【金版新学案】高一数学人教A版必修二练习: 第1章 章末高效整合(含答案解析)
- 格式:doc
- 大小:305.50 KB
- 文档页数:7
(本栏目内容,在学生用书中以活页形式分册装订)一、选择题(本大题共10小题,每小题5分,共50分.在每小题后给出的四个选项中,只有一项是符合题目要求的)1.设集合A ={-1,0,1,2},B ={x|-3≤x<1},则A ∩B =( )A .{-1,0,1}B .{-1,0}C .{x|-1<x<0}D .{x|-1≤x ≤0}【解析】 集合A ={-1,0,1,2},B ={x|-3≤x<1},易得到A ∩B ={-1,0},故选B.【答案】 B2.函数y =1-x +x 的定义域为( )A .{x|x ≤1}B .{x|x ≥0}C .{x|x ≥1或x ≤0}D .{x|0≤x ≤1}【解析】 ⎩⎪⎨⎪⎧1-x ≥0,x ≥0⇔0≤x ≤1.故选D. 【答案】 D3.下列函数中,在区间(1,+∞)上是增函数的是( )A .y =-x +1B .y =11-xC .y =-(x -1)2D .y =1x +1【解析】由题意知y=-x+1,y=-(x-1)2,y=1x+1在(1,+∞)上是减函数,y=11-x在(1,+∞)上是增函数,故选B.【答案】 B4.若A为全体正实数的集合,B={-2,-1,1,2},则下列结论中正确的是()A.A∩B={-2,-1} B.(∁R A)∪B=(-∞,0)C.A∪B=(0,+∞) D.(∁R A)∩B={-2,-1}【解析】由题意得A∩B={1,2},(∁R A)∪B=(-∞,0]∪{1,2},A∪B=(0,+∞)∪{-1,-2},(∁R A)∩B={-2,-1}.故选D.【答案】 D5.下面四个结论中,正确命题的个数是()①偶函数的图象一定与y轴相交②奇函数的图象一定通过原点③偶函数的图象关于y轴对称④既是奇函数,又是偶函数的函数一定是f(x)=0(x∈R)A.1 B.2C.3 D.4【解析】①不对;②不对,因为奇函数的定义域可能不包含原点;③正确;④不对,既是奇函数又是偶函数的函数可以为f(x)=0,x∈(-a,a).故选A.【答案】 A6.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=()A.-2 B.2C.-98 D.98【解析】由f(x+4)=f(x),得f(7)=f(3)=f(-1).又∵f(x)为奇函数,∴f(-1)=-f(1),f(1)=2×12=2,∴f(7)=-2.故选A.【答案】 A7.设T ={(x ,y)|ax +y -3=0},S ={(x ,y)|x -y -b =0},若S ∩T ={(2,1)},则a ,b 的值为( )A .a =1,b =-1B .a =-1,b =1C .a =1,b =1D .a =-1,b =-1【解析】 ∵(2,1)∈S ∩T ,∴(2,1)∈S ,有(2,1)∈T.即⎩⎪⎨⎪⎧ 2a +1-3=0,2-1-b =0⇒⎩⎪⎨⎪⎧a =1b =1.故选C. 【答案】 C8.定义在R 上的偶函数f(x),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f(x 2)-f(x 1)x 2-x 1<0,则( )A .f(3)<f(-2)<f(1)B .f(1)<f(-2)<f(3)C .f(-2)<f(1)<f(3)D .f(3)<f(1)<f(-2)【解析】 由已知f(x 2)-f(x 1)x 2-x 1<0,得f(x)在x ∈[0,+∞)上单调递减,由偶函数性质得f(3)<f(-2)<f(1),故选A.此类题能用数形结合更好.【答案】 A9.下列四种说法正确的有( )①函数是从其定义域到值域的映射;②f(x)=x -3+2-x 是函数; ③函数y =2x(x ∈N )的图象是一条直线;④f(x)=x 2x 与g(x)=x 是同一函数.A .1个B .2个C .3个D .4个【解析】 ①正确,函数是一种特殊的映射;②中要使f(x)有意义只须使⎩⎪⎨⎪⎧ x -3≥02-x ≥0无解,故不是函数,②不正确;③中函数y =2x(x ∈N )的图象是孤立的点,③不正确;④中f(x)的定义域为{x|x ≠0},g(x)的定义域为R ,不是同一函数,不正确.故选A.【答案】 A10.已知偶函数f(x)在区间[0,+∞)上单调增加,则满足f(2x -1)<f ⎝ ⎛⎭⎪⎫13的x 取值范围是( )A.⎣⎢⎡⎭⎪⎫13,23B.⎝ ⎛⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23D.⎣⎢⎡⎭⎪⎫12,23【解析】 作出示意图可知:f(2x-1)<f ⇔- <2x-1< ,即 <x< .故选B.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.设f(x)=2x+3,g(x+2)=f(x),则g(x)=________.【解析】g(x+2)=f(x)=2x+3=2(x+2)-1.∴g(x)=2x-1.【答案】2x-112.设A={x|1<x<2},B={x|x<a},若A B,则实数a的取值范围是________.【解析】如图所示,∴a≥2.【答案】a≥213.若函数f(x)=kx2+(k-1)x+2是偶函数,则f(x)的递减区间是________.【解析】∵f(x)是偶函数,∴f(-x)=kx2-(k-1)x+2=kx2+(k-1)x+2=f(x),∴k=1,∴f(x)=x2+2,其递减区间为(-∞,0].【答案】(-∞,0]14.已知集合A={x,xy,x-y},B={0,|x|,y},且A=B,则x=________,y=________.【解析】∵0∈B,A=B,∴0∈A.∵集合中元素具有互异性,∴x≠xy,∴x≠0.又∵0∈B,y∈B,∴y≠0.从而x-y=0,即x=y.这时A={x,x2,0},B={0,|x|,x},∴x2=|x|,则x=0(舍去),或x=1(舍去),或x=-1.经检验,x=y=-1是本题的解.【答案】-1,-1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.(1)求A∪B,(∁U A)∩B;(2)若A∩C≠Ø,求a的取值范围.【解析】(1)A∪B={x|2≤x≤8}∪{x|1<x<6}={x|1<x≤8}.∁U A={x|x<2或x>8}.∴(∁U A)∩B={x|1<x<2}.(2)∵A∩C≠Ø,∴a<8.16.(12分)判断并证明f(x)=11+x2在(-∞,0)上的增减性.【解析】在(-∞,0)上单调递增.现证明如下:设x 1<x 2<0,f(x 1)-f(x 2)=11+x 12-11+x 22=x 22-x 12(1+x 12)(1+x 22)=(x 2-x 1)(x 2+x 1)(1+x 12)(1+x 22)∵x 2-x 1>0,x 1+x 2<0,1+x 12>0,1+x 22>0,∴f(x 1)-f(x 2)<0,∴f(x 1)<f(x 2),∴f(x)在(-∞,0)上单调递增.17.(12分)设f(x)是R 上的奇函数,且当x ∈(0,+∞)时,f(x)=x(1+x),求f(x)在R 上的解析式.【解析】 ∵f(x)是R 上的奇函数,∴f(-0)=-f(0),∴f(0)=0,设x <0 ,则-x >0,∴f(-x)=-x(1-x).又∵f(x)是奇函数,∴f(-x)=-f(x)=-x(1-x).∴f(x)=x(1-x),∴f(x)=⎩⎪⎨⎪⎧ x(1-x) (x <0)0 (x =0).x(1+x) (x >0)18.(14分)已知函数f(x)=ax 2+(2a -1)x -3在区间⎣⎢⎡⎦⎥⎤-32,2上的最大值为1,求实数a 的值.【解析】 当a =0时,f(x)=-x -3,f(x)在⎣⎢⎡⎦⎥⎤-32,2上不能取得1,故a ≠0. ∴f(x)=ax 2+(2a -1)x -3(a ≠0)的对称轴方程为x 0=1-2a 2a . (1)令f ⎝ ⎛⎭⎪⎫-32=1,解得a =-103, 此时x 0=-2320∈⎣⎢⎡⎦⎥⎤-32,2, 因为a<0,f(x 0)最大,所以f ⎝ ⎛⎭⎪⎫-32=1不合适; (2)令f(2)=1,解得a =34,此时x 0=-13∈⎣⎢⎡⎦⎥⎤-32,2, 因为a =34>0,x 0=-13∈⎣⎢⎡⎦⎥⎤-32,2,且距右端点2较远,所以f(2)最大,合适; (3)令f(x 0)=1,得a =12(-3±22),验证后知只有a =12(-3-22)才合适.综上所述,a =34,或a =-12(3+22).。
第一章空间几何体1.1 空间几何体的结构练习(第7 页)1.(1)圆锥;(2)长方体;(3)圆柱与圆锥组合而成的组合体;(4)由一个六棱柱挖去一个圆柱体而得到的组合体。
2.(1)五棱柱;(2)圆锥3.略习题1.1A组1.(1) C;(2)C;(3)D;(4) C2.(1)不是台体,因为几何体的“侧棱”不相交于一点,不是由平等于“底面”的平面截棱锥得到的。
(2)、(3)也不是台体,因为不是由平行与棱锥和圆锥底面的平面截得的几何体。
3.(1)由圆锥和圆台组合而成的简单组合体;(2)由四棱柱和四棱锥组合而成的简单组合体。
4.两个同心的球面围成的几何体(或在一个球体内部挖去一个同心球得到的简单组合体)。
5.制作过程略。
制作过程说明平面图形可以折叠成立体图形,立体图形可以展开为平面图形。
B组1.剩下的几何体是棱柱,截去的几何体也是棱柱;它们分别是五棱柱和三棱柱。
2.左侧几何体的主要结构特征:圆柱和棱柱组成的简单组何体;中间几何体的主要结构特征:下部和上部都是一个圆柱截去一个圆柱组成的简单组何体;右侧几何体的主要结构特征:下部是一个圆柱体,上部是一个圆柱截去一个圆柱组成的简单组何体。
1.2 空间几何体的三视图和直观图练习(第15 页)1.略2.(1)四棱柱(图略);(2)圆锥与半球组成的简单组合体(图略);(3)四棱柱与球组成的简单组合体(图略);(4)两台圆台组合而成的简单组合体(图略)。
3.(1)五棱柱(三视图略);(2)四个圆柱组成的简单组合体(三视图略);4.三棱柱练习(第19 页)1.略。
2.(1)√(2)×(3)×(4)√3.A4.略5.略习题1.2A组1.略2.(1)三棱柱(2)圆台(3)四棱柱(4)四棱柱与圆柱组合而成的简单组合体3~5.略B组1~2.略3.此题答案不唯一,一种答案是由15个小正方体组合而成的简单组合体,如图。
1.3 空间几何体的表面积与体积。
