有害废物的生物修复-综述(english)
- 格式:pdf
- 大小:443.45 KB
- 文档页数:14
环境科学领域水体污染修复技术综述水体污染是当今世界面临的一大环境挑战,对人类健康和生态系统稳定产生了严重影响。
为了保护水资源、改善环境质量,环境科学领域开展了广泛的水体污染修复技术研究。
本文将对环境科学领域水体污染修复技术进行综述,介绍常用的修复技术和相关研究进展。
一、物理修复技术1. 沉淀技术:通过添加絮凝剂将污染物聚集成颗粒并沉淀,如慢速沉淀池和湿地沉淀池等。
2. 过滤技术:利用滤料或滤膜将水中的悬浮物、胶体、颗粒等物质分离出来,如砂滤、纤维膜过滤等。
3. 吸附技术:利用吸附材料吸附水中的有害物质,例如活性炭吸附技术、离子交换技术等。
4. 膜分离技术:通过逆渗透、超滤、微滤等膜分离技术,实现对水体中污染物的分离和去除。
二、化学修复技术1. 沉淀剂技术:利用添加沉淀剂,如氢氧化铁、氢氧化铝等,在水中形成沉淀反应,从而去除重金属离子等有害物质。
2. 氧化还原技术:采用强氧化剂或还原剂,如臭氧、过氧化氢、二氧化氯等,将水中有机物氧化分解或还原成无害物质。
3. 中和技术:通过添加酸或碱来调节水体的酸碱度,使污染物发生中和反应并沉淀。
4. 光催化技术:利用光催化剂,如二氧化钛等,光解水中的有机物质,达到水体净化的目的。
三、生物修复技术1. 植物修复技术:利用适应水生环境的植物,如菖蒲、莲草、浮萍等,在水体中吸收和转化污染物质,达到净化水体的目的。
2. 微生物修复技术:利用生长在水中的细菌、藻类等微生物,降解水中的有机污染物,并转化为无害物质。
3. 细胞修复技术:利用工程细胞或转基因微生物来修复水体中的污染物质,如利用金属还原菌修复重金属污染等。
4. 生态修复技术:通过构建湿地、人工湖泊等生态系统,利用水生生物的自净、吸附和降解作用,修复水体污染。
四、综合修复技术1. 复合技术:结合物理、化学和生物修复技术,形成修复系统,提高水体修复效果。
2. 修复剂技术:利用修复剂,如吸附剂、分解剂等,来加速修复过程,提高修复效率。
植物对重金属污染的生物修复重金属污染是当前环境问题中一个严重的挑战。
重金属污染源广泛存在于工业排放、农药使用、废弃物处理等多个领域,对土壤和水体造成严重破坏,威胁到人类和生态系统的健康。
然而,大自然中存在一种独特的修复机制,就是植物对重金属的生物修复能力。
本文将探讨植物对重金属污染的生物修复机制、适用植物种类及其应用前景。
一、植物对重金属污染的生物修复机制植物对重金属污染的生物修复是指植物通过吸收、转运、抑制和转化等方式,将土壤或水体中的重金属元素转移到其根系、地上部分或内部物质中,进而将其毒性降低或转化为可形态排除的形态。
主要的生物修复机制包括以下几点:1. 吸收:植物通过其根系吸收土壤中的重金属元素,特别是根系毛细管的形成使得植物对水溶性重金属离子有更高的吸收能力。
2. 转运:吸收到的重金属元素会通过植物的血管系统从根部运输到地上部分,形成根-茎-叶的元素分布。
3. 抑制:植物通过增加细胞壁、分泌物质等方式抑制重金属元素进入细胞核,从而减少其在植物内的积累。
4. 转化:植物通过一系列酶的作用,将有害的重金属元素转化为无害的形态,如转化为难溶于水的物质或结合到有机物质上。
二、适用植物种类针对不同的重金属元素,不同的植物种类表现出不同的修复效果。
以下是一些常见的适用植物种类及其对应的重金属修复能力:1. 矿产型植物:对于含有高浓度金属元素的土壤,如铜、铅、锌等,一些矿产型植物如铜钱草、柳叶菜等具有较好的修复能力。
2. 能源型植物:对于含有放射性元素铀或油田污染的土壤,能源型植物如悬铃木、榆叶梅等适用于生物修复。
3. 资源型植物:对于重金属元素浓度较低的土壤,一些资源型植物如小麦、玉米等对铬、镉、汞等重金属的修复效果较好。
三、植物对重金属污染的应用前景植物对重金属污染的生物修复具有成本低、易操作、环境友好等特点,凭借其显著的优势和潜力,已逐渐应用于实际工程中。
以下是植物对重金属污染的应用前景:1. 植物修复技术可应用于土壤修复和水体净化工程,通过选择适宜的植物进行植被覆盖和水体处理,能够降低污染物浓度并改善生态环境。
《生物修复技术在黑臭河道治理中的应用》篇一一、引言随着工业化的快速发展和城市化进程的推进,水环境污染问题日益凸显。
其中,黑臭河道的治理成为当下环境治理的重点与难点。
生物修复技术作为一种新兴的生态修复技术,以其独特的优势在黑臭河道治理中发挥着重要作用。
本文将探讨生物修复技术的原理、应用及其在黑臭河道治理中的实践效果。
二、生物修复技术概述生物修复技术是指利用生物的生命代谢活动,促进环境中有机污染物的降解和转化,从而恢复生态系统的功能。
该技术主要利用微生物、植物等生物体及其代谢产物的生物化学作用,将有害物质转化为无害物质,达到净化环境的目的。
三、生物修复技术在黑臭河道治理中的应用1. 微生物修复技术微生物修复技术是利用微生物的代谢活动来降解水体中的有机污染物,从而达到净化水质的目的。
在黑臭河道治理中,通过投加高效降解菌剂,促进河道底泥中有机物的分解,减少污染物的释放。
同时,利用生物膜反应器等技术,强化微生物对污染物的降解效果。
2. 植物修复技术植物修复技术是利用植物及其根际微生物的共同作用来净化水质。
在黑臭河道治理中,通过种植具有净化能力的植物,如水生植物、湿地植物等,利用其根系吸收和转化水中的营养物质和有害物质。
同时,植物还能提供氧气,促进微生物的活性,加速有机物的分解。
3. 组合修复技术组合修复技术是将微生物修复技术和植物修复技术相结合,利用二者的协同作用来提高修复效果。
在黑臭河道治理中,可以根据河道的具体情况,选择合适的微生物和植物进行组合修复。
例如,在河道上游种植耐污能力强的水生植物,同时投加高效降解菌剂,以实现更好的净化效果。
四、实践效果及展望生物修复技术在黑臭河道治理中的应用已经取得了显著的成果。
通过生物修复技术的实施,黑臭河道的水质得到了明显改善,水体透明度提高,藻类大量减少,臭味逐渐消失。
同时,生物修复技术还能改善河道的生态环境,提高水体的自净能力,实现水生态系统的良性循环。
然而,生物修复技术在黑臭河道治理中的应用仍面临一些挑战。
引言概述微生物修复是一种环境修复技术,通过利用微生物的生物活性和代谢功能来降解和清除污染物。
本文将进一步探讨微生物修复的相关概念、应用领域、作用机制、影响因素以及发展前景。
正文内容1. 微生物修复的应用领域- 土壤修复:微生物修复在土壤污染修复中被广泛应用,可用于降解有机污染物、重金属的去除和转化,恢复土壤的生态功能。
- 水体修复:微生物修复可用于处理废水和湖泊、河流水体的污染,通过微生物的生物降解能力来去除有毒有害物质,净化水质,恢复水体生态系统的健康。
- 气体修复:微生物修复也逐渐应用于气体污染修复,例如通过微生物降解挥发性有机物、减少甲烷排放等方式来改善大气质量。
2. 微生物修复的作用机制- 生物降解:微生物通过分泌特定酶降解有机污染物为无毒或低毒物质,从而减少对环境的危害。
- 吸附与蓄积:微生物表面的菌体、胞外多糖等物质可与污染物发生物理或化学吸附,将其从环境中去除或减少迁移。
- 转化与转运:微生物通过代谢途径将污染物转化为相对稳定或相对无害的物质,如无机盐、CO2等,同时可能通过转运作用将转化产物释放到环境中。
3. 微生物修复的影响因素- 微生物选择:不同类型的微生物对不同污染物具有不同的降解能力,因此在微生物修复中需要根据具体情况选择适宜的微生物菌株。
- 环境因素:温度、pH值、氧化还原电位等环境因素对微生物的活性和代谢能力产生重要影响,修复效果与环境条件的配合密切相关。
- 营养物质:微生物修复需要适当的营养物质才能维持其生长和代谢活动,不同微生物菌株对营养需求有所差异。
4. 微生物修复的发展前景- 技术创新:随着生物技术和基因工程的发展,微生物修复技术将会进一步完善,新的尖端技术也将被应用于微生物修复中,提高修复效率和降解能力。
- 综合治理:微生物修复逐渐与其他环境修复技术相结合,例如植物修复、化学修复等,形成综合修复体系,实现更全面、高效的环境修复效果。
- 合作与国际交流:微生物修复技术的发展需要国际合作与交流,共同研究、分享经验,进一步推动微生物修复技术在全球范围内的应用和发展。
浅析持久性有机污染物污染土壤生物修复持久性有机污染物(Persistent Organic Pollutants,简称POPs)是一类在环境中难以降解并长期存在的有机化合物,对生态系统和人类健康造成严重的威胁。
由于其在土壤中的累积性和生物蓄积性,在土壤中修复POPs污染是一个复杂而重要的课题。
POPs污染的修复可以通过物理、化学和生物方法等多种途径进行,其中生物修复是一种可行的经济、有效的修复手段。
生物修复可以利用土壤中的微生物和植物等生物资源,通过生物降解、生物释放等生物作用将POPs污染物转化为无毒或低毒物质,并最终实现土壤的修复。
生物降解是生物修复的主要手段之一,是通过土壤中的微生物代谢降解POPs污染物。
不同的POPs污染物需要不同类型的微生物参与降解,如芳香族的POPs如苯并芘可以通过芳香族细菌进行降解,而多氯联苯可以通过腐生细菌进行降解。
了解微生物种类和其功能特点对于生物修复的成功非常重要。
生物释放是生物修复的另一种方式,它是通过选用适合生长于污染土壤的植物,利用植物的根系吸附和富集POPs污染物,并通过植物的生物释放作用将POPs污染物从土壤中释放出来。
植物释放的POPs污染物可以进一步被微生物利用进行降解,或者通过根际微生物的作用降解。
除了生物降解和生物释放外,还可以利用土壤中的微生物来修饰POPs污染物。
生物修饰是通过改变土壤中微生物的代谢活性来降低POPs污染物的毒性。
这可以通过添加特定的微生物菌剂或添加有机质等方式实现。
添加具有降解POPs能力的菌种可以增加土壤中POPs的降解速度。
虽然生物修复是一种有效的修复方法,但也存在一些挑战。
不同的POPs污染物在不同的环境条件下具有不同的降解能力,因此需要根据具体情况选择适当的修复方法。
生物修复需要长时间的作用,需要耐心和持久的投入。
生物修复过程中可能会出现生物扩散和生物放大的问题,需要考虑农田和生态系统的平衡。
