1基本指令-2011092108062819
- 格式:ppt
- 大小:899.50 KB
- 文档页数:36
第一节基本指令的类型基本指令一览表:基本指令.步进梯形图指令FX1S可编程序控制器的基本顺控指令和步进梯形图指令的种类及其功能如下所示:1.程序举例:2.例题解释:1)当X0接通时,Y0接通;2)当X1断开时,Y1接通。
3.指令使用说明:1)LD和LDI指令用于将常开和常闭触点接到左母线上;2)LD和LDI在电路块分支起点处也使用;3)OUT指令是对输出继电器、辅助继电器、状态继电器、定时器、计数器的线圈驱动指令,不能用于驱动输入继电器,因为输入继电器的状态是由输入信号决定的。
4)OUT指令可作多次并联使用,如下图。
5)定时器的计时线圈或计数器的计数线圈,使用OUT指令后,必须设定值(常数K或指定数据寄存器的地址号),如上图。
2.例题解释:1)当X0接通,X2接通时Y0接通;2)X1断开,X3接通时Y2接通;3)常开X4接通,X5断开时Y3接通;四、ORB、并联电路块串联指令ANB1.程序举例:2.例题解释:1)X0与X1、X2与X3、X4与X5任一电路块接通,Y1接通;2)X0或X1接通,X2与X3接通或X4接通,Y0都可以接通;3.指令说明:1)ORB、ANB无操作软元件2)2个以上的触点串联连接的电路称为串联电路块;3)将串联电路并联连接时,分支开始用LD、LDI指令,分支结束用ORB指令;4)ORB、ANB指令,是无操作元件的独立指令,它们只描述电路的串并联关系;5)有多个串联电路时,若对每个电路块使用ORB指令,则串联电路没有限制,如上举例程序;6)若多个并联电路块按顺序和前面的电路串联连接时,则ANB指令的使用次数没有限制;7)使用ORB、ANB指令编程时,也可以采取ORB、ANB指令连续使用的方法;但只能连续使用不超过8次,在此建议不使用此法。
8)。
汇编语言程序设计基本命令汇编语言是一种底层的编程语言,直接操作计算机硬件,其指令由一系列的机器码组成。
在汇编语言程序设计中,我们需要了解一些基本的命令,包括数据传送指令、算术运算指令、控制转移指令等,下面就对这些命令做一详细的介绍。
1.数据传送指令在汇编语言中,数据传送指令用来将数据从一个位置复制到另一个位置,常用的数据传送指令有MOV、LEA和XCHG。
-MOV指令:将源操作数的值复制给目标操作数,格式为MOV目标操作数,源操作数。
-LEA指令:用来将有效地址(即内存中的地址)传送给寄存器,格式为LEA目标操作数,源操作数。
-XCHG指令:交换两个操作数的值,格式为XCHG目标操作数,源操作数。
2.算术运算指令在汇编语言中,我们可以使用一系列算术运算指令来对数据进行运算和处理,常见的算术运算指令有ADD、SUB、MUL和DIV等。
-ADD指令:用于进行加法运算,格式为ADD目标操作数,源操作数。
-SUB指令:用于进行减法运算,格式为SUB目标操作数,源操作数。
-MUL指令:用于进行乘法运算,格式为MUL目标操作数,源操作数。
-DIV指令:用于进行除法运算,格式为DIV目标操作数,源操作数。
控制转移指令用于改变程序的执行流程,常见的控制转移指令有JMP、JZ、JE、JNE等。
-JMP指令:用于无条件地跳转到目标地址继续执行,格式为JMP目标地址。
-JZ指令:用于当结果为零时跳转到目标地址继续执行,格式为JZ目标地址。
-JE指令:用于当结果相等时跳转到目标地址继续执行,格式为JE目标地址。
-JNE指令:用于当结果不相等时跳转到目标地址继续执行,格式为JNE目标地址。
4.逻辑运算指令逻辑运算指令用于对数据进行逻辑运算,常见的逻辑运算指令有AND、OR、XOR和NOT等。
-AND指令:对两个操作数的对应位进行与运算,格式为AND目标操作数,源操作数。
-OR指令:对两个操作数的对应位进行或运算,格式为OR目标操作数,源操作数。