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.两个球的半径之比为2∶3,那么这两个球的表面积之比为( ) A.2∶3 B.4∶9C.2∶ 3 D.8∶27解析:设两球的半径分别为r1,r2,表面积分别为S1,S2,则S1S2=4πr214πr22=r21r22=49.故选B.答案: B2.(2015·德阳市中江县龙台中学高二(上)期中)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为( )A.3πa2B.6πa2C.12πa2D.24πa2解析:根据题意球的半径R满足(2R)2=6a2,所以S球=4πR2=6πa2,故选B.答案: B3.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A.9π B.10πC.11π D.12π解析:由几何体的三视图可知此几何体是圆柱体与球体的组合体,其表面积S=4πR2+2πr2+2πr·h,代入数据得S=4π+2π+2π×3=12π.故选D.答案: D4.(2015·唐山市玉田县林南仓中学高二(上)期中)若圆柱的底面直径和高都与球的直径相等,圆柱、球的表面积分别记为S1、S2,则S1∶S2等于( )A.1∶1 B.2∶1C.3∶2 D.4∶1解析:由题意可得圆柱的底面直径和高都与球的直径相等,设球的半径为1,则S1=6π,S2=4π.所以S1∶S2=3∶2,故选C.答案: C二、填空题(每小题5分,共15分)5.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为________.解析:利用截面圆的性质先求得球的半径长.如图,设截面圆的圆心为O′,M为截面圆上任一点,则OO′=2,O′M=1,∴OM=22+1=3,即球的半径为3,∴V=43π(3)3=43π.答案:43π6.(2015·吕梁学院附中高二(上)月考)若各顶点都在一个球面上的长方体的高为4,底面边长都为2,则这个球的表面积是________.解析:长方体的体对角线长为22+22+42=26,球的直径是2R=26,所以R=6,所以这个球的表面积S=4π(6)2=24π.答案:24π7.(2015·河源市高二(上)期中)湖面上漂着一个小球,湖水结冰后将球取出,冰面上留下了一个直径为6 cm,深为1 cm的空穴,则该球半径是________ cm,表面积是________cm2.解析:设球心为O,OC是与冰面垂直的一条球半径,冰面截球得到的小圆圆心为D,AB为小圆D的一条直径,设球的半径为R,则OD=R-1,则(R -1)2+32=R 2, 解之得R =5 cm , 所以该球表面积为S =4πR 2=4π×52=100π(cm 2).答案: 5 100π三、解答题(每小题10分,共20分)8.如果一个几何体的正视图与侧视图都是全等的长方形,边长分别是4 cm 与2 cm ,如图所示,俯视图是一个边长为4 cm 的正方形.求该几何体的外接球的体积.解析: 由题意可知,该几何体是长方体,底面是正方形,边长是4,高是2.由长方体与球的性质可得,长方体的体对角线是球的直径,记长方体的体对角线为d ,球的半径是r ,d =16+16+4=36=6(cm),所以球的半径为r =3 cm.因此球的体积V =43πr 3=43×27π=36π(cm 3),所以外接球的体积是36π cm 3.9.(2015·大同一中高二(上)月考)如图所示(单位:cm)四边形ABCD 是直角梯形,求图中阴影部分绕AB 旋转一周所成几何体的表面积和体积.解析:12S 球=12×4π×22=8π(cm 2), S 圆台侧=π(2+5)-2+42=35π(cm 2),S 圆台下底=π×52=25π(cm 2),即该几何体的表面积为8π+35π+25π=68π(cm2).又V圆台=π3×(22+2×5+52)×4=52π(cm3),V半球=12×4π3×23=16π3(cm3).所以该几何体的体积为V圆台-V半球=52π-16π3=140π3(cm3).。
1.1空间几何体的结构第一课时棱柱、棱锥、棱台的结构特征空间几何体与多面体[导入新知]1.空间几何体1.对于多面体概念的理解,注意以下两个方面:(1)多面体是由平面多边形围成的,围成一个多面体至少要4个面.一个多面体由几个面围成,就称为几面体.(2)多面体是一个“封闭”的几何体,包括其内部的部分. 2.棱柱具有以下结构特征和特点:(1)侧棱互相平行且相等,侧面都是平行四边形.(2)两个底面与平行于底面的截面是全等的多边形,如图a 所示.(3)过不相邻的两条侧棱的截面是平行四边形,如图b 所示.(4)有两个面平行,其余各面都是平行四边形的几何体不一定是棱柱,如图c 所示.3.对于棱锥要注意有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥,必须强调其余各面是共顶点的三角形,如图d 所示.4.棱台中各侧棱延长后必相交于一点,否则不是棱台.棱柱的结构特征[例1]下列关于棱柱的说法:(1)所有的面都是平行四边形;(2)每一个面都不会是三角形;(3)两底面平行,并且各侧棱也平行;(4)被平面截成的两部分可以都是棱柱.其中正确说法的序号是________.[答案](3)(4)[类题通法]有关棱柱的结构特征问题的解题策略(1)紧扣棱柱的结构特征进行有关概念辨析.①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.求解时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.(2)多注意观察一些实物模型和图片便于反例排除.[活学活用]下列说法正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.各个侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面均为平行四边形答案:D棱锥、棱台的结构特征[例2]下列关于棱锥、棱台的说法:(1)用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;(2)棱台的侧面一定不会是平行四边形;(3)棱锥的侧面只能是三角形;(4)由4个面围成的封闭图形只能是三棱锥;(5)棱锥被平面截成的两部分不可能都是棱锥.其中说法正确的序号是________.[答案](2)(3)(4)[类题通法]判断棱锥、棱台形状的两个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:下列说法正确的有()①由5个面围成的多面体只能是四棱锥;②仅有两个面互相平行的五面体是棱台;③两个底面平行且相似,其余各面都是梯形的多面体是棱台;④有两个面互相平行,其余4个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个答案:A多面体的平面展开图[例3]如下图是三个几何体的侧面展开图,请问各是什么几何体?[解]由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.[类题通法]1.解答此类问题要结合多面体的结构特征发挥空间想象能力和动手能力.2.若给出多面体画其展开图时,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.3.若是给出表面展开图,则可把上述程序逆推.[活学活用]水平放置的正方体的6个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图(图中数字写在正方体的外表面上),若图中“0”上方的“2”在正方体的上面,则这个正方体的下面是()A.1B.5C.快D.乐答案:B1.柱、锥、台结构特征判断中的误区[典例]如下图所示,下列关于这个几何体的正确说法的序号为________.①这是一个六面体;②这是一个四棱台;③这是一个四棱柱;④此几何体可由三棱柱截去一个三棱柱得到;⑤此几何体可由四棱柱截去一个三棱柱得到.[解析]①正确,因为有6个面,属于六面体的范围;②错误,因为侧棱的延长线不能交于一点,所以不正确;③正确,如果把几何体放倒就会发现是一个四棱柱;④⑤都正确,如下图所示.[答案]①③④⑤[易错防范]1.解答过程中易忽视侧棱的延长线不能交于一点,直观感觉是棱台,而不注意逻辑推理.2.解答空间几何体概念的判断题时,要注意紧扣定义,切忌只凭图形主观臆断.[成功破障]如右图所示,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定答案:A一、选择题1.下列图形中,不是三棱柱的展开图的是()答案:C2.如右图所示,在三棱台ABC-A′B′C′中,截去三棱锥A′-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.组合体答案:B3.下列说法正确的是()①棱锥的各个侧面都是三角形;②三棱柱的侧面为三角形;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长都相等.A.①②B.①③C.②③D.②④答案:B4.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20 B.15C.12 D.10答案:D5.下列命题正确的是()A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B.棱柱中两个互相平行的面一定是棱柱的底面C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点答案:D二、填空题6.面数最少的棱柱为________棱柱,共有________个面围成.答案:三 57.如右图所示,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________ cm.答案:138.侧棱垂直于底面的棱柱叫做直棱柱.侧棱不垂直于底面的棱柱叫做斜棱柱.底面是正多边形的直棱柱叫做正棱柱.底面是平行四边形的四棱柱叫做平行六面体.侧棱与底面垂直的平行六面体叫做直平行六面体.底面是矩形的直平行六面体叫做长方体.棱长都相等的长方体叫做正方体.请根据上述定义,回答下面的问题:(1)直四棱柱________是长方体;(2)正四棱柱________是正方体.(填“一定”“不一定”或“一定不”)答案:(1)不一定(2)不一定三、解答题9.如右图所示,长方体ABCD -A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.解:(1)是棱柱,并且是四棱柱,因为长方体相对的两个面是互相平行的四边形(作底面),其余各面都是矩形(作侧面),且相邻侧面的公共边互相平行,符合棱柱的定义.(2)截面BCNM的上方部分是三棱柱BB1M-CC1N,下方部分是四棱柱ABMA1-DCND1.10.给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明.解:如图①所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.如图②所示,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的14,有一组对角为直角,余下部分按虚线折成,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底.