有机农药污染土壤现状及其修复技术研究综述一、本文概述随着现代农业的快速发展,有机农药在农业生产中的应用日益广泛,为保障粮食产量和农产品质量做出了巨大贡献。
然而,随之而来的农药残留问题也逐渐凸显,对土壤环境造成了严重污染。
本文旨在综述有机农药污染土壤的现状,分析其对土壤生态系统和人类健康的影响,同时探讨现有的土壤修复技术及其在实际应用中的效果。
通过对相关文献的梳理和评价,本文旨在为未来农药污染土壤的修复和防治工作提供理论依据和技术支持。
在概述部分,本文将首先介绍有机农药的种类和使用情况,阐述农药污染土壤的主要途径和机制。
接着,将重点分析农药污染对土壤生物多样性、土壤理化性质以及农产品安全性的影响。
在此基础上,本文将综述现有的土壤修复技术,包括物理修复、化学修复和生物修复等方法,并分析其优缺点和适用范围。
本文将提出未来研究方向和建议,以期为解决有机农药污染土壤问题提供新的思路和方案。
二、有机农药污染土壤现状分析随着现代农业的快速发展,有机农药在农业生产中得到了广泛应用,为保障粮食产量和农产品质量发挥了重要作用。
然而,不合理的使用方式以及农药残留问题,使得有机农药成为土壤污染的主要来源之一。
当前,有机农药污染土壤的现状十分严峻。
一方面,许多地区在农业生产中过度依赖农药,导致土壤中的农药残留量超标。
这些残留农药不仅破坏了土壤结构,降低了土壤肥力,还通过食物链威胁人类健康。
另一方面,由于缺乏科学的农药使用指导和技术支持,农民在使用农药时往往存在盲目性和随意性,进一步加剧了土壤污染问题。
为了深入了解有机农药污染土壤的现状,需要开展系统的调查和评估工作。
这包括对土壤中农药残留的种类、浓度和分布情况进行详细分析,评估农药对土壤生态系统的影响,以及监测农药在土壤中的迁移转化规律。
通过这些研究,可以更加准确地了解有机农药污染土壤的现状,为制定有效的修复技术提供科学依据。
还需要加强对有机农药污染土壤的宣传和教育工作。
有机污染土壤治理修复技术综述目录一、内容概括 (2)二、有机污染土壤概述 (3)1. 定义与特点 (4)2. 有机污染土壤的来源及危害 (5)三、有机污染土壤治理修复技术 (5)1. 物理修复技术 (7)(1)热脱附技术 (8)(2)冻结解冻技术 (9)(3)分离技术 (10)2. 化学修复技术 (12)(1)化学氧化/还原法 (13)(2)化学淋洗法 (14)(3)土壤改良剂法 (15)3. 微生物修复技术 (16)(1)微生物降解原理 (17)(2)微生物修复技术应用 (18)4. 植物修复技术 (19)(1)植物提取技术 (20)(2)植物降解技术 (22)(3)植物微生物联合修复技术 (23)四、各种修复技术的比较与选择 (24)1. 不同修复技术的优缺点分析 (26)2. 修复技术的选择因素 (27)3. 综合修复技术应用实例 (28)五、治理修复技术的未来发展 (30)1. 新技术与方法的探索 (32)2. 绿色环保理念的融入 (33)3. 技术的集成与优化 (35)六、结论 (36)一、内容概括随着工业化和城市化的快速发展,有机污染物排放量不断增加,对土壤环境造成了严重污染。
有机污染土壤不仅影响农作物的生长和质量,还威胁到人体健康和生态系统的稳定性。
研究和开发有效的有机污染土壤治理与修复技术至关重要。
本综述将对当前有机污染土壤治理与修复技术的种类、原理、方法和应用进行系统总结,以期为该领域的研究和实践提供有益的参考。
在技术分类上,有机污染土壤治理与修复技术主要包括物理修复、化学修复和生物修复三大类。
物理修复方法如换土、热脱附等适用于短期内可去除大量污染物的情况;化学修复方法如固化稳定化、淋洗等可以通过改变污染物的化学性质来降低其毒性;生物修复方法则利用微生物或植物吸收、转化或降解污染物,具有环保、可持续的特点。
在技术原理上,这些方法通过破坏或改变有机污染物分子的结构,减少其在环境中的迁移和生物有效性,从而降低其对生态系统和人类健康的危害。
Bioremediation of Hazardous Wastes—A Review Satinder K.Brar1;M.Verma2;R.Y.Surampalli3;K.Misra4;R.D.Tyagi5;N.Meunier6;and J.F.Blais7Abstract:Intensive industrialization generates hazardous wastes comprising organics,inorganics,heavy metals,and munitions that need to be tackled in a safe monly employed physicochemical technologies have paved the way to ecofriendly bioremediation processes.Bioremediation uses natural as well as recombinant microorganisms to break down toxic and hazardous substances by aerobic and anaerobic means.They can be applied on site͑in situ͒or off site͑ex situ͒,mediated by mixed microbial consortia and/or pure microbial strains and.plants͑phytoremediation͒or even natural attenuation.They include several processes—bioventing,biosparging, biostimulation,bioaugmentation,bioleaching,fungal bioremediation,and biosorption.Bioremediation also encompasses ex situ engi-neered methods like bioreactors and enzyme catalyzed breakdown.The success of bioremediation is governed by three important factors—availability of microbes,accessibility of contaminants,and a conducive environment.This review discusses various bioreme-diation technologies,listing the advantages as well as disadvantages andfield application,if any.DOI:10.1061/͑ASCE͒1090-025X͑2006͒10:2͑59͒CE Database subject headings:Abatement and removal;Biodegradation;Explosives;Heavy metals;Inorganic chemicals;Organic chemicals;Hazardous wastes.IntroductionThe environment contaminated with toxic chemicals,and by-products are posing a gigantic task of treatment and/or man-agement.These toxic contaminants,primarily of anthropogenic origin,are broadly classified as metal,nonmetal,metalloid, inorganic,and organic compounds͑Cluis2004͒.Organic con-taminants comprise aliphatic,alicyclic,aromatic,and polycyclic aromatic hydrocarbons,which include halogenated and non-halogenated compounds,pesticides,and explosives.Inorganic pollutants may be metals such as Ag,Al,As,Be,Cd,Cr,Cu,Hg, Fe,Ni,Pb,Sb,Se,Zn,and radioactive elements and their deriva-tives͑Meagher2000;Allen2002͒.The principal concern associ-ated with contaminants is toxicity and health risk to humans.It is therefore essential to contain or mitigate these organic and inorganic contaminants so as to prevent them from contaminating surface and groundwater by dissolution or dispersion͑Gomez and Bosecker1999;McLaughlin et al.2000;Evans and Furlong 2003͒.Currently,various processes—physical,chemical,and biologi-cal either singly or in combination—are available to treat and manage these wastes.However,some uneconomical physico-chemical methods are slowly losing ground due to inherent prob-lems of