技能培训专题-PLC基本指令PLC(可编程逻辑控制器)是一种用于自动化控制的电子设备,其编程方式类似于计算机编程语言。
PLC使用基本指令来控制机器的运行,保证了生产过程的可靠性和稳定性。
本文主要介绍PLC基本指令的内容和应用。
一、基本指令的种类PLC基本指令主要包括以下种类:1.输入(X)和输出(Y)指令:用于控制机器的输入和输出信号。
2.比较(C)指令:用于比较两个数值的大小关系。
3.计数(CTU和CTD)指令:用于记录产品数量。
4.定时(TON和TOF)指令:用于设置时间参数,如延迟时间和定时器。
5.移位(S)指令:用于移位寄存器中的二进制数。
6.跳转(JUMP)指令:用于控制程序的流程。
7.循环(FOR NEXT)指令:用于循环运行程序。
二、基本指令的应用1.输入(X)和输出(Y)指令在控制工业生产过程中,PLC输入和输出信号的状态是实时监控和控制的必要条件。
如PLC可以自动检测设备是否正常运转,设备是否处于安全状态,或者经过计算机处理后自动控制设备的运行状态。
输入和输出指令是PLC编程中最为基础的两种指令。
2.比较(C)指令PLC通过比较两个数值的大小关系来控制机器的运转状态。
如PLC可以检测温度、压力、流量等状态指标,并据此调整机器的运行状态。
3.计数(CTU和CTD)指令计数指令是PLC编程中常用的指令之一。
PLC将信号输入转化为计数器值,根据计数器值来控制机器运行的状态。
如在工业生产过程中,PLC可以计算产品数量,并显示生产数量。
此外,计数器也可以统计设备运行状态等信息。
4.定时(TON和TOF)指令定时指令是PLC编程中另一个重要指令。
PLC通过定时器来确定设备运行状态,如延迟时间、运行时间、产品质量等方面。
定时指令也可以控制设备运行时间,保证设备在允许的时间内正常运行。
5.移位(S)指令移位指令是PLC编程中常用的指令之一。
PLC使用移位指令来对二进制数进行移位,保证机器的运行状态。
汇编语言基本指令详解在计算机科学和计算机工程领域,汇编语言是一种计算机底层编程语言,用于直接控制计算机硬件。
它是机器语言的文本形式,使用符号和助记符来代表机器指令,相对于高级编程语言来说更加底层。
汇编语言基本指令是使用汇编语言进行编程时必不可少的内容。
下面将详细介绍汇编语言中常用的基本指令。
1. 数据传送指令数据传送指令用于在寄存器之间传递数据,常见的指令有MOV、ADD、SUB、MUL等。
MOV指令用于将数据从一个位置传送到另一个位置,格式为MOV 目标操作数, 源操作数。
例如,MOV AX, BX可以将BX的值传送给AX。
ADD指令用于将两个操作数相加,并将结果保存到目标操作数中。
格式为ADD 目标操作数, 源操作数。
例如,ADD AX, BX可以将AX与BX的值相加,并将结果保存在AX中。
SUB指令用于将源操作数的值从目标操作数中减去,并将结果保存到目标操作数中。
格式为SUB 目标操作数, 源操作数。
例如,SUB AX, BX可以将BX的值从AX中减去,并将结果保存在AX中。
MUL指令用于将两个操作数相乘,并将结果保存到目标操作数中。
格式为MUL 目标操作数, 源操作数。
例如,MUL AX, BX可以将AX与BX的值相乘,并将结果保存在AX中。
2. 算术逻辑指令算术逻辑指令用于进行各种算术和逻辑运算,例如加法、减法、乘法、除法、与、或、非等。
ADD指令在前面已经提到,用于将两个操作数相加。
SUB指令在前面已经提到,用于将源操作数的值从目标操作数中减去。
MUL指令在前面已经提到,用于将两个操作数相乘。
DIV指令用于将目标操作数除以源操作数,并将商保存到目标操作数,余数保存在DX中。
格式为DIV 操作数。
例如,DIV BX可以将AX的值除以BX,并将商保存在AX中,余数保存在DX中。
AND指令用于对两个操作数进行按位与运算,并将结果保存到目标操作数中。
格式为AND 目标操作数, 源操作数。