第二课时 圆柱、圆锥、圆台、球的结构特征 简单组合体的结构特征旋转体 [导入新知]1.以直角三角形斜边所在的直线为旋转轴,其余两边旋转成的曲面围成的旋转体不是圆锥.2.球与球面是完全不同的两个概念,球是指球面所围成的空间,而球面只指球的表面部分.3.圆台也可以看作是等腰梯形以其底边的垂直平分线为轴,各边旋转半周形成的曲面所围成的几何体.简单组合体[导入新知]1.简单组合体的概念由简单几何体组合而成的几何体叫做简单组合体.2.简单组合体的构成形式有两种基本形式:一种是由简单几何体拼接而成的;另一种是由简单几何体截去或挖去一部分而成的.[化解疑难]简单组合体识别的要求(1)准确理解简单几何体(柱、锥、台、球)的结构特征.(2)正确掌握简单组合体构成的两种基本形式.(3)若用分割的方法,则需要根据几何体的结构特征恰当地作出辅助线(或面).旋转体的结构特征[例1]给出下列说法:(1)以直角三角形的一条边所在直线为轴,其余两边旋转形成的曲面围成的几何体是圆锥;(2)以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥;(3)经过圆锥任意两条母线的截面是等腰三角形;(4)圆锥侧面的母线长有可能大于圆锥底面圆直径.其中说法正确的序号是________.[答案](2)(3)(4)[类题通法]1.判断简单旋转体结构特征的方法(1)明确由哪种平面图形旋转而成.(2)明确旋转轴是哪条直线.2.简单旋转体的轴截面及其应用(1)简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.(2)在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.[活学活用]给出下列说法:(1)圆柱的底面是圆面;(2)经过圆柱任意两条母线的截面是一个矩形面;(3)圆台的任意两条母线的延长线可能相交,也可能不相交;(4)夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.答案:(1)(2)简单组合体[例2]观察下列几何体的结构特点,完成以下问题:(1)题图①所示几何体是由哪些简单几何体构成的?试画出几何图形,可旋转该图形180°后得到几何体①.(2)题图②所示几何体的结构特点是什么?试画出几何图形,可旋转该图形360°得到几何体②.(3)题图③所示几何体是由哪些简单几何体构成的?请说明该几何体的面数、棱数、顶点数.[解](1)图①是由圆锥和圆台组合而成.可旋转如下图形180°得到几何体①.(2)图②是由一个圆台,从上而下挖去一个圆锥,且圆锥的顶点恰为圆台底面圆的圆心.可旋转如下图形360°得到几何体②.(3)图③是由一个四棱锥与一个四棱柱组合而成,且四棱锥的底面与四棱柱底面相同.共有9个面,9个顶点,16条棱.[类题通法]1.明确组合体的结构特征,主要弄清它是由哪些简单几何体组成的,必要时也可以指出棱数、面数和顶点数,如题图③所示的组合体有9个面,9个顶点,16条棱.2.会识别较复杂的图形是学好立体几何的第一步,因此我们应注意观察周围的物体,然后将它们“分拆”成几个简单的几何体,进而培养我们的空间想象能力和识图能力.[活学活用]指出图①~图③的3个几何体分别是由哪些简单几何体组成的.解:图①几何体由一个圆锥、一个圆柱和一个圆台拼接而成;图②几何体由一个六棱柱和一个圆柱拼接而成;图③几何体由一个六棱柱挖去一个圆柱而成.1.旋转体的生成过程[典例]如右图所示,四边形ABCD为直角梯形,试作出绕其各条边所在的直线旋转所得到的几何体.[解题流程][规范解答]以边AD所在直线为旋转轴旋转,形成的几何体是圆台,如图①所示.以边AB所在直线为旋转轴旋转,形成的几何体是一个圆锥和一个圆柱拼接而成的几何体,如图②所示.以边CD所在直线为旋转轴旋转,形成的几何体是一个圆柱挖掉一个圆锥构成的几何体,如图③所示.以边BC所在直线为旋转轴旋转,形成的几何体是由一个圆台挖掉一个圆锥构成的几何体和一个圆锥拼接而成,如图④所示.[活学活用]一个有30°角的直角三角板绕其各条边所在直线旋转一周所得几何体是圆锥吗?如果以斜边上的高所在的直线为轴旋转180°得到什么几何体?旋转360°又得到什么几何体?解:如图①和图②所示,绕其直角边所在直线旋转一周围成的几何体是圆锥.如图③所示,绕其斜边所在直线旋转一周所得几何体是两个同底相对的圆锥.如图④所示,绕其斜边上的高所在的直线为轴旋转180°围成的几何体是两个半圆锥,旋转360°围成的几何体是一个圆锥.一、选择题1.下列说法正确的是()A.平行于圆锥某一母线的截面是等腰三角形B.平行于圆台某一母线的截面是等腰梯形C.过圆锥顶点的截面是等腰三角形D.过圆台上底面中心的截面是等腰梯形答案:C2.将一个等腰梯形绕它的较长的底边所在的直线旋转一周,所得的几何体包括() A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆柱、一个圆台D.一个圆柱、两个圆锥答案:D3.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是() A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥答案:D4.下列叙述中正确的个数是()①以直角三角形的一边所在直线为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰所在直线为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A.0 B.1C.2 D.3答案:B5.如右图所示的几何体,关于其结构特征,下列说法不正确的是()A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形答案:D二、填空题6.有下列说法:①在圆柱的上、下底面的圆周上各取一点,则这两点连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在直线是互相平行的.其中正确的是________(把所有正确说法的序号都填上).答案:②④7.下面这个几何体的结构特征是_____________________________________.答案:由一个四棱锥、一个四棱柱拼接,又在四棱柱中挖去了一个圆柱而成8.如图是一个几何体的表面展成的平面图形,则这个几何体是________.答案:圆柱三、解答题9.指出如图①、图②、图③所示的图形分别是由哪些简单几何体构成的.解:分割原图,使它的每一部分都是简单几何体.图①是由一个三棱柱和一个四棱柱拼接而成的简单组合体;图②是由一个圆锥和一个四棱柱拼接而成的简单组合体;图③是由一个半球、一个圆柱和一个圆台拼接而成的简单组合体.10.如右图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别为2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如右图所示,过圆台的轴作截面,截面为等腰梯形ABCD ,由已知可得上底半径O 1A =2 cm ,下底半径OB =5 cm ,且腰长AB =12 cm.设截得此圆台的圆锥的母线长为l ,则由△SAO 1∽△SBO ,可得l -12l =25,所以l =20 cm ,即截得此圆台的圆锥的母线长为20 cm.1.2空间几何体的三视图和直观图1.2.1 & 1.2.2 中心投影与平行投影 空间几何体的三视图中心投影与平行投影 [导入新知] 1.投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,把光线叫做投影线,把留下物体影子的屏幕叫做投影面.2.中心投影与平行投影平行投影和中心投影都是空间图形的一种画法,但二者又有区别 (1)中心投影的投影线交于一点,平行投影的投影线互相平行.(2)平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;而中心投影则不同.三 视 图 [导入新知]1.每个视图都反映物体两个方向上的尺寸.正视图反映物体的上下和左右尺寸,俯视图反映物体的前后和左右尺寸,侧视图反映物体的前后和上下尺寸.2.画几何体的三视图时,能看见的轮廓线和棱用实线表示,看不见的轮廓线和棱用虚线表示.中心投影与平行投影 [例1] 下列说法中:①平行投影的投影线互相平行,中心投影的投影线相交于一点;②空间图形经过中心投影后,直线变成直线,但平行线可能变成了相交的直线; ③两条相交直线的平行投影是两条相交直线. 其中正确的个数为( ) A .0 B .1 C .2 D .3[答案] B [类题通法]1.判定几何体投影形状的方法.(1)判断一个几何体的投影是什么图形,先分清楚是平行投影还是中心投影,投影面的位置如何,再根据平行投影或中心投影的性质来判断.(2)对于平行投影,当图形中的直线或线段不平行于投影线时,平行投影具有以下性质: ①直线或线段的投影仍是直线或线段; ②平行直线的投影平行或重合;③平行于投影面的线段,它的投影与这条线段平行且等长;④与投影面平行的平面图形,它的投影与这个图形全等;⑤在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比.2.画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点、端点等,方法是先画出这些关键点的投影,再依次连接各投影点即可得此图形在该平面上的投影.[活学活用]如右图所示,在正方体ABCD -A′B′C′D′中,E,F分别是A′A,C′C的中点,则下列判断正确的序号是________.①四边形BFD′E在底面ABCD内的投影是正方形;②四边形BFD′E在平面A′D′DA内的投影是菱形;③四边形BFD′E在平面A′D′DA内的投影与在平面ABB′A内的投影是全等的平行四边形.答案:①③画空间几何体的三视图[例2]画出如右图所示的四棱锥的三视图.[解]几何体的三视图如下:[类题通法]画三视图的注意事项(1)务必做到长对正,宽相等,高平齐.(2)三视图的安排方法是正视图与侧视图在同一水平位置,且正视图在左,侧视图在右,俯视图在正视图的正下方.(3)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.[活学活用]沿一个正方体三个面的对角线截得的几何体如下图所示,则该几何体的侧视图为()答案:B由三视图还原空间几何体[例3]如下图所示的三视图表示的几何体是什么?画出物体的形状.(1)(2)(3)[解](1)该三视图表示的是一个四棱台,如右图.(2)由俯视图可知该几何体是多面体,结合正视图、侧视图可知该几何体是正六棱锥.如下图.(3)由于俯视图有一个圆和一个四边形,则该几何体是由旋转体和多面体拼接成的组合体,结合侧视图和正视图,可知该几何体上面是一个圆柱,下面是一个四棱柱,所以该几何体的形状如右图所示.[类题通法]由三视图还原几何体时,一般先由俯视图确定底面,由正视图与侧视图确定几何体的高及位置,同时想象视图中每一部分对应实物部分的形状.