的关键.18.已知函数f(x)=﹣x2+2ex+m﹣1,g(x)=x+(x>0).(1)若y=g(x)﹣m有零点,求m的取值X围;(2)确定m的取值X围,使得g(x)﹣f(x)=0有两个相异实根.【考点】函数零点的判定定理;根的存在性及根的个数判断.【专题】计算题;函数的性质及应用;导数的综合应用;不等式的解法及应用.【分析】(1)由基本不等式可得g(x)=x+≥2=2e,从而求m的取值X围;(2)令F(x)=g(x)﹣f(x)=x++x2﹣2ex﹣m+1,求导F′(x)=1﹣+2x﹣2e=(x﹣e)(+2);从而判断函数的单调性及最值,从而确定m的取值X围.【解答】解:(1)∵g(x)=x+≥2=2e;(当且仅当x=,即x=e时,等号成立)∴若使函数y=g(x)﹣m有零点,则m≥2e;故m的取值X围为[2e,+∞);(2)令F(x)=g(x)﹣f(x)=x++x2﹣2ex﹣m+1,F′(x)=1﹣+2x﹣2e=(x﹣e)(+2);故当x∈(0,e)时,F′(x)<0,x∈(e,+∞)时,F′(x)>0;故F(x)在(0,e)上是减函数,在(e,+∞)上是增函数,故只需使F(e)<0,即e+e+e2﹣2e2﹣m+1<0;故m>2e﹣e2+1.【点评】本题考查了基本不等式的应用及导数的综合应用,同时考查了函数零点的判断与应用,属于中档题.19.已知函数f(x)=log a(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时,总有f(x)+g(x)≥m成立,求m的取值X围.【考点】求对数函数解析式;函数解析式的求解及常用方法;函数最值的应用.【专题】计算题;转化思想.【分析】(1)由已知条件可知函数g(x)的图象上的任意一点P(x,y)关于原点对称的点Q (﹣x,﹣y)在函数f(x)图象上,把Q(﹣x,﹣y)代入f(x),整理可得g(x)(2)由(1)可令h(x)=f(x)+g(x),先判断函数h(x)在[0,1)的单调性,进而求得函数的最小值h(x)min,使得m≤h(x)min【解答】解:(1)设点P(x,y)是g(x)的图象上的任意一点,则Q(﹣x,﹣y)在函数f (x)的图象上,即﹣y=log a(﹣x+1),则∴(2)f(x)+g(x)≥m 即,也就是在[0,1)上恒成立.设,则由函数的单调性易知,h(x)在[0,1)上递增,若使f(x)+g(x)≥m在[0,1)上恒成立,只需h(x)min≥m在[0,1)上成立,即m≤0.m的取值X围是(﹣∞,0]【点评】本题(1)主要考查了函数的中心对称问题:若函数y=f(x)与y=g(x)关于点M (a,b)对称,则y=f(x)上的任意一点(x,y)关于M(a,b)对称的点(2a﹣x,2b﹣y)在函数y=g(x)的图象上.(2)主要考查了函数的恒成立问题,往往转化为求最值问题:m≥h(x)恒成立,则m≥h(x)m≤h(x)恒成立,max则m≤h(x)min20.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.【考点】基本不等式在最值问题中的应用.【专题】计算题.【分析】(1)赢利总额y元即x年中的收入50x减去购进机床的成本与这x年中维修、保养的费用,维修、保养的费用历年成等差数增长,,(2)由(1)的结论解出结果进行判断得出何年开始赢利.(3)算出每一种方案的总盈利,比较大小选择方案.【解答】解:(1)y=﹣2x2+40x﹣98,x∈N*.(2)由﹣2x2+40x﹣98>0解得,,且x∈N*,所以x=3,4,,17,故从第三年开始盈利.(3)由,当且仅当x=7时“=”号成立,所以按第一方案处理总利润为﹣2×72+40×7﹣98+30=114(万元).由y=﹣2x2+40x﹣98=﹣2(x﹣10)2+102≤102,所以按第二方案处理总利润为102+12=114(万元).∴由于第一方案使用时间短,则选第一方案较合理.【点评】考查审题及将题中关系转化为数学符号的能力,其中第二问中考查了一元二次不等式的解法,第三问中考查到了基本不等式求最值,本题是一个函数基本不等式相结合的题.属应用题中盈利最大化的问题.21.已知函数f(x)=+xlnx,g(x)=x3﹣x2﹣3.(1)讨论函数h(x)=的单调性;(2)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,某某数a的取值X围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】综合题;导数的综合应用.【分析】(1)求导数,利用导数的正负,即可讨论函数h(x)=的单调性;(2)求出g(x)max=g(2)=1,当x∈[,2]时,f(x)=+xlnx恒成立,等价于a≥x﹣x2lnx 恒成立,然后利用导数求函数u(x)=x﹣x2lnx在区间[,2]上取得最大值,则实数a的取值X围可求.