secondary contamination and nonsustainable control of contaminants͑Vidali2001͒.Furthermore,stricter regulatory standards imposed by various countries on decontamination of contaminated sites have created an interest in bioremediation approach͑Hattan et al.2003͒.In particular the Resource Conservation and Recovery Act͑RCRA͒of1976promulgated with amendments in1986by the U.S.EPA ͑EPA1986͒regulate the generation,transportation,treatment, storage,and disposal of hazardous waste.The RCRA advocates adoption of ecofriendly remediation options like bioremediation or natural attenuation.Bioremediation involves enhanced degradation of toxic com-pounds by transforming them into innocuous substances,specifi-cally,carbon dioxide and water.The process can be carried out either on site͑in situ bioremediation͒by taking advantage of in-digenous microorganisms or introduction of bacterial or fungal strains and in bioreactors͑ex situ bioremediation͒to achieve com-plete detoxification of hazardous compounds͑Gibson and Sayler 1992;Rosenberg1993͒.Microorganisms are ubiquitous and possess incredible meta-bolic systems to degrade and utilize various toxic compounds as a source of energy for their growth via aerobic respiration,anaero-bic respiration,fermentation,and cometabolism.They possess characteristic degradative enzymes for biodegradation of respec-tive contaminants through aerobic and/or anaerobic/anoxic ually,aerobic bioremediation has higher degradation efficiency than anaerobic processes and is widely employed de-pending on the chemical nature of the contaminant͑Ahlet and Peters2001͒.Both aerobic and anaerobic processes can also be1Ph.D.Student,INRS-ETE,Universitédu Québec,490,Rue de la Couronne,Québec,Canada G1K9A9.2Ph.D.Student,INRS-ETE,Universitédu Québec,490,Rue de la Couronne,Québec,Canada G1K9A9.3Engineer Director,U.S.EPA,P.O.Box-17-2141,Kansas City, KS66117.4Scientist“E”,Naval Materials Research Laboratory͑NMRL͒, Defense Research and Development Organization͑DRDO͒,Ambernath 421506,India.5Professor,INRS-ETE,Universitédu Québec,490,Rue de la Couronne,Québec,Canada G1K9A9.E-mail:tyagi@ete.inrs.ca 6Post-Doctoral Fellow,École de technologie supérieure,1100,Rue Notre-Dame Ouest,Montréal,Québec,Canada,H3C1K3.7Professor,INRS-ETE,Universitédu Québec,490,Rue de la Couronne,Québec,Canada G1K9A9.Note.Discussion open until September1,2006.Separate discussions must be submitted for individual papers.To extend the closing date by one month,a written request must befiled with the ASCE Managing Editor.The manuscript for this paper was submitted for review and pos-sible publication on July6,2005;approved on July6,2005.This paper is part of the Practice Periodical of Hazardous,Toxic,and Radioactive Waste Management,V ol.10,No.2,April1,2006.©ASCE,ISSN1090-025X/2006/2-59–72/$25.00.sequentially utilized to reduce the toxicity or complexity of the contaminant.Rate of biodegradation can be further improved by use of contaminant adapted/acclimatized microorganisms and/or genetically improved bacteria at contaminated sites,referred to as“bioaugmentation”͑Quan et al.2004͒.Biodegradation can also be enhanced by adding essential nutrients to stimulate the growth of indigenous microorganisms,called“biostimulation”͑Trindade et al.2005͒.Bioremediation is a function of various factors—existence of a microbial population capable of degrading con-taminants,contaminant bioavailability to microbes and environ-mental factors such as temperature,pH,nutrients͑organic, inorganic,and their availability͒,electron acceptor͑s͒,redox po-tential,water activity,osmotic pressure,and concentration of contaminants͑Thakur2004͒.This review discusses various methods such as microbial/ bioleaching,fungal bioremediation,biosparging,bioventing,bio-stimulation,bioaugmentation,biologicalfixation,enzyme-catalyzed treatment,biosorption,and natural attenuation involved in bioremediation practices.Various methods entailed are based on either aerobic or anaerobic biotransformation processes.Bio-logical reactors,a direct simulation of bioremediation,have also been dealt with in a short manner.A brief summary of different bioremediation strategies for typical hazardous wastes is illus-trated in Fig.1.MetalsMetals form a large proportion of the pollution load of different contaminants present in the environment.Risks associated