[活学活用]如图①、图②、图③、图④为4个几何体的三视图,根据三视图可以判断这四个几何体依次分别为()A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台C.三棱柱、正四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台答案:C2.画几何体的三视图常见误区[典例]某几何体及其俯视图如下图所示,下列关于该几何体正视图和侧视图的画法正确的是()[解析]该几何体是由圆柱切割而得,由俯视图可知正视方向和侧视方向,进一步可画出正视图和侧视图(如图所示),故选A.[答案] A[易错防范]1.易忽视该组合体的结构特征是由圆柱切割而得到,对正视方向与侧视方向的判断不正确而出错.2.三种视图中,可见的轮廓线都画成实线,存在但不可见的轮廓线一定要画出,但要画成虚线.画三视图时,一定要分清可见轮廓线与不可见轮廓线,避免出现错误.[成功破障]沿圆柱体上底面直径截去一部分后的物体如右图所示,它的俯视图是()答案:D一、选择题1.4个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图,则在字母L,K,C的投影中,与字母N属同一种投影的有()答案:A2.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()答案:D3.若某几何体的三视图如下图所示,则这个几何体的直观图可以是()答案:B4.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()答案:C5.将正方体(如图①所示)截去两个三棱锥,得到图②所示的几何体,则该几何体的侧视图为()答案:B二、填空题6.已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于________.答案: 27.如图甲所示,在正方体ABCD -A1B1C1D1中,E,F分别是AA1,C1D1的中点,G是正方形BCC1B1的中心,则四边形AGFE在该正方体的各个面上的投影可能是图乙中的________.答案:(1)(2)(3)8.两条平行线在一个平面内的正投影可能是________.①两条平行线;②两个点;③两条相交直线;④一条直线和直线外的一点;⑤一条直线.答案:①②⑤三、解答题9.如下图所示,画出下列组合体的三视图.解:三视图如图①、图②所示.10.某组合体的三视图如下图所示,试画图说明此组合体的结构特征.解:该三视图表示的是组合体,如右图所示,是7个小正方体拼接而成的组合体.1.2.3空间几何体的直观图斜二测画法[导入新知]1.用斜二测画法画平面图形的步骤(1)在已知图形中取互相垂直的x轴和y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴和y′轴,两轴相交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.(3)已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度变为原来的一半.2.用斜二测画法画空间几何体的直观图的步骤(1)画底面,这时使用平面图形的斜二测画法即可.(2)画z′轴,z′轴过点O′,且与x′轴的夹角为90°,并画出高线(与原图高线相等,画正棱柱时只需要画侧棱即可),连线成图.(3)擦去辅助线,被遮线用虚线表示.[化解疑难]1.画水平放置的平面图形的直观图,关键是确定多边形顶点的位置,借助于平面直角坐标系确定顶点后,只需把这些顶点顺次连接即可.2.用斜二测画法画直观图要掌握水平长不变,垂线长减半,直角画45°(或135°).水平放置的平面图形的直观图[例1]按右图所示的建系方法,画水平放置的正五边形ABCDE的直观图.[解]画法:(1)在图①中作AG⊥x轴于G,作DH⊥x轴于H.(2)在图②中画相应的x′轴与y′轴,两轴相交于点O′,使∠x′O′y′=45°.。
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.等腰三角形ABC绕底边上的中线AD所在的直线旋转所得的几何体是()A.圆台B.圆锥C.圆柱D.球解析:由题意可得AD⊥BC,且BD=CD,所以形成的几何体是圆锥.故选B.答案: B2.下列说法正确的有()①球的半径是球面上任意一点与球心的连线;②球的直径是球面上任意两点间的线段;③用一个平面截一个球,得到的是一个圆;④用一个平面截一个球,得到的截面是一个圆面.A.0个B.1个C.2个D.3个解析:①是正确的;②是错误的,只有两点的连线经过球心时才为直径;③是错误的;④是正确的.答案: C3.(2015·江西临川一中月考)图中的几何体由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得.现用一个竖直的平面去截这个几何体,则截面图形可能是()A.(1)(2) B.(1)(3)C.(1)(4) D.(1)(5)解析:当截面不过旋转轴时,截面图形是(5),故选D.答案: D4.(2015·安徽宿州十三校联考)用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,已知圆台的母线长是6 cm,则圆锥的母线长为()A .2 cm B. 3 cmC .8 cmD .4 3 cm解析:该圆台的上、下底面半径分别为r 1,r 2,圆锥的母线长为l ,因为上、下底面的面积之比为1∶16,所以r 1∶r 2=1∶4,如图为几何体的轴截面;则有l -6l =14, 解得,l =8.故选C.答案: C二、填空题(每小题5分,共15分)5.有下列说法:①与定点的距离等于定长的点的集合是球面;②球面上三个不同的点,一定都能确定一个圆;③一个平面与球相交,其截面是一个圆面.其中正确说法的个数为________个.解析: 命题①②都对,命题③中一个平面与球相交,其截面是一个圆面,③对. 答案: 36.圆台的两底面半径分别为2,5,母线长是310,则其轴截面面积是________. 解析: 设圆台的高为h ,则h =(310)2-(5-2)2=9,∴轴截面面积S =12(4+10)×9=63. 答案: 637.把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长是10 cm ,则圆锥的母线长为________.解析: 设圆锥的母线长为y ,圆台的上、下底面半径为x,4x ,根据相似三角形的比例关系得:y -10y =x 4x ,也就是4(y -10)=y ,所以y =403(cm), 所以圆锥的母线长为403 cm.答案:403cm三、解答题(每小题10分,共20分)8.直角三角形ABC中,AB=3,BC=4,AC=5,分别以AB,BC,AC所在直线为轴旋转一周,分析所形成的几何体的结构特征.解析:在Rt△ABC中,分别以三条边AB,BC,AC所在直线为轴旋转一周所得的几何体,如下图.其中图(1)和图(2)是两个不同的圆锥,它们的底面分别是半径为4和3的圆面,母线长均为5.图(3)是由两个同底圆锥构成的几何体,在圆锥AO中,AB为母线,在圆锥CO中,CB为母线.9.指出如图所示的图形是由哪些简单几何体构成的.解析:分割原图,使它的每一部分都是简单几何体.图(1)是由一个三棱柱和一个四棱柱拼接而成的简单组合体.图(2)是由一个圆锥和一个四棱柱拼接而成的简单组合体.图(3)是由一个四棱锥、一个四棱柱拼接,又在四棱柱中挖去了一个圆柱而成.图(4)是由一个六棱柱和一个圆柱拼接而成的.。
1.设f(x)=2x+3,g(x+2)=f(x),则g(x)等于()A.2x+1 B.2x-1C.2x-3 D.2x+7【解析】由题意知g(x+2)=2x+3=2(x+2)-1,∴g(x)=2x-1.故选B.【答案】 B2.如果二次函数的图象开口向上且关于直线x=1对称,且过点(0,0),则此二次函数的解析式为()A.f(x)=x2-1 B.f(x)=-(x-1)2+1C.f(x)=(x-1)2+1 D.f(x)=(x-1)2-1【解析】设f(x)=(x-1)2+c,由于点(0,0)在图象上,∴f(0)=(0-1)2+c=0,∴c=-1,∴f(x)=(x-1)2-1.故选D.【答案】 D3.已知函数f(x)的图象如图所示,则此函数的定义域是________,值域是________.【解析】结合图象知,f(x)的定义域为[-3,3],值域为[-2,2].【答案】[-3,3],[-2,2]4.求下列函数的解析式:(1)已知f(x)=x2+2x,求f(2x+1);(2)已知f(x-1)=x+2x,求f(x).【解析】(1)f(2x+1)=(2x+1)2+2(2x+1)=4x2+8x+3.(2)方法一(拼凑法):f(x-1)=(x-1)2+4(x-1)+3,而x-1≥-1.故所求的函数f(x)=x2+4x+3(x≥-1).方法二(换元法):令t=x-1,则t≥-1,且x=t+1,∴f(t)=(t+1)2+2(t+1)=t2+4t+3.故所求的函数为f(x)=x2+4x+3(x≥-1).一、选择题(每小题5分,共20分)1.如下图所示的图形中,不可能是函数y=f(x)的图象的是()【解析】结合函数的定义知,对A、B、D,定义域中每一个x都有唯一函数值与之对应,而对C,对大于0的x而言,有两个不同值与之对应,不符合函数定义,故选C.【答案】 C2.已知函数f(x-1)=x2-3,则f(2)的值为()A.-2 B.6C.1 D.0【解析】方法一:令x-1=t,则x=t+1,∴f(t)=(t+1)2-3,∴f(2)=(2+1)2-3=6.方法二:f(x-1)=(x-1)2+2(x-1)-2,∴f(x)=x2+2x-2,∴f(2)=22+2×2-2=6.方法三:令x-1=2,∴x=3,∴f(2)=32-3=6.故选B.【答案】 B3.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( ) A .{-1,0,3} B .{0,1,2,3} C .{y|-1≤y ≤3} D .{y|0≤y ≤3} 【解析】 当x =0时,y =0; 当x =1时,y =12-2×1=-1; 当x =2时,y =22-2×2=0; 当x =3时,y =32-2×3=3. 【答案】 A4.已知f(x)是一次函数,2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)=( ) A .3x +2 B .3x -2 C .2x +3 D .2x -3【解析】 设f(x)=kx +b(k ≠0), ∵2f(2)-3f(1)=5,2f(0)-f(-1)=1, ∴⎩⎨⎧ k -b =5k +b =1,∴⎩⎨⎧k =3b =-2, ∴f(x)=3x -2.故选B. 【答案】 B二、填空题(每小题5分,共10分)5.函数f(x)=x 2-4x +2,x ∈[-4,4]的最小值是________,最大值是________.