【解答】解:(1)h(x)==+lnx,h′(x)=,①a≤0,h′(x)≥0,函数h(x)在(0,+∞)上单调递增②a>0时,h'(x)>0,则x∈(,+∞),函数h(x)的单调递增区间为(,+∞),h'(x)<0,则x∈(0,),函数h(x)的单调递减区间为(0,),.(2)g(x)=x3﹣x2﹣3,g′(x)=3x(x﹣),x 2g′(x)0 ﹣0 +g(x)﹣递减极小值递增 13由上表可知,g(x)在x=2处取得最大值,即g(x)max=g(2)=1所以当x∈[,2]时,f(x)=+xlnx≥1恒成立,等价于a≥x﹣x 2lnx恒成立,记u(x)=x﹣x2lnx,所以a≥u(x)max,u′(x)=1﹣x﹣2xlnx,可知u′(1)=0,当x∈(,1)时,1﹣x>0,2xlnx<0,则u′(x)>0,∴u(x)在x∈(,2)上单调递增;当x∈(1,2)时,1﹣x<0,2xlnx>0,则u′(x)<0,∴u(x)在(1,2)上单调递减;故当x=1时,函数u(x)在区间[,2],上取得最大值u(1)=1,所以a≥1,故实数a的取值X围是[1,+∞).【点评】本题考查了利用导数研究函数的单调性,考查了导数在最大值、最小值问题中的应用,考查了数学转化思想方法和函数构造法,训练了利用分离变量法求参数的取值X围,属于中档题.四、选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.已知曲线C1的参数方程是(θ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=﹣4cosθ.(1)求曲线C1与C2交点的极坐标;(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).【考点】参数的意义;简单曲线的极坐标方程.【专题】选作题;转化思想;综合法;坐标系和参数方程.【分析】(1)把参数方程和极坐标方程化为直角坐标方程,联立方程组求出交点的坐标,再把交点的直角坐标化为极坐标;(2)画出图象,由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.【解答】解:(1)由(θ为参数),消去参数得:x2+(y﹣2)2=4,即x2+y2﹣4y=0;由ρ=﹣4cosθ,得ρ2=﹣4ρcosθ,即x2+y2=﹣4x.两式作差得:x+y=0,代入C1得交点为(0,0),(﹣2,2).其极坐标为(0,0),(2,);(2)如图,由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.此时|AB|=2+4,O到AB的距离为.∴△OAB的面积为S=×(2+4)×=2+2.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程,考查了推理能力与计算能力,属于基础题.23.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.某某数a的取值X围.【考点】绝对值不等式的解法.【专题】不等式的解法及应用.【分析】(1)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)求得f(x)=|2x+2|﹣|x﹣1|=在区间[﹣4,2]内的值域,结合|2x+2|﹣|x﹣1|>a无解,求得a的X围.【解答】解:(1)当a=0时,不等式即|2x+2|﹣|x﹣1|>0,可得①,或②,或③.解①求得 x<﹣3,解②求得﹣<x<1,解③求得x≥1.综上可得,原不等式的解集为{x|x<﹣3,或x>﹣}.(2)当x∈[﹣4,2],f(x)=|2x+2|﹣|x﹣1|=的值域为[﹣2,3],而不等式|2x+2|﹣|x﹣1|>a无解,故有a≤3.【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想;还考查了分段函数的应用,求函数的值域,属于中档题.。
重庆市一中高三上学期第二次月考(数学理)数学试题共 4 页。
满分 150 分。
考试时间 1钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