with pollution of soil by heavy metals for several years are an unavoid-able phenomenon͑Allen2002͒.In US,metals pollution ranges from45to70%of total pollutants in contaminated sites͑EPA 1997͒.In effect,Pb,Cd,Zn,Ni,Cr and As are on the list of ten common contaminants most often traced at the sites indexed by the Superfund program and Department of Defense͑EPA1997; Mulligan et al.2001͒.In order to advocate environmental poli-cies,most of the industrialized countries endowed themselves or are in the process of doing so,to establish laws and norms aiming at generic criteria on metal contamination in soils͑U.K.Department of the Environment1987;U.K.Department forEnvironment,Food,and Rural Affairs2002;EPA1992;Nedwedand Clifford1997;NATO/CCMS1998;Pronk2000;Abollinoet al.2002͒.However,there are many disparities in these reg-ulatory norms between countries depending on specific toxicityrelevance.In the1980s,metal remediation methods implied removalof contaminated sites and landfilling in cells for safety and/orconfinement of contaminants using physical barriers made upof steel,cement,or other impervious materials͑EPA1997;Papassiopi et al.1999;Mulligan et al.2001͒.Many of these tech-nologies no longerfind use due to their cost and their adverseeffects on the environment.This meant exploration of variousother methods,especially physicochemical methods like electro-acoustics;physicochemical separation͑gravimetric,flotation,magnetic separation͒based on hydrometallurgy principles;leach-ing with inorganic͑H2SO4,HCl,HNO3,etc.͒or organic ͑CH3COOH,etc͒acids;electrodeposition and electrocoagulation; membrane separation;solvent extraction;ion exchange;adsorp-tion and electrochemical methods͑Rumeau1989;Hinchee et al.1990;Rajeshwar and Ibanez1997;Duyvesteyn1998;Blais et al.1999,2001,2003;Cimino et al.2000;Juang and Wang2000a,b;Mulligan et al.2001;Wendt and Kreysa2001;Mercier et al.2002a,b;Fiset et al.2002;Arévalo et al.2002;Meunier et al.2002,2003,2004a,b͒.Despite the existence of a wide range of physi-cochemical methods,they are losing popularity owing to the costsand risks of secondary pollution associated with them.Thus,useof microorganisms like bacteria,fungi,and algae to treat environ-ments charged with heavy metals is an increasingly interestingavenue but with limitedfield application at present͑Kapoor andViraraghavan1995,1997͒.At this juncture,it would be appropri-ate to enumerate the role of various existing biological methods inmetal detoxification which contribute to bioremediation strategy. Microbial Leaching/BioleachingCertain microorganisms have immense metabolic capacity toallow passage of metals into solution catalyzed by microbial andmainly bacterial activity.This is called bioleaching,and requiresthe presence of microorganisms able to proliferate inextreme Fig.1.Summary of different bioremediation strategies for typical hazardous wastesecosystems͑strongly acidic pH,highly oxidizing conditions,high concentration of metal ions in solution͒and ready to draw their energy from oxidation of mineral sulfides͑Lundgren and Silver 1980͒.In fact,extraction of metals by biological solubilization has been extensively exploited and used for several years in bio-hydrometallurgy͑Torma1986͒.Direct oxidation of metal sulfides has been utilized for several metals:Cd,Ni,Zn,Co,Pb,Cu,Fe,Ga,Mn,and Sb͑Torma1986; Rossi1990͒.The indirect mode of metal sulfides involves oxida-tion by Fe2+ions that produce SO and metals in ionic form.The Thiobacillus then oxidizes SO to H2SO4and Acidithiobacillus ferrooxidans oxidizes Fe͑II͒to Fe͑III͒.The cycle regenerates with Fe͑III͒as summed up in the equation2Fe2++12O2+2H+→H2O+2Fe3+͑1͒Metal sulfides͑M S͒are oxidized by ferric ions asMS+2Fe3+→S0+M2++2Fe2+͑2͒Subsequently,elemental sulfur is reoxidized to sulfuric acid by Acidithiobacillus ferrooxidans or other species of Thiobacillus or sulfur-oxidizing bacteriaS0+1.5O2+H2O→H2SO4͑3͒The pH of the medium decreases and the redox potential in-creases contributing to solubilization of metallic oxides͑M O͒and carbonates͑M CO3͒MO+H2SO4→MSO4+H2O͑4͒MCO3+H2SO4→MSO4+H2O+CO2͑5͒Several bacteria,viz.,Thiobacillus ferrooxidans and Thioba-cillus thiooxidans,now called Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans,were regarded as prime players in the oxidation of metal sulfides͑Kelly and Wood2000͒.In