【解析】 f(x)=(x -2)2-2,作出其在[-4,4]上的图象知f(x)min=f(2)=-2; f(x)max=f(-4)=34.【答案】 -2,346.已知f(x)与g(x)分别由下表给出x 1 2 3 4 f(x)4321x 1 2 3 4 g(x)3142那么f(g(3))=【解析】 由表知g(3)=4,f(g(3))=f(4)=1. 【答案】 1三、解答题(每小题10分,共20分)7.已知函数f(x)的图象是两条线段(如图,不含端点),求f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫13.【解析】 由图象知 f(x)=⎩⎨⎧x +1 (-1<x<0)x -1 (0<x<1),∴f ⎝ ⎛⎭⎪⎫13=13-1=-23, ∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫13=f ⎝ ⎛⎭⎪⎫-23=-23+1=13 8.已知函数f(x)=x 2+2x +a ,f(bx)=9x 2-6x +2,其中x ∈R ,a ,b 为常数,求方程f(ax +b)=0的解集.【解析】 ∵f(x)=x 2+2x +a , ∴f(bx)=(bx)2+2(bx)+a =b 2x 2+2bx +a.又∵f(bx)=9x 2-6x +2, ∴b 2x 2+2bx +a =9x 2-6x +2 即(b 2-9)x 2+2(b +3)x +a -2=0.∵x ∈R ,∴⎩⎨⎧b 2-9=0b +3=0a -2=0,即⎩⎨⎧b =-3a =2,∴f(ax +b)=f(2x -3)=(2x -3)2+2(2x -3)+2=4x 2-8x +5=0.∵Δ=(-8)2-4×4×5=-16<0, ∴f(ax +b)=0的解集是Ø. 【答案】 Ø9.(10分)某市出租车的计价标准是:4 km 以内10元,超过4 km 且不超过18 km 的部分1.2元/km ,超过18 km 的部分1.8元/km.(1)如果不计等待时间的费用,建立车费与行车里程的函数关系式; (2)如果某人乘车行驶了20 km ,他要付多少车费?【解析】 (1)设车费为y 元,行车里程为x km ,则根据题意得y =⎩⎨⎧10 (0<x ≤4)1.2x +5.2 (4<x ≤18)1.8x -5.6 (x>18)(2)当x =20时,y =1.8×20-5.6=30.4,即当乘车20 km 时,要付30.4 元车费.。
高一数学第二次月考模拟试题(必修一+二第一二章)时间:120分钟 分值:150分一、选择题(每小题5分,共60分)1.设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有( )A .3个B .4个C .5个D .6个 2.下列函数为奇函数的是( )A .y =x 2B .y =x 3C .y =2xD .y =log 2x 3.函数y =1x+log 2(x +3)的定义域是( )A .RB .(-3,+∞)C .(-∞,-3)D .(-3,0)∪(0,+∞) 4.梯形1111A B C D (如图)是一水平放置的平面图形ABCD 的直观图(斜二测),若11A D ∥/y 轴,11A B ∥/x 轴,1111223A B C D ==, 111A D =,则平面图形ABCD 的面积是( ) A.5 B.10 C.52 D.1025.已知圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120︒ B.150︒ C.180︒ D.240︒ 6.已知f (x 3-1)=x +1,则f (7)的值,为( )A.37-1B.37+1 C .3 D .2 7.已知log 23=a ,log 25=b ,则log 295等于( )A .a 2-b B .2a -b C.a 2b D.2ab8.函数y =x 2+x (-1≤x ≤3)的值域是( )A .[0,12]B .[-14,12]C .[-12,12]D .[34,12]9.下列四个图象中,表示函数f (x )=x -1x的图象的是( )A 1B 1C 1D 1O 110.函数y=-x2+8x-16在区间[3,5]上( )A.没有零点 B.有一个零点 C.有两个零点 D.有无数个零点11.给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面;③如果两条直线都平行于一个平面,那么这两条直线互相平行;④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直. 其中真命题的个数是( )A.4 B.3 C.2 D.112.已知f(x)是定义在(0,+∞)上的增函数,若f(x)>f(2-x),则x的取值范围是( ) A.x>1 B.x<1 C.0<x<2 D.1<x<2二、填空题(每小题5分,共20分)13.已知集合A={x|x<-1或2≤x<3},B={x|-2≤x<4},则A∪B=__________.14.函数y=log23-4x的定义域为__________.15.据有关资料统计,通过环境整治,某湖泊污染区域S(km2)与时间t(年)可近似看作指数函数关系,已知近两年污染区域由0.16 km2降至0.04 km2,则污染区域降至0.01 km2还需要__________年.16.空间四边形ABCD中,P、R分别是AB、CD的中点,PR=3、AC= 4、BD=25那么AC与BD所成角的度数是_________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知集合A={x|1≤x<4},B={x|x-a<0},(1)当a=3时,求A∩B;(2)若A⊆B,求实数a的取值范围.18.(12分)(1)计算:(279)12+(lg5)0+(2764)-13;(2)解方程:log 3(6x-9)=3.19.(12分)判断函数f (x )=1a x-1+x 3+12的奇偶性.20. 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点,连结ED ,EC ,EB 和DB . (1)求证:平面EDB ⊥平面EBC ; (2)求二面角E -DB -C 的正切值.21.(12分)已知正方体1111ABCD A B C D ,O 是底ABCD 对角线的交点.求证:(1)O C 1∥面11AB D ;D 1ODB AC 1B 1A 1C(2)1A C 面11AB D .22.( 12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=1,(1)求f (x ),g (x );(2)判断函数h (x )=f (x )+g (x )的奇偶性;(3)证明函数S(x)=xf(x)+g(12)在(0,+∞)上是增函数.高一数学期末考试模拟试题(答案)一、选择题(每小题5分,共60分)1.解析:U =A ∪B ={3,4,5,7,8,9},A ∩B ={4,7,9},∴∁U (A ∩B )={3,5,8},有3个元素,故选A.答案:A2.解析:A 为偶函数,C 、D 均为非奇非偶函数.答案:B 3.解析:要使函数有意义,自变量x 的取值须满足⎩⎪⎨⎪⎧x ≠0x +3>0,解得x >-3且x ≠0.答案:D4. 解析:梯形1111A B C D 上底长为2,下底长为3腰梯形11A D 长为1,腰11A D 与下底11C D 的夹角为45︒ ,所以梯形1111A B C D 的高为2,所以梯形1111A B C D 的面积为1+=224(23) ,根据S =4直观平面 可知,平面图形ABCD 的面积为5.答案:A 5.解析:由22r r 3r l πππ+=知道2l r =所以圆锥的侧面展开图扇形圆心角度数为13603601802r l ⨯︒=⨯︒=︒,故选C 答案:C 6.解析:令x 3-1=7,得x =2,∴f (7)=3.答案:C7.解析:log 295=log 29-log 25=2log 23-log 25=2a -b .答案:B8.解析:画出函数y =x 2+x (-1≤x ≤3)的图象,由图象得值域是[-14,12].答案:B9.解析:函数y =x ,y =-1x 在(0,+∞)上为增函数,所以函数f (x )=x -1x在(0,+∞)上为增函数,故满足条件的图象为A.答案:A10.解析:∵y =-x 2+8x -16=-(x -4)2,∴函数在[3,5]上只有一个零点4.答案:B 11.解析:因为①②④正确,故选B .12.解析:由题目的条件可得⎩⎪⎨⎪⎧x >02-x >0x >2-x,解得1<x <2,故答案应为D.答案:D二、填空题(每小题5分,共20分) 13.答案:{x |x <4}14.解析:根据对数函数的性质可得log 2(3-4x )≥0=log 21,解得3-4x ≥1,得x ≤12,所以定义域为(-∞,12].答案:(-∞,12]15.解析:设S =a t ,则由题意可得a 2=14,从而a =12,于是S =(12)t ,设从0.04 km 2降至0.01 km 2还需要t 年,则(12)t =14,即t =2.答案:2 16、解析:如图,取AD 中点Q ,连PQ ,RQ ,则5PQ =,2RQ =,而PR =3,所以222PQ RQ PR +=,所以PQR 为直角三角形,90PQR ∠=︒,即PQ 与RQ 成90︒的角,所以AC 与BD 所成角的度数是90︒.答案:90︒三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知集合A ={x |1≤x <4},B ={x |x -a <0}, (1)当a =3时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.解:(1)当a =3时,B ={x |x -3<0}={x |x <3},则有A ∩B ={x |1≤x <3}. (2)B ={x |x -a <0}={x |x <a },当A ⊆B 时,有a ≥4,即实数a 的取值范围是[4,+∞). 18.(12分)(1)计算:(279)12 +(lg5)0+(2764)-13 ;(2)解方程:log 3(6x-9)=3.解:(1)原式=(259)12 +(lg5)0+[(34)3]-13=53+1+43=4.(2)由方程log 3(6x-9)=3得6x-9=33=27,∴6x =36=62,∴x =2.经检验,x =2是原方程的解. 19.(12分)判断函数f (x )=1a x-1+x 3+12的奇偶性. 解:由a x-1≠0,得x ≠0,∴函数定义域为(-∞,0)∪(0,+∞), f (-x )=1a -x -1+(-x )3+12=a x1-a x -x 3+12=a x -1+11-a x-x 3+12=-1a x -1-x 3-12=-f (x ). ∴f (x )为奇函数.20.(12分) 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点,连结ED ,EC ,EB 和DB .