例如,AND AX,BX可以将AX与BX的值按位与,并将结果保存在AX中。
2009-10-22 18:2251单片机指令表助记符指令说明字节数周期数(数据传递类指令)MOV A,Rn 寄存器传送到累加器 1 1MOV A,direct 直接地址传送到累加器 2 1MOV A,@Ri 累加器传送到外部RAM(8) 1 1 MOV A,#data 立即数传送到累加器 2 1MOV Rn,A 累加器传送到寄存器 1 1MOV Rn,direct 直接地址传送到寄存器 2 2MOV Rn,#data 累加器传送到直接地址 2 1MOV direct,Rn 寄存器传送到直接地址 2 1MOV direct,direct 直接地址传送到直接地址 3 2 MOV direct,A 累加器传送到直接地址 2 1MOV direct,@Ri 间接RAM 传送到直接地址 2 2 MOV direct,#data 立即数传送到直接地址 3 2 MOV @Ri,A 直接地址传送到直接地址 1 2 MOV @Ri,direct 直接地址传送到间接RAM 2 1 MOV @Ri,#data 立即数传送到间接RAM 2 2MOV DPTR,#data16 16 位常数加载到数据指针 3 1 MOVC A,@A+DPTR 代码字节传送到累加器 1 2 MOVC A,@A+PC 代码字节传送到累加器 1 2MOVX A,@Ri 外部RAM(8)传送到累加器 1 2 MOVX A,@DPTR 外部RAM(16)传送到累加器 1 2 MOVX @Ri,A 累加器传送到外部RAM(8) 1 2 MOVX @DPTR,A 累加器传送到外部RAM(16) 1 2 PUSH direct 直接地址压入堆栈 2 2POP direct 直接地址弹出堆栈 2 2XCH A,Rn 寄存器和累加器交换 1 1XCH A, direct 直接地址和累加器交换 2 1XCH A, @Ri 间接RAM 和累加器交换 1 1XCHD A, @Ri 间接RAM 和累加器交换 1 1 低4 位字节(算术运算类指令)INC A 累加器加1 1 1INC Rn 寄存器加1 1 1INC direct 直接地址加1 2 1INC @Ri 间接RAM 加1 1 1INC DPTR 数据指针加1 1 2DEC A 累加器减1 1 1DEC Rn 寄存器减1 1 1DEC direct 直接地址减1 2 2DEC @Ri 间接RAM 减1 1 1MUL AB 累加器和B 寄存器相乘 1 4DIV AB 累加器除以B 寄存器 1 4DA A 累加器十进制调整 1 1ADD A,Rn 寄存器与累加器求和 1 1ADD A,direct 直接地址与累加器求和 2 1ADD A,@Ri 间接RAM 与累加器求和 1 1ADD A,#data 立即数与累加器求和 2 1ADDC A,Rn 寄存器与累加器求和(带进位) 1 1 ADDC A,direct 直接地址与累加器求和(带进位) 2 1 ADDC A,@Ri 间接RAM 与累加器求和(带进位) 1 1 ADDC A,#data 立即数与累加器求和(带进位) 2 1 SUBB A,Rn 累加器减去寄存器(带借位) 1 1 SUBB A,direct 累加器减去直接地址(带借位) 2 1 SUBB A,@Ri 累加器减去间接RAM(带借位) 1 1 SUBB A,#data 累加器减去立即数(带借位) 2 1(逻辑运算类指令)ANL A,Rn 寄存器“与”到累加器 1 1ANL A,direct 直接地址“与”到累加器 2 1ANL A,@Ri 间接RAM“与”到累加器 1 1ANL A,#data 立即数“与”到累加器 2 1ANL direct,A 累加器“与”到直接地址 2 1ANL direct, #data 立即数“与”到直接地址 3 2 ORL A,Rn 寄存器“或”到累加器 1 2ORL A,direct 