the last decade,other bacteria like Leptospirillum ferrooxidans have also been found to oxidize ferrous ion and solubilize pyrites but with lower efficacy than T.ferrooxidans.The bacterium Thiobacillus cuprinus,isolated for thefirst time in Germany,oxidizes several metal sulfides with a notable preference for Cu sulfides͑Huber et al.1986;Huber and Stetter1990͒.The euryhaline species Thio-bacillus prosperus,with the ability to grow in the presence of6% NaCl,is able to oxidize reduced forms of sulfur,ferrous ion,and metal sulfides͑Huber and Stetter1990͒.Another species,Thioba-cillus plumbophilus,isolated from a uranium mine,possessed a unique metabolism,growing only on galena͑PbS͒,hydrogen sul-fide͑H2S͒,and molecular hydrogen as energy sources,and unable to grow by using ferrous ion or other reduced sulfur compounds ͑Drobner et al.1992͒.Metal sulfides as energy source have also been utilized by several species of moderate or extremely thermophilic bacteria like Acidianus brierleyi͑Sulfolobus brierleyi)at temperatures from45to75°C͒;Acidianus infernus͑proliferating between65 and96°C͒;and Metallosphaera sedula͑a facultatively thermo-philic chemoautotroph͒which oxidized elemental sulfur as well as ferrous iron or metal sulfides͑Zillig et al.1980;Segerer et al. 1986;Huber et al.1986͒.Interestingly,three bacterial strains distinct from Sulfobacillus thermosulfidooxidans͑standard strain thermotolerans asporogenes͒were also isolated for their ability to oxidize elemental sulfur,ferrous iron,and metal sulfides ͑Kovalenko and Malakhova1983;Golovacheva et al.1987͒. Recently,Dufresne et al.͑1993͒isolated Sulfobacillus(S.di-sulfidooxidans),able to use ferrous iron as energy source and grow on reduced inorganic sulfur compounds͑elemental sulfurand organo-sulfur compounds such as glutathione,cystamine,thi-anthrene,thiourea,cysteine,cystine,and benzothiazole͒.This wide array of microbial strains with distinct characteris-tics possesses an extraordinary ability to cope with metal stressesand clean the environment,in return aiding in maintaining thestatus quo of ecological cycles.Traditionally,thiobacilli or othersulfur-oxidizing bacteria have been employed in metal recoveryby bacterial leaching of ores and mining residues͑Torma1987;Morin and Ollivier1989;Tuovinen et al.1991͒with recent ex-tension of these studies into metal removal from waste streams ͑Blais et al.2004͒.Fungi-mediated metal leaching has been carried out by twodistinct types—white rot fungus͑saprotrophs͒and mycorrhizae ͑symbiotic association between plant roots and fungi͒.Typical fungal detoxification processes comprise heterotrophic͑chemoor-ganotrophic͒leaching by Penicillium simplicissimum to leach Znfrom insoluble ZnO-laden industrialfilter dust by induced pro-duction of citric acid͑Ͼ100mM͒͑Schinner and Burgstaller1989;Franz et al.1991,1993͒.Siderophore-mediated metal solu-bilization,where metal is adsorbed to biomass and/or precipi-tated,resulting inflocculation and decrease in bioavailability,isalso an alternate mechanism͑Diels et al.1999;Gadd2004͒.Fungi have also been known to carry out biomethylation of toxicarsenic complexes to volatile dimethyl͓͑CH3͒2HAs͔or tri-methylarsine͓͑CH3͒3As͔and also other redox transformations ͑Tamaki and Frankenberger1992͒;Gharieb et al.1999;Lovley 2000͒.Moreover,reduction of Hg͑II͒to Hg͑0͒by fungi resultsin diffusion of elemental Hg out of cells,which can be utilizedto mobilize Hg from contaminated soil sites͑Silver1998;Hobman et al.2000͒.Ectomycorrhizal͑ECM͒fungi have also been known to in-crease availability of metals in the rhizosphere by solubilizingminerals,including metal-containing rock phosphates,via pro-duction of organic acids or proton extrusion͑Leyval et al.1997͒,typically in acidic soils͑Bradley et al.1981,1982͒.In fact,excesstranslocation of metals within mycorrhizal fungi exerted moretoxicity on fungal biomass,indicated by decline in propagule den-sity and infectivity in metal-polluted soils.This makes them goodbioindicators of soil contamination͑Grodzinskaya et al.1995͒.Moreover,mycorrhizal colonization of plant roots in a contami-nated soil can be a sign of metal detoxification/nonbioavailability.Additionally,fungi could also perform metal/metal-complexsorption to cellular surfaces,and even cationic species can beaccumulated within cells via