(1)求证:平面EDB ⊥平面EBC ; (2)求二面角E -DB -C 的正切值.证明:(1)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点.∴△DD 1E 为等腰直角三角形,∠D 1ED =45°.同理∠C 1EC =45°.∴︒=∠90DEC ,即DE ⊥EC .在长方体ABCD -1111D C B A 中,BC ⊥平面11DCC D ,又DE ⊂平面11DCC D ,∴BC ⊥DE .又C BC EC = ,∴DE ⊥平面EBC .∵平面DEB 过DE ,∴平面DEB ⊥平面EBC . (2)解:如图,过E 在平面11DCC D 中作EO ⊥DC 于O .在长方体ABCD -1111D C B A 中,∵面ABCD⊥面11DCC D ,∴EO ⊥面ABCD .过O 在平面DBC 中作OF ⊥DB 于F ,连结EF ,∴EF ⊥BD .∠EFO 为二面角E -DB -C 的平面角.利用平面几何知识可得OF =51, (第20题)又OE =1,所以,tan ∠EFO =5. 21.(12分)已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)O C 1∥面11AB D ;(2 )1AC ⊥面11AB D . 证明:(1)连结11A C ,设11111AC B D O =连结1AO ,1111ABCD A B C D -是正方体11A ACC ∴是平行四边形11A C AC ∴且 11A C AC =又1,O O 分别是11,A C AC 的中点,11O C AO ∴且11O C AO =D 1ODBAC 1B 1A 1C11AOC O ∴是平行四边形 111,C O AO AO ∴⊂面11AB D ,1C O ⊄面11AB D ∴1C O 面11AB D(2)1CC ⊥面1111A B C D 11!CC B D ∴⊥又1111A C B D ⊥, 1111B D AC C ∴⊥面111AC B D ⊥即同理可证11A C AB ⊥, 又1111D B AB B =∴1A C ⊥面11AB D22.(12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=1, (1)求f (x ),g (x );(2)判断函数h (x )=f (x )+g (x )的奇偶性;(3)证明函数S (x )=xf (x )+g (12)在(0,+∞)上是增函数.解:(1)设f (x )=k 1x (k 1≠0),g (x )=k 2x(k 2≠0).∵f (1)=1,g (1)=1,∴k 1=1,k 2=1.∴f (x )=x ,g (x )=1x.(2)由(1)得h (x )=x +1x,则函数h (x )的定义域是(-∞,0)∪(0,+∞),h (-x )=-x +1-x =-(x +1x)=-h (x ),∴函数h (x )=f (x )+g (x )是奇函数. (3)证明:由(1)得S (x )=x 2+2.设x 1,x 2∈(0,+∞),且x 1<x 2,则S (x 1)-S (x 2)=(x 21+2)-(x 22+2)=x 21-x 22=(x 1-x 2)(x 1+x 2). ∵x 1,x 2∈(0,+∞),且x 1<x 2,∴x 1-x 2<0,x 1+x 2>0. ∴S (x 1)-S (x 2)<0.∴S (x 1)<S (x 2).∴函数S (x )=xf (x )+g (12)在(0,+∞)上是增函数.。
人教A 版必修第二册各章综合测验第六章平面向量及其应用 ............................................................................................... 1 第七章复数 ..................................................................................................................... 14 第八章立体几何初步 ..................................................................................................... 22 第九章统计 ..................................................................................................................... 36 第十章概率 (49)第六章平面向量及其应用(120分钟 150分)一、单选题(每小题5分,共40分)1.在△ABC 中,D 是AB 边上的中点,则CB → =( ) A .2CD → +CA → B .CD → -2CA →C .2CD → -CA → D .CD → +2CA→ 【解析】选C.在△ABC 中,D 是AB 边上的中点,则CB → =CD → +DB → =CD → +AD → =CD → +(AC → +CD → )=2CD → -CA → .2.已知向量a =(1,1),b =(0,2),且λa +μb =(2,8),则λ-μ=( ) A .5 B .-5 C .1 D .-1 【解析】选D.因为a =(1,1),b =(0,2), 所以λa +μb =(λ,λ+2μ), 因为λa +μb =(2,8),所以(λ,λ+2μ)=(2,8),所以λ=2,μ=3, 所以λ-μ=-1.3.向量a =(1,0),b =(2,1),c =(x ,1),若3a -b 与c 共线,则x =( ) A .1 B .-3 C .-2 D .-1【解析】选D.向量a =(1,0),b =(2,1),c =(x ,1),则3a -b =(1,-1),又3a -b 与c 共线,则1×1-(-1)·x=0,解得x =-1.4.(2021·宁波高一检测)平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |等于( )A . 3B .2 3C .4D .12 【解析】选B.因为a =(2,0),|b |=1 所以|a |=2,a·b =2×1×cos 60°=1 所以|a +2b |=a 2+4a·b +4b 2 =2 35.在△ABC 中,B =45°,C =60°,c =1,则最短边长为( ) A .62 B .63 C .12 D .32【解析】选B.A =180°-(60°+45°)=75°, 故最短边为b ,由正弦定理可得b sin B =csin C, 即b =c sin B sin C =1×sin 45°sin 60° =63. 6.如图所示,下列结论正确的是( )①PQ → =32 a +32 b ;②PT → =32 a -b ;③PS → =32 a -12 b ;④PR → =32a +b .A .①② B.③④ C.①③ D.②④【解析】选C.①根据向量的加法法则,得PQ → =32 a +32b ,故①正确;②根据向量的减法法则,得PT → =32 a -32 b ,故②错误;③PS → =PQ → +QS → =32 a +32 b -2b =32 a -12 b ,故③正确;④PR → =PQ → +QR →=32 a +32 b -b =32 a + 12b ,故④错误. 7.已知三个力f 1=(-2,-1),f 2=(-3,2),f 3=(7,-3)同时作用于某物体上一点,为使该物体保持平衡,需再加上一个力f 4,则f 4=( ) A .(-2,-2) B .(2,-2) C .(-1,2)D .(-2,2)【解析】选D.由物理知识,知物体平衡,则所受合力为H ,所以f 1+f 2+f 3+f 4=0,故f 4=-(f 1+f 2+f 3)=(-2,2).8.(2021·济宁高一检测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若 tan C =7 ,cos A =528 ,b =3 2 ,则△ABC 的面积为( ) A .37B .372C .374D .378【解析】选B.因为tan C =sin C cos C =7 且sin 2C +cos 2C =1,解得sin C =144,cos C =24 .又cos A =528 ,所以sin A =1-cos 2A =148 ,故sin B =sin [π-(A +C)]=sin (A +C) =sin A cos C +cos A sin C =378. 因为a sin A =b sin B ,b =3 2 ,故a =b sin A sin B =2,S △ABC =12 ×ab sin C=12 ×2×3 2 ×144 =372.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得2分,有选错的得0分)9.对于任意的平面向量a ,b ,c ,下列说法正确的是( ) A .若a ∥b 且b ∥c ,则a ∥c B .(a +b )·c =a ·c +b ·cC .若a ·b =a ·c ,且a ≠0,则b =cD .(a +b )+c =a +(b +c )【解析】选BD.a ∥b 且b ∥c ,当b 为零向量时,则a 与c 不一定共线,即A 错误;由向量乘法的分配律可得:(a +b )·c =a ·c +b ·c ,即B 正确; 因为a ·b =a ·c ,则a·(b +c )=0, 又a ≠0,则b =c 或a ⊥(b +c ),即C 错误;向量加法满足结合律,即:(a +b )+c =a +(b +c ),即D 正确.10.(2021·青岛高一检测)已知平面向量a ,b ,c 满足|a |=|b |=|c |=1,若a ·b =12,则(a -b )·(2b -c )的值可能为( ) A .-2 B .3- 3 C .0D .- 2【解析】选ACD.|a|=|b|=|c|=1,a ·b =12 ,则cos θ=12 ,θ=60°,所以|b -a|=a 2+b 2-2a·b =1,则(a -b )·(2b -c )=2a·b -a·c -2b 2+b·c =1-2+c·(b -a )=-1+cos α,其中α为c 与b -a 的夹角,且α∈[0,π],因为cos α∈[-1,1], 所以cos α-1∈[-2,0].11.(2021·南通高一检测)如图,B 是AC 的中点,BE → =2OB → ,P 是平行四边形BCDE 内(含边界)的一点,且OP → =xOA → +yOB → ()x ,y∈R ,则下列结论正确的为( )A .当x =0时,y∈[]2,3B .当P 是线段CE 的中点时,x =-12 ,y =52C .若x +y 为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段D .x -y 的最大值为-1【解析】选BCD.