一.选择题.(共12小题,每小题5分,共50分) 1.函数)10(22≠>+=-a a ay x 且的图像一定经过点 ( )A.(2,3)B.(2,2)C.(3,2)D.(3,3)2.集合{}R x x y y M ∈-==,12,集合{}R x x y y N ∈-==,32,则N M =( )A .{})1,2(),1,2(- B .{}31≤≤-t tC .{}30≤≤t t D .φ3.“212++=n n n a a a 对任意正整数n 成立”是“数列{}n a 为等比数列”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 4.若N n n n x ∈+∈+=,)1,(31log 131log 12151,则n 的值是 ( )A. 1B. 2C.3D.45.已知n S 是公差不为0的等差数列{}n a 的前n 项和,且421,,S S S 成等比数列, 则132a a a +等于 ( ) A. 4 B. 6 C.8 D.106. 已知函数)(x f y =是最小正周期为2的偶函数,它在[]1,0上的函数解析式为22)(2+-=x x x f ,则在区间[]2,1上,)23(f 等于 ( ) A. 45 B. 43 C. 47D. 17.方程x x sin lg =的实根个数有a 个,方程x x sin =的实根有b 个,则b a +等于 ( )A. 1B. 2C. 3D. 48. ①x x y sin ⋅=; ②1122+-=x y ; ③⎩⎨⎧≤<≤=)10(log )0(22x x x y x ; ④[])2,2(122-∈++-=x x x y 中,函数图像具有对称性的是 ( )A. ①②③B. ①③④C. ②③④D. ①②④ 9.有限数列{},,,,321n a a a a A =n S 是其前n 项和,定义nS S S S n++++ 321为A 的“凯森和”,如有99项的数列{}99321,,,a a a a A =的“凯森和”为1000,则有100项的数列{}99321,,,,1a a a a 的“凯森和”为 ( )A. 1001B. 991C. 999D.990 10.已知函数),(201021201021)(R x x x x x x x x f ∈-++-+-+++++++= 则使2(1)(32)f a f a a -=-+成立的a 值最多可以有 ( )A. 2个B. 3个C. 4个D. 无数个 二.填空题.(共5个小题,每小题5分,共25分)11.若函数x x f a 12log )(-=在),0(+∞上是减函数,且xa y =是R 上的增函数,则实数a 的取值范围为______________. 12.数列{}n a 的通项公式,11++=n n a n 若前n 项和为10,则项数n 为______.13.平行于直线014=--y x 且与曲线23-+=x x y 相切的直线方程是_______.14.设n S 是等差数列{}n a 的前n 项和,已知,144,324,3666===-n n S S S 则n =__________.15.如果一个实数数列{}n a 满足条件:d a a n n =-+21(d 为常数,*N n ∈),则称这一数列 “伪等差数列”, d 称为“伪公差”。
重庆市大足城南中学校2015届高三上学期第二次月考
数学(理)试卷
一、选择题:本大题共10个小题,每小题5分,共50分. 在每小题给出的四个备选项中,只有一项是符合
题目要求的. 1.设集合
{}sin ,A y y x x R ==∈,集合{}lg B x y x ==,则()
R C A B =( )
(1,)A +∞、 [)1,B +∞、 []1,1C -、
(,1)(1,)D -∞-+∞、
2.下列命题错误的是( )
A 、命题“若x 2
-3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2
-3x+2≠0” B 、若p 且q 为假命题,则p 、q 均为假命题 C 、命题p :存在0x ∈R ,使的x 02
+x 0+1<0,则
⌝
p :任意x ∈R ,都有x 2
+x+1≥0
D 、“x<1”是“x 2
-3x+2>0”的充分不必要条件
3.为了得到
)6
2sin(π
-
=x y 的图像,只需要将)3
2sin(π
+
=x y ( )
A.向左平移
2
π
个单位 B. 向右平移2
π
个单位 C. 向左平移
4
π
个单位 D. 向右平移
4
π
个单位
4.设,a b R ∈,则“a b >”是“a a b b
>”成立的( )
(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件
5.函数x
xa
y x
=(01)a <<的图象的大致形状是( )
6.实数2
3
.0=a
,3.0log
2
=b ,3.0)2(=c 的大小关系正确的是(
)
A .a<c<b
B .a<b<c
C .b<a<c
D .b<c<a
A .