直接地址“或”到累加器 2 1ORL A,@Ri 间接RAM“或”到累加器 1 1ORL A,#data 立即数“或”到累加器 2 1ORL direct,A 累加器“或”到直接地址 2 1ORL direct, #data 立即数“或”到直接地址 3 1 XRL A,Rn 寄存器“异或”到累加器 1 2XRL A,direct 直接地址“异或”到累加器 2 1XRL A,@Ri 间接RAM“异或”到累加器 1 1XRL A,#data 立即数“异或”到累加器 2 1XRL direct,A 累加器“异或”到直接地址 2 1XRL direct, #data 立即数“异或”到直接地址 3 1 CLR A 累加器清零 1 2CPL A 累加器求反 1 1RL A 累加器循环左移 1 1RLC A 带进位累加器循环左移 1 1RR A 累加器循环右移 1 1RRC A 带进位累加器循环右移 1 1SWAP A 累加器高、低4 位交换 1 1(控制转移类指令)JMP @A+DPTR 相对DPTR 的无条件间接转移 1 2JZ rel 累加器为0 则转移 2 2JNZ rel 累加器为1 则转移 2 2CJNE A,direct,rel 比较直接地址和累加器,不相等转移 3 2 CJNE A,#data,rel 比较立即数和累加器,不相等转移 3 2 CJNE Rn,#data,rel 比较寄存器和立即数,不相等转移 2 2 CJNE @Ri,#data,rel 比较立即数和间接RAM,不相等转移 3 2 DJNZ Rn,rel 寄存器减1,不为0 则转移 3 2DJNZ direct,rel 直接地址减1,不为0 则转移 3 2NOP 空操作,用于短暂延时 1 1ACALL add11 绝对调用子程序 2 2LCALL add16 长调用子程序 3 2RET 从子程序返回 1 2RETI 从中断服务子程序返回 1 2AJMP add11 无条件绝对转移 2 2LJMP add16 无条件长转移 3 2SJMP rel 无条件相对转移 2 2(布尔指令)CLR C 清进位位 1 1CLR bit 清直接寻址位 2 1SETB C 置位进位位 1 1SETB bit 置位直接寻址位 2 1CPL C 取反进位位 1 1CPL bit 取反直接寻址位 2 1ANL C,bit 直接寻址位“与”到进位位 2 2ANL C,/bit 直接寻址位的反码“与”到进位位 2 2ORL C,bit 直接寻址位“或”到进位位 2 2ORL C,/bit 直接寻址位的反码“或”到进位位 2 2MOV C,bit 直接寻址位传送到进位位 2 1MOV bit, C 进位位位传送到直接寻址 2 2JC rel 如果进位位为1 则转移 2 2JNC rel 如果进位位为0 则转移 2 2JB bit,rel 如果直接寻址位为1 则转移 3 2JNB bit,rel 如果直接寻址位为0 则转移 3 2JBC bit,rel 直接寻址位为1 则转移并清除该位 2 2(伪指令)ORG 指明程序的开始位置DB 定义数据表DW 定义16 位的地址表EQU 给一个表达式或一个字符串起名DATA 给一个8 位的内部RAM 起名XDATA 给一个8 位的外部RAM 起名BIT 给一个可位寻址的位单元起名END 指出源程序到此为止(指令中的符号标识)Rn 工作寄存器R0-R7Ri 工作寄存器R0 和R1@Ri 间接寻址的8 位RAM 单元地址(00H-FFH)#data8 8 位常数#data16 16 位常数addr16 16 位目标地址,能转移或调用到64KROM 的任何地方addr11 11 位目标地址,在下条指令的2K 范围内转移或调用Rel 8 位偏移量,用于SJMP 和所有条件转移指令,范围-128~+127 Bit 片内RAM 中的可寻址位和SFR 的可寻址位Direct 直接地址,范围片内RAM 单元(00H-7FH)和80H-FFH$ 指本条指令的起始位置。