membrane transport systems ofvarying affinity and specificity͑White et al.1997;Gadd andSayer2000͒.There are numerous studies documented on free-living,pathogenic and plant symbiotic fungi associated with for-mation of calcium oxalate crystals from solubilized calcium ͑Gadd1999͒.Other than calcium,fungi can also produce other metal oxalates and metal-bearing minerals,e.g.,Cd,Co,Cu,Mn, Sr,and Zn͑White et al.1997;Gadd1999;Sayer et al.1999͒. Biodegradation of metallocyanide complexes by mixed fungi cultures of Fusarium solani,Trichoderma polysporum,F.oxy-sporum,Scytalidium thermophilum,and Penicillium miczynski have been successfully investigated by Barclay et al.͑1998͒.Hence,processes based on various fungal strains couldprovide efficient management and/or degradation of toxic pollut-ants and/or its derivatives.However,for a practical and sustain-able approach,proper measures should be taken before adaptingfungal bioremediation processes singly or integrated with othertechniques.Metal SpeciationBenign metal speciation in environment by fungi is a widely stud-ied and implemented bioremediation mode͑Lovley and Coates 1997;Eccles1999͒.This mechanism is associated with mobiliza-tion or immobilization processes that control transportation of metal species between soluble and insoluble phases͑White et al. 1997,1998;Sreekrishnan and Tyagi1994;Vachon et al.1994͒. BiosorptionThis method has been employed as an effective and economical alternative to conventional methods of detoxification and recov-ery of toxic or invaluable metals from industrial wastewater ͑Aksu and Açikel1999͒.It entails use of live or dead biomass and/or its derivatives to adsorb metal ions with ligands or func-tional groups located on external microbial surfaces.In this re-spect,several yeasts,algae,fungi,bacteria and some other aquatic species have been isolated and characterized͑Brierley1990; Prasetyo1992;V olesky and Holan1995;Aksu and Açikel1999; Vieira and V olesky2000͒.Various powerful commercial bio-sorbants such as BIO-FIX,AMT-BIOCLAIM,and AlgaSORB have also been already developed͑Brierley1990͒.The biosorbant BIO-FIX is made up of high-density polysul-fone balls with the ability to dissolve in dimethylformamide ͑DMF͒.Biomass of algae,yeasts,and bacteria is killed thermi-cally,dried,and mixed with a polysulfone-DMF solution to form balls.On biosorption,elution of metals contained in the balls was carried out using dilute mineral acids͑Jeffers et al. 1989;Brierley1990;Jeffers and Corwin1993͒.Similarly, AMT-BIOCLAIM comprises Bacillus bacteria,treated in a strong caustic solution,washed with water,and immobilized as porous balls on polyethyleneimine and glutaraldehyde͑Brierley1990; Brierley and Brierley1993͒.The biosorbant AlgaSORB contains alga,Chlorella vulgaris and others,killed and immobilized in a silica gel matrix͑Darnall et al.1989;Brierley1990͒.The most commonly used immobilizing agents or matrices are alginate, polyacrylamine,polysulfone,silica gel,cellulose,and glutaralde-hyde͑Atkinson et al.1998͒.Removal of metal species by biosor-bants was influenced by several parameters—the specific surface area of the biosorbant and physicochemical parameters of the solution like temperature,pH,initial metal ion concentration,and concentration of biomass.Other factors influencing the presence of more than one metal species are the number of metal ions competing for adsorption sites,the respective concentrations of each metal species,interactions between species,and residence time͑Aksu and Açikel1999͒.For reasons of economics,biomass of industrial waste origin, for example,Saccharomyces cerevisiae yeast and Rhizopus arrhizus from citric acid production industries,offers a very in-teresting alternative͑Atkinson et al.1998͒.Filamentous soil fungi such as Aspergillus niger,Mucor rouxxi,Rhizopus arrhizus,and Trichoderma viridae have also been used as commercial biosor-bants of potentially toxic elements͑Kapoor and Viraraghavan 1995;Gonzalez-Chavez et al.2002,2004͒.Moreover,regeneration and reuse properties of the biomass, acquisition,and immobilization cost in a matrix or an easily re-coverable support,are also very important factors.In conclusion, biosorbants seem to offer an interesting commercial prospect for removal of metals from industrial effluents with scope forfield application.PhytoremediationThis technology,which made its debut in the1990s,comprises growing plants on contaminated sites so that polluting compo-nents percolate through the radical system of the plants and ac-cumulate in various parts͑roots,stems,leaves,etc.