当x =0时,OP → =yOB → ,则P 在线段BE 上,故1≤y≤3,故A错.当P 是线段CE 的中点时,OP → =OE → +EP → =3OB → +12 (EB → +BC → )=3OB→ +12 (-2OB → +AB →) =-12 OA → +52OB →,故B 对.x +y 为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故C 对.如图,过P 作PM∥AO,交OE 于M ,作PN∥OE,交AO 的延长线于N ,则:OP → =ON → +OM → ;又OP → =xOA → +yOB → ;所以x≤0,y≤1;由图形看出,当P 与B 重合时,OP →=0·OA → +1·OB → ;此时x 取最大值0,y 取最小值1;所以x -y 取最大值-1,故D 正确. 12.(2021·怀化高一检测)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,cos 2A-cos2B-cos2C=cosA cos B+cos C-cos 2B且c= 3 ,则下列结论中正确的是( )A.C=π3B.C=2π3C.△ABC面积的最大值为3 4D.△ABC面积的最大值为33 4【解析】选BC.因为cos2A-cos2B-cos2C=cosAcos B+cos C-cos 2B,所以(1-sin2A)-(1-sin2B)-(1-sin2C)=cosA cos B-cos (A+B)-(1-2sin2B),所以sinA sin B+sin2B+sin2A-sin2C=0,由正弦定理可得ab+b2+a2-c2=0,可得cosC=-12,可得C=2π3,故A错误;B正确;又c= 3 ,可得3=a2+b2+ab≥2ab+ab,解得ab≤1,当且仅当a=b=1时取等号,所以S△ABC =12ab sin C≤12×1×32=34,故C正确;D错误.三、填空题(每小题5分,共20分)13.已知a=(2,-2),b=(x,2),若a·b=6,则x=____________.【解析】因为a=(2,-2),b=(x,2),所以a·b=2x-4,又因为a·b=6,所以2x-4=6,解得x=5.答案:514.在锐角三角形ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边.若2a sin B = 3 b ,b +c =5,bc =6,则a =__________. 【解析】因为2a sin B = 3 b , 所以2sin A sin B = 3 sin B. 所以sin A =32, 因为△ABC 为锐角三角形, 所以cos A =12 ,因为bc =6,b +c =5, 所以b =2,c =3或b =3,c =2.所以a 2=b 2+c 2-2bc cos A =22+32-2×6×12 =7,所以a =7 .答案:715.在平行四边形ABCD 中,AD =1,∠BAD=60°,E 为CD 的中点.若AD → ·EB → =2,则AB → 的模为__________.【解析】因为在平行四边形ABCD 中,EB → =EC → +CB → =12 DC → -BC → ,又DC → =AB → ,BC → =AD → , 所以EB → =12AB → -AD → ,所以AD → ·EB → =AD → ·⎝ ⎛⎭⎪⎫12AB →-AD → =12 AB → ·AD → -AD → 2=12 |AB → ||AD→ |cos 60°-|AD → |2=14 |AB → |-1=2,所以|AB → |=12. 答案:1216.(2021·天津高一检测)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若m =()b -c ,a -b ,n =()sin C ,sin A +sin B ,且m ⊥n ,则A =________;若△ABC 的面积为2 3 ,则△ABC 的周长的最小值为____________.【解析】由条件可知m ·n =()b -c sin C +()a -b ()sin A +sin B =0, 由正弦定理可得()b -c c +()a -b ()a +b =0, 所以bc -c 2+a 2-b 2=0即bc =b 2+c 2-a 2, cos A =b 2+c 2-a 22bc =bc 2bc =12 ,因为0<A<π,所以A =π3; S =12 bc sin A =34 bc =2 3 ,解得bc =8, a 2=b 2+c 2-2bc cos π3=b 2+c 2-bc≥2bc-bc =8即a≥2 2 ,当b =c =2 2 时,等号成立,b +c≥2bc =4 2 ,当b =c 时等号成立, 所以a +b +c≥2 2 +4 2 =6 2 , 当b =c 时,a +b +c 时取得最小值6 2 . 答案:π3 6 2四、解答题(共70分)17.(10分)在平面直角坐标系中,已知A(1,0),B(0,1),C(2,5),求: (1)2AB → +AC → 的模;(2)cos ∠BAC. 【解析】(1)如图,AB →=(-1,1),AC → =(1,5),故2AB → +AC → =(-2,2)+(1,5)=(-1,7), 故|2AB → +AC → |= (-1)2+72=5 2 ; (2)cos ∠BAC=AB →·AC →|AB →||AC →|=(-1,1)·(1,5)1+1 1+52=-1+5 2×26=2 1313. 18.(12分)如图所示,梯形ABCD 中,AB∥CD,且AB =2CD ,M ,N 分别是DC 和AB 的中点,若AB → =a ,AD → =b ,试用a ,b 表示DC → ,BC → ,MN →.【解析】由题意知四边形ANCD 是平行四边形. 则DC → =AN →=12 AB → =12a ,BC →=NC → -NB → =AD → -12 AB → =b -12 a ,MN → =CN → -CM → =-AD →-12 CD →=-AD → -12 ⎝ ⎛⎭⎪⎫-12AB →=14a -b .19.(12分)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.【解析】(1)依题意知,∠BAC=120°,AB=12,AC=10×2=20,∠BCA=α.在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB·AC·cos ∠BAC=122+202-2×12×20×cos 120°=784,解得BC=28.所以渔船甲的速度为BC2=14(海里/时).(2)在△ABC中,AB=12,∠BAC=120°,BC=28,∠BCA=α,由正弦定理,得ABsin α=BCsin 120°,所以sin α=AB sin 120°BC=12×3228=3314.20.(12分)(2020·新高考全国Ⅰ卷)在①ac= 3 ,②c sin A=3,③c= 3 b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且sin A= 3sin B,C=π6,________?注:如果选择多个条件分别解答,按第一个解答计分.【解析】选条件①ac= 3 .在△ABC中,sin A= 3 sin B,即b=33a,ac= 3 ,所以c=3a,cos C=a2+b2-c22ab=a2+a23-3a223a23=32,所以a= 3 ,b=1,c=1. 选条件②c sin A=3.在△ABC中,c sin A=a sin C=a sin π6=3,所以a=6.因为sin A= 3 sin B,即a= 3 b,所以b=2 3 ,cos C=a2+b2-c22ab=36+12-c22×6×23=32,所以c=2 3 ,选条件③c= 3 b.由sin A= 3 sin B可得a= 3 b,又c= 3 b,所以cos C=a2+b2-c22ab=36≠cosπ6,与已知条件C=π6相矛盾,所以问题中的三角形不存在.21.(12分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且满足a2+c2-b2= 3 ac.(1)求角B的大小;(2)若2b cos A= 3 (c cos A+a cos C),BC边上的中线AM的长为7 ,求△ABC【解析】(1)由余弦定理得cos B =a 2+c 2-b 22ac =3ac 2ac =32 ,因为B 是三角形的内角,所以B =π6. (2)由正弦定理得a sin A =b sin B =csin C ,代入2b cos A = 3 (c cos A +a cos C),可得2sin B cos A = 3 (sin C cos A +sin A cos C), 即2sin B cos A = 3 sin B , 因为sin B≠0,所以cos A =32, 所以A =π6, 于是C =π-A -B =2π3.设AC =m ,则BC =m ,AB = 3 m ,CM =12m ,由余弦定理可知AM 2=CM 2+AC 2-2CM·AC·cos 2π3,即(7 )2=14 m 2+m 2-2·12 m·m·(-12 )=74m 2,解得m =2. 于是S △ABC =12 CA·CB sin 2π3 =12 ×2×2×32= 3 .22.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sinA +C2=(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 【解析】(1)由题设及正弦定理得sin A sinA +C2=sin B sin A. 因为sin A≠0,所以sinA +C2=sin B. 由A +B +C =180°,可得sin A +C 2 =cos B2, 故cos B 2 =2sin B 2 cos B2.因为cos B 2 ≠0,故sin B 2 =12 ,因此B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =12 ac sin B =34 a. 由正弦定理得a =c sin A sin C =sin (120°-C )sin C =32tan C +12. 由于△ABC 为锐角三角形, 故0°<A<90°,0°<C<90°, 由(1)知A +C =120°,所以30°<C<90°,tan C >33 ,故12 <a<2,从而38 <S △ABC <32. 因此,△ABC 面积的取值范围是⎝ ⎛⎭⎪⎫38,32 .第七章复数(120分钟 150分)一、单选题(每小题5分,共40分) 1.i 是虚数单位,则i1+i的虚部是( ) A .12 iB .-12 iC .12D .-12【解析】选C.i 1+i =i (1-i )(1+i )(1-i ) =1+i 2 =12 +12i. 2.