汇编的基本常用指令汇编语言是一种底层的计算机语言,用于编写程序和指令集。
在汇编语言中,指令是一种特定的操作码,它告诉计算机执行某种操作。
在这篇文章中,我们将介绍汇编语言中一些基本常用的指令。
一、数据传输指令数据传输指令用于在寄存器和内存之间传输数据。
下面是一些常用的数据传输指令:1. MOVMOV指令用于将数据从一个位置复制到另一个位置。
例如,MOV AX, BX将寄存器BX中的数据复制到AX寄存器中。
2. XCHGXCHG指令用于交换两个位置的数据。
例如,XCHG AX, BX将AX和BX寄存器中的数据互换。
3. PUSHPUSH指令用于将数据压入栈。
例如,PUSH AX将AX寄存器的值压入栈中。
4. POPPOP指令用于从栈中弹出数据。
例如,POP AX将从栈中弹出的数据存储到AX寄存器中。
算术指令用于执行算术操作,例如加法、减法、乘法和除法。
下面是一些常用的算术指令:1. ADDADD指令用于将两个数相加,并将结果存储在指定的位置。
例如,ADD AX, BX将AX和BX寄存器中的值相加,并将结果存储在AX寄存器中。
2. SUBSUB指令用于将第二个操作数的值从第一个操作数的值中减去,并将结果存储在指定的位置。
例如,SUB AX, BX从AX寄存器中减去BX寄存器的值,并将结果存储在AX寄存器中。
3. MULMUL指令用于将两个数相乘,并将结果存储在指定的位置。
例如,MUL AX, BX将AX和BX寄存器中的值相乘,并将结果存储在AX寄存器中。
4. DIVDIV指令用于将第一个操作数的值除以第二个操作数的值,并将商存储在第一个操作数指定的位置,余数存储在指定的位置。
例如,DIV AX, BX将AX寄存器中的值除以BX寄存器的值,并将商存储在AX寄存器中,余数存储在DX寄存器中。
逻辑指令用于执行逻辑操作,例如与、或、非和异或等。
下面是一些常用的逻辑指令:1. ANDAND指令用于对两个操作数进行按位与操作,并将结果存储在指定的位置。
PLC指令表用梯形图等图形编程虽然直观、简使,但要求PLC配置LRT显示器方可能输入图形符号。
在许多小型、微型PLC的编程器中没有LRT屏幕显示,或没有较大的液晶屏幕显示,就只能用一系列PLC操作命令组成的指令程序将梯形图控制逻辑描述出来,并通过编程器输人到PLC 中去。
PLC的指令表(语句表、指令字程序、助记符语言)是由若干条PLC指令组成的程序。
PLC的指令类似于计算机汇编语言的形式,它是用指令的助记符来编程的。
但是PLC的指令系统远比计算机汇编语言的指合系统简单得多。
PLC-般有20 多条基本逻辑指令,可以编制出能答代继电器控制系统的梯形图。
因此,指令表也是一种应用很广的编程语言。
PLC中最基本的运算是逻辑运算,最常用的指令是逻辑运算指令,如“与”、“或”、“非”等。
这些指令再加上“输人”、“输出”和“结束”等指令,就构成了 PLC的基本指令。
不同厂家的PLC,指令的助记符不相同。
如 FX系列PLC常见指令的助记符为:LD/LDI表示逻辑操作开始,分别为常开触点/常闭触点与左母线连接; AND/ANI表示逻辑“与”/“与反",分别为常开触点/常闭触点与左边的触点相串联;OR/ORI表示逻辑“或”/“或反”,分别为常开触点/常闭触点与上边的触点相并联;ANB/ORB表示逻辑块“与”/“或”;END表示程序结束。
指令表是梯形图的派生语言,它保持了梯形图的简单、易懂的特点,并且键人方便、编程灵活。
但是指令表不如梯形图形象、直观,较难阅读,其中的逻辑关系也很难一眼看出。
所以在设计时一般多使用梯形图语言;而在使用指令表编程时,也是先根据控制要求编出梯形图,然后根据梯形图转换成指令表后再写人PLC 中,这种转换的规则是很简单的。
在用户程序存储器中,指令按步序号顺序排列。
引言概述:单片机指令是嵌入式系统设计中至关重要的一部分,它们定义了单片机的功能和操作。