7.右图是函数f(x)=x 2
+ax+b 的部分图象,则函数g(x)=lnx+f ′(x)的零点所在的区间是( )
A 、(41,21)
B 、(2,3)
C 、(1,2)
D 、(2
1,1)
8.设函数
()|sin |cos 2,,22f x x x x ππ⎡⎤
=++∈-⎢⎥⎣⎦
,则函数()f x 的最小值是
( )
A .-1
B .0
C .
12
D .
98
9已知函数
2()|23|f x x x =+-,若关于x 的方程22()(2)()20f x a f x a a -++-=有5个不等实
根,则实数a 值是( )
A .2
B .4
C .2或4
D .不确定的
10.定义域为R 的函数
)
(x f y =,若对任意两个不相等的实数
2
1,x x ,都有
)()()()(12212211x f x x f x x f x x f x +>+,则称函数为“H 函数”,现给出如下函数:
①
13++-=x x y ②)cos (sin 23x x x y --=③1+=x e y ④⎩
⎨
⎧=≠=0,00
,ln )(x x x x f 其中为“H 函数”的有( )
A .①②
B .③④ C. ②③ D. ①②③
二、填空题:本大题共5小题,每小题5分,共25分. 把答案填写在答题卡相应位置上.
11.若
()24
)1(2ln )(2+--=x a x x f 在(]4,∞-上是减函数,求a 的范围 。
12. 已知函数
)(x f 的定义域为[]4,3,则)2(log 2+x f 的定义域为 。
13. 函数)(x g 的图像与23)(1-=+x x f 关于点(1,2)对称,则)(x g 的解析式为 。
14、若在△ABC 中,c C
b B a A cos cos sin =
=,则△ABC 的形状为_________ 15.已知函数
x a ax x x f )1(2
1
31)(23-+-=(a ∈R )是区间)4,1(上的单调函数,则a 的取值范围
是 .
三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤.
16. 已知函数2()cos 2cos 1()f x x x x x R =+-∈
(1)求函数()f x 的最小正周期;(6分)
(2)若∀x ∈⎣
⎡⎦
⎤0,π2,都有f (x )-c ≤0,求实数c 的取值范围.(7分)
17. 已知函数2)(23-=+++=x c bx ax x x f 在处取得极值,并且它的图象与直线
33+-=x y 在点(1,0)处相切,
(12分) (1)求()f x 的解析式; (2)求()f x 的单调区间
18. (本小题满分13分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边, 面积C S cos ab 2
3
=
(1)求角C 的大小; (2)设函数2
cos 2cos 2sin 3)(2x
x x x f +=,求)(B f 的最大值,及取得最大值时角B 的值.
19.已知2
)(,ln )(2
ax x g x x x f ==,直线2)3(:+--=k x k y l (13分)
(1)函数)(x f 在e x =处的切线与直线l 平行,求实数k 的值
(2)若至少存在一个],1[0e x ∈使)()(00x g x f <成立,求实数a 的取值范围
20.在△ABC
中,角A,B,C 所对的边分别为a,b,c,已
知.0cos )sin 3(cos cos =-+B A A C (12分) (1) 求角B 的大小;
(2)若1=+c a ,求b 的取值范围
21.(13分)已知函数2
ln )(x x a x f += (a 为实常数) .(13分) (1)当4-=a 时,求函数)(x f 在[]1,e 上的最大值及相应的x 值; (2)当[]e x ,1∈时,讨论方程()0=x f 根的个数.
(3)若0>a ,且对任意的[]12,1,x x e ∈,都有()()2
1211
1x x x f x f -≤-, 求实数a 的取值范围.。