͒.Plants have a natural capacity to accumulate essential heavy metals͑Fe,Mn, Zn,Cu,Mg,Mo,and Ni͒from soil or water for their growth and development.Certain plants can also accumulate heavy metals with unknown biological functions such as Cd,Cr,Pb,Ag,As, and Hg.The in situ͑on-site treatment͒phytoremediation has extensive commercialization in Europe and the United States͑Meharg and Cairney2000;Gaur and Adholeya2004͒.This technology is lim-ited as contamination of soil should not exceed a certain depth so that the roots of the plant are in contact with the metal pollutants.Moreover,climatic conditions and the bioavailability of metalsare pertinent factors to be evaluated.Similarly,it often takes alonger time period to decontaminate a site due to the limitedgrowth rate of a selected plant species and confinement to the areacovered by roots.It could also be necessary to proceed throughseveral cycles of culture and harvest to restore a site completely.Lastly,once contaminated,vegetation must be disposed of in anappropriate manner͑Mulligan et al.2001͒.Other InorganicsThe bioremediation of inorganic compounds is well com-prehended by involving mechanisms such as bioassimilation,bio-degradation,biosorption,biomagnification,bioaccumulation,biotransformation,and biovolatilization͑Zumriye2005͒.Bio-chemical pathways and microbial metabolism have also beenused for removal of another class of toxic compounds—cyanides ͑Stephen2004͒.It specifically takes place by hydrolytic,oxida-tive,reductive,and substitution/transfer reactions͑Raybuck1992;Dubey and Holmes1995;Adjei and Ohta1999;Yanese et al.2000;Barclay et al.2002;Kwon et al.2002;Ezzi-Mufaddal andLynch2002͒.Radioactive environmental waste sites left over from nuclearweapons production during the cold war are a gigantic challengeto decontaminate as reported by the U.S.Department of Energy ͑DOE͒͑Macilwain1996;McCullough et al.1999͒.However, bioremediation can play a pivotal role in decontamination of radioactive sites.The bacterium Deinococcus geothermalis ͑Ferreira et al.1997͒is remarkable not only for its extreme re-sistance to ionizing radiation but also for its ability to grow at temperatures as high as55°C͑Ferreira et al.1997͒and in the presence of chronic irradiation͑Daly2000͒.Given the need to develop bioremediating bacteria for treatment of radioactive high-temperature waste environments,D.geothermalis and D.murrayi were tested for their transformability,and many genetic modifi-cations have been made to enhance their efficiency͑Liu et al. 2003;Brim et al.2003͒.Several models and experimental sys-tems have also been studied to enhance bioremediation of radio-nuclides͑McCullough et al.1999;Wang et al.2003;Cazzola et al.2004͒.A bacterium,Geobacter sulfurreducens,possesses ex-traordinary capabilities to transport electrons and”reduce”metal ions͑even radioactive substances͒as part of its energy-generating metabolism͑“Bacterium”2003͒.Several ecoremediation tech-nologies based on biological methods like wild plants,known as hyperaccumulators͑Watanabe1997;Dushenkov et al.1999͒, genetically engineered plants͑Pena and Seguin2001;Singh et al.2003͒,fungi ͑Gray 1998͒,and natural ͑Entry and Watrud 1998;Watanabe 2001͒or genetically modified microrganisms ͑Lasat et al.1998;Lange et al.1998;Pieper and Reineke 2000;Sayler and Ripp 2000͒have been developed for radioactive decontami-nation.Extended studies on genetically engineered strains may hold future prospects for in situ degradation or detoxification of radioactive sites.OrganicsOrganic contaminants like pesticides,organochlorines,polychlo-rinated biphenyls ͑PCBs ͒,polycyclic aromatic hydrocarbons ͑PAHs ͒,synthetic dyes,wood preservatives,munitions waste and synthetic polymers can be either degraded or converted into less toxic forms by bioremediation ͑Pointing 2001;Evans and Furlong 2003͒.This bioremediation could be mediated by bacteria,fungi,a cocktail of microorganisms,or plants or even a combination of all ͑U.S.Geological Survey 1997;Nealson 2003͒.In most cases,xenobiotics are extremely resistant to biodegra-dation by native