本文是单片机指令大全系列的第二部分,旨在提供更多全面的单片机指令信息,帮助读者更好地理解和应用单片机指令。
正文内容:一、移位指令1.逻辑左移指令:将操作数的每一位向左移动一位,并且最低位填充0。
2.逻辑右移指令:将操作数的每一位向右移动一位,并且最高位填充0。
3.算术右移指令:将操作数的每一位向右移动一位,并且最高位保持不变。
4.循环左移指令:将操作数的每一位向左循环移动一位,即最高位移动到最低位。
5.循环右移指令:将操作数的每一位向右循环移动一位,即最低位移动到最高位。
二、逻辑运算指令1.逻辑与指令:对操作数进行逻辑与运算,将两个二进制数对应位上的值进行逻辑与操作。
2.逻辑或指令:对操作数进行逻辑或运算,将两个二进制数对应位上的值进行逻辑或操作。
3.逻辑非指令:对操作数进行逻辑非运算,将二进制数的每一位取反。
4.逻辑异或指令:对操作数进行逻辑异或运算,将两个二进制数对应位上的值进行逻辑异或操作。
5.逻辑移位指令:将操作数进行逻辑左移或右移。
三、算术运算指令1.加法指令:对操作数进行加法运算,并将运算结果保存到指定的寄存器或存储器中。
2.减法指令:对操作数进行减法运算,并将运算结果保存到指定的寄存器或存储器中。
3.乘法指令:对操作数进行乘法运算,并将运算结果保存到指定的寄存器或存储器中。
4.除法指令:对操作数进行除法运算,并将运算结果保存到指定的寄存器或存储器中。
5.移位指令:对操作数进行移位运算,包括算术左移、算术右移、循环左移和循环右移。
四、输入输出指令1.读取输入指令:从指定的输入设备读取数据,并将数据保存到指定的寄存器或存储器中。
2.输出显示指令:将指定的数据从寄存器或存储器中读取,并显示到指定的输出设备上。
3.端口输入指令:从指定的端口读取数据,并将数据保存到指定的寄存器或存储器中。
4.端口输出指令:将指定的数据从寄存器或存储器中读取,并输出到指定的端口上。
一个单片机所需执行指令的集合即为单片机的指令系统。
单片机使用的机器语言、汇编语言及高级语言,但不管使用是何种语言,最终还是要“翻译”成为机器码,单片机才能执行之。
现在有很多半导体厂商都推出了自己的单片机,单片机种类繁多,品种数不胜数,值得注意的是不同的单片机它们的指令系统不一定相同,或不完全相同。
但不管是使用机器语言、汇编语言还是高级语言都是使用指令编写程序的。
所谓机器语言即指令的二进制编码,而汇编语言则是指令的表示符号。
在指令的表达式上也不会直接使用二进制机器码,最常用的是十六进制的形式。
但单片机并不能直接执行汇编语言和高级语言,都必须通过汇编器“翻译”成为二进制机器码方能执行,但如果直接使用二进制来编写程序,那将十分不便,也很难记忆和识别,不易编写、难于辨读,极易出错,同时出错了也相当难查找。
所以现在基本上都不会直接使用机器语言来编写单片机的程序。
最好的办法就是使用易于阅读和辨认的指令符号来代替机器码,我们常称这些符号为助记符,用助记符的形式表示的单片机指令就是汇编语言,为便于记忆和阅读,助记符号通常都使用易于理解的英文单词和拼音字母来表示。
每种单片机都有自己独特的指令系统,那么指令系统是开发和生产厂商定义的,如要使用其单片机,用户就必须理解和遵循这些指令标准,要掌握某种(类)单片机,指令系统的学习是必须的。
MCS-51共有111条指令,可分为5类:[1].数据传送类指令(共29条)[2].算数运算类指令(共24条)[3].逻辑运算及移位类指令(共24条)[4].控制转移类指令(共17条)[5].布尔变量操作类指令(共17条)一些特殊符号的意义在介绍指令系统前,我们先了解一些特殊符号的意义,这对今后程序的编写都是相当有用的。
Rn——当前选中的寄存器区的8个工作寄存器R0—R7(n=0-7)。
Ri——当前选中的寄存器区中可作为地址寄存器的两个寄存器R0和R1(i=0,1)direct—内部数据存储单元的8位地址。