flora and fauna ͑Fernando et al.1990͒.At this juncture,ligninolytic fungi have impeccable ability to cause deg-radation due to their nonspecific enzyme system ͑Novotny et al.2004͒.These organics have been further elaborated and are dis-cussed in subsequent sections.The significance of bioremediation as a major decontamination strategy can also be gauged from Fig.2where the percent use of different commonly practiced remediation technologies are evaluated based on vendor supplied data ͑EPA REACH IT 2004͒.Fungal BioremediationSynthetic dyes/pesticides/PCBs are introduced into the environ-ment by the agricultural,sanitization,textile dyeing,paint,refin-ery,and electrical industries ͑Meharg and Cairney 2000;Novotny et al.2001͒.These contaminants are of great environmental concern because of their abundance and toxic,carcinogenic,and teratogenic effects on animals and humans.Specifically,pesticides are linked to toxic effects and popula-tion declines at higher trophic levels ͑Alloway and Ayres 1993͒.Fortunately,bacteria and several soil fungi ͑e.g.,Fusarium ,Peni-cillium ͒are now known to degrade pesticides with greater effi-cacy ͑Twigg and Socha 2001͒.While most soil microorganisms are ubiquitous and occur in a variety of moist soils,fungal species possess higher efficiency of pesticide degradation even in arid and semiarid soil conditions ͑Baarschers and Heitland 1986;Bumpus et al.1993;Twigg and Socha 2001͒.Additionally,highly recalci-trant pesticides like the chlorinated triazine herbicide 2-chloro-4-ethylamine-6-isopropylamino-1,3,4-triazine ͑atrazine ͒have been transformed by the white-rot fungi ͑WRF ͒P .chrysosporium and Pleurotus pulmonarius ,yielding hydroxylated and N -dealkylated metabolites ͑Masaphy et al.1993;Mougin et al.1994;Beaudette et al.1998;Van Acken et al.1999͒.Moreover,white-rot fungi come equipped with a panoply of enzymes,particularly peroxi-dases,giving them an edge over bacteria,which require preconditioning/acclimatization to grow in any recalcitrant me-dium ͑Barr and Aust 1994͒.On the other hand,even the recom-mended dose of a pesticide in fields might be deleterious to a newly reclaimed calcareous soil with low populations of ectomy-corrhizae ͑Abd-Alla et al.2000͒.Despite this limitation,a role for ectomycorrhizae cannot be ruled out in degradation of several synthetic dyes,pentachlorophenol,endosulfan,and DDT ͑Ryan and Bumpus 1989;Yadav and Reddy 1993͒.The presence of healthy consortia of microorganisms in soil assures that certain pesticides can be used safely in the environment,albeit under the recommended application dose.Despite the safe usage,more studies need to be carried out at the molecular level to ascertain the specific enzymes participating in pesticide degradation ͑Shimazu et al.2001͒.Nonetheless,this has not been an impediment in developing WRF-based soil bioremediation of PCBs ͑Van Acken et al.1999;Pointing 2001͒.Novotny et al.͑2001͒successfully demonstrated in vivo degradation of a broad selection of recalcitrant com-pounds ͑dyes,polyaromatic hydrocarbons,PCBs ͒under a variety of conditions,except that the aforestated enzyme levels must be sufficiently high.Several WRF-like organisms like Phanero-chaete chrysosporium,Bjerkandera adusta,Pleurotus ostreatus ,and Trametes versicolor have the innate ability to degrade low-chlorinated congeners of PCBs with or without stereoselectivity ͑Yadav et al.1995;Beaudette et al.1998;Kubatova et al.2001͒.Mycorrhizal fungi,in particular ectomycorrhizae and ericoids,are efficient remediators of a wide range of PCBs ͑Donnelly et al.1993;Meharg et al.1997;Green et al.1999͒.Ligninolytic fungi are able to aerobically degrade a wide va-riety of recalcitrant organic pollutants,including various types of dyes like azo and triphenylmethane dyes,anthraquinone,phthalo-cyanine,and heterocyclic dyes ͑Ollikka et al.1993;Paszczynski and Crawford 1995;Swamy and Ramsay 1999;Novotny et al.2001;Pointing 2001;Baldrian 2004͒.Other than the organism P .chrysosporium ,Pycnoporus sanguineus,Bjerkandera adusta,Trametes hispida ,and Pleurotus eryngii have also been shown to have accounted for decolorization of dyes ͑Heinfling et al.1998;Rodriguez et al.1999;Kasinath et al.2003͒.EventheFig. 2.Different technologies adopted for decontamination of hazardous wastes ͑data derived from EPA REACH IT 2004͒。