若(x -i)i =y +2i ,x ,y∈R ,则复数x +yi =( ) A .-2+i B .1-2i C .2+iD .1+2i【解析】选C.(x -i)i =y +2i 即xi +1=y +2i ,故y =1,x =2, 所以复数x +yi =2+i.3.设z 1=-3+4i ,z 2=2-3i ,其中i 为虚数单位,则z 1+z 2在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限【解析】选B.因为z 1=-3+4i ,z 2=2-3i , 所以z 1+z 2=-3+4i +2-3i =-1+i ,所以z 1+z 2在复平面内对应的点为(-1,1),位于第二象限.4.(2021·舟山高一检测)已知z1+i=2+i ,则复数z =( )A .1+3iB .1-3iC .3+iD .3-i【解析】选B.由题意,复数z1+i=2+i ,可得z =(2+i)(1+i)=1+3i ,所以z =1-3i.5.如图,在复平面内,向量OP → 对应的复数是1-i ,将OP → 向左平移一个单位后得到00O P ,则P 0对应的复数为( )A.1-iB .1-2iC .-1-iD .-i【解析】选 D.要求P 0对应的复数,根据题意,只需知道0OP ,而0000OP OO O P =+,从而可求P 0对应的复数.因为00O P =OP → ,0OO 对应的复数是-1,所以P 0对应的复数,即0OP 对应的复数是-1+(1-i)=-i.6.已知a ,b∈R ,i 是虚数单位,若a -i 与2+bi 互为共轭复数,则(a +bi)2=( ) A .5-4i B .5+4i C .3-4iD .3+4i【解析】选D.由a -i 与2+bi 互为共轭复数,可得a =2,b =1.所以(a +bi)2=(2+i)2=4+4i -1=3+4i.7.如果一个复数和它的模的和为5+ 3 i ,那么这个复数是( ) A .115B . 3 iC .115 + 3 iD .115+2 3 i【解析】选C.设这个复数为a +bi(a ,b∈R ). 由题意得a +bi +a 2+b 2 =5+ 3 i ,即a +a 2+b 2 +bi =5+ 3 i ,由复数相等可得:⎩⎪⎨⎪⎧a +a 2+b 2=5,b =3, 解得⎩⎨⎧a =115,b =3,所以复数为115+ 3 i.8.设复数z =cos x +isin x ,则函数f(x)=⎪⎪⎪⎪⎪⎪z +1z 的部分图象可能是( )【解析】选A.f(x)=⎪⎪⎪⎪⎪⎪cos x +isin x +1cos x +isin x =2|cos x|,所以f(x)的图象为A.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得2分,有选错的得0分) 9.已知复数z =21-i,则下列结论正确的是( ) A .z 的虚部为iB .|z|2=2C .z 2为纯虚数D .z =-1+i【解析】选BC.因为复数z =21-i =2(1+i )(1-i )(1+i )=1+i ,则z 的虚部为1,A 不正确.|z|2=2,B 正确.z 2=(1+i)2=2i 为纯虚数,C 正确.z =1-i ,D 不正确.10.已知i 为虚数单位,复数z 1=a +2i ,z 2=2-i ,且|z 1|=|z 2|,则实数a 的值不能为( )A .1B .-1C . 2D .- 2【解析】选CD.因为复数z 1=a +2i ,z 2=2-i ,且|z 1|=|z 2|,所以a 2+4=4+1,解得a =±1.11.已知z 1与z 2是共轭虚数,有下列4个命题,其中一定正确的有( ) A .z 21 <|z 2|2B .z 1z 2=|z 1z 2|C .z 1+z 2∈RD .z 1z 2∈R 【解析】选BC.z 1与z 2是共轭虚数,设z 1=a +bi ,z 2=a -bi(a ,b∈R ,b≠0). A .z 21 =a 2-b 2+2abi ,|z 2|2=a 2+b 2,虚数不能比较大小,因此不正确; B .z 1z 2=|z 1z 2|=a 2+b 2,正确; C .z 1+z 2=2a∈R ,正确;D .z 1z 2 =a +bi a -bi =(a +bi )2(a -bi )(a +bi ) =a 2-b 2a 2+b 2 +2ab a 2+b 2 i 不一定是实数,因此不一定正确.12.设i 为虚数单位,复数z =(a +i)(1+2i),则下列命题正确的是( ) A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是⎝ ⎛⎭⎪⎫-12,2C .实数a =-12 是z =z (z 为z 的共轭复数)的充要条件D .若z +|z|=x +5i(x∈R ),则实数a 的值为2 【解析】选ACD .z =(a +i)(1+2i)=a -2+(1+2a)i , 所以选项A :z 为纯虚数,有⎩⎨⎧a -2=0,1+2a≠0可得a =2,故正确;选项B :z 在复平面内对应的点在第三象限,有⎩⎨⎧a -2<0,1+2a<0 解得a<-12 ,故错误;选项C :a =-12 时z =z =-52 ;z =z 时1+2a =0即a =-12 ,它们互为充要条件,故正确;选项D :z +|z|=x +5i(x∈R )时,有1+2a =5即a =2,故正确. 三、填空题(每小题5分,共20分)13.i 是虚数单位,复数6+7i1+2i=________. 【解析】6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i ) =(6+14)-5i 12-(2i )2 =20-5i5 =4-i.答案:4-i 14.若1+ai1-i=2-i(其中i 是虚数单位),则实数a =________. 【解析】因为1+ai1-i=2-i ,所以1+ai =(1-i)(2-i)=1-3i ,所以a =-3. 答案:-315.已知复数z =(2a +i)(1-bi)的实部为2,其中a ,b 为正实数,则4a + ⎝ ⎛⎭⎪⎫12 1-b 的最小值为________. 【解析】因为复数z =(2a +i)(1-bi)=2a +b +(1-2ab)i 的实部为2,其中a ,b 为正实数,所以2a +b =2,所以4a+⎝ ⎛⎭⎪⎫12 1-b =22a +2b -1≥222a ·2b -1 =222a +b -1 =2 2 .当且仅当a =14 ,b =32 时取等号.答案:2 216.已知2+i ,2-i 是实系数一元二次方程x 2+px +q =0在复数范围内的两个根,则p =________,q =________.【解析】由题意得(2+i)+(2-i)=-p ,(2+i)(2-i)=q ,所以p =-4,q =5.答案:-4 5 四、解答题(共70分)17.(10分)计算:(1)(2+i )(1-i )21-2i;(2)4+5i(5-4i )(1-i ). 【解析】(1)(2+i )(1-i )21-2i =(2+i )(-2i )1-2i=2(1-2i )1-2i=2.(2)4+5i (5-4i )(1-i ) =(5-4i )i (5-4i )(1-i ) =i1-i =i (1+i )(1-i )(1+i ) =i -12 =-12 +12i. 18.(12分)设复数z =(a 2+a -2)+(a 2-7a +6)i ,其中a∈R ,当a 取何值时,(1)z∈R ;(2)z 是纯虚数;(3)z 是零. 【解析】(1)z∈R ,只需a 2-7a +6=0, 所以a =1或a =6.(2)z 是纯虚数,只需⎩⎨⎧a 2+a -2=0,a 2-7a +6≠0,所以a =-2.(3)因为z =0,所以⎩⎨⎧a 2+a -2=0,a 2-7a +6=0,所以a =1.19.(12分)已知z 1=m 2+1m +1 i ,z 2=(2m -3)+12i ,m∈R ,i 为虚数单位,且z 1+z 2是纯虚数. (1)求实数m 的值; (2)求z 1·z 2的值.【解析】(1)z 1+z 2=(m 2+2m -3)+(1m +1 +12)i ,因为z 1+z 2是纯虚数所以⎩⎨⎧m 2+2m -3=01m +1+12≠0解得m =1.(2)由(1)知z 1=1+12 i ,z 2=-1+12 i ,所以z 2=-1-12i ,所以z 1·z 2=⎝ ⎛⎭⎪⎫1+12i ·⎝ ⎛⎭⎪⎫-1-12i=-1-12 i -12 i +14 =-34-i.20.(12分)已知复数z 1=m +(m 2-2m)i ,z 2=1+(-m 2+3m -1)i ,其中x∈R . (1)若复数z 1为实数,求m 的值; (2)求|z 1+z 2|的最小值.【解析】(1)由复数z 1为实数,则m 2-2m =0,解得m =2或m =0. (2)因为z 1+z 2=(m +1)+(m -1)i , 所以|z 1+z 2|=(m +1)2+(m -1)2 =2m 2+2 ,当m =0时,故|z 1+z 2|的最小值为 2 . 21.(12分)已知x 2-(3-2i)x -6i =0. (1)若x∈R ,求x 的值; (2)若x∈C ,求x 的值. 【解析】(1)x∈R 时,由方程得(x 2-3x)+(2x -6)i =0. 则⎩⎨⎧x 2-3x =0,2x -6=0, 得x =3. (2)x∈C 时,设x =a +bi(a ,b∈R ),代入方程整理,得(a 2-b 2-3a -2b)+(2ab -3b +2a -6)i =0.则⎩⎨⎧a 2-b 2-3a -2b =0,2ab -3b +2a -6=0, 得⎩⎨⎧a =0,b =-2 或⎩⎨⎧a =3,b =0.故x =3或x =-2i.22.(12分)若z∈C ,4z +2z =3 3 +i ,ω=sin θ-icos θ(θ为实数),i 为虚数单位. (1)求复数z ;(2)求|z -ω|的取值范围.【解析】(1)设z =a +bi(a ,b∈R ),则z =a -bi , 所以4(a +bi)+2(a -bi)=3 3 +i , 即6a +2bi =3 3 +i ,所以⎩⎨⎧6a =33,2b =1⇒⎩⎪⎨⎪⎧a =32,b =12,所以z =32 +12i. (2)|z -ω|=⎪⎪⎪⎪⎪⎪32+12i -(sin θ-icos θ)=⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫32-sin θ+⎝ ⎛⎭⎪⎫12+cos θi=⎝ ⎛⎭⎪⎫32-sin θ2+⎝ ⎛⎭⎪⎫12+cos θ2=2-3sin θ+cos θ =2-2sin ⎝⎛⎭⎪⎫θ-π6 .因为-1≤sin ⎝⎛⎭⎪⎫θ-π6 ≤1,所以0≤2-2sin ⎝ ⎛⎭⎪⎫θ-π6 ≤4,所以0≤|z-ω|≤2,故|z -ω|的取值范围是[0,2].第八章立体几何初步(120分钟 150分)一、单选题(每小题5分,共40分)1.在棱长为1的正方体上,分别用过共顶点的三条棱的中点的平面截该正方体,则截去8个三棱锥后,剩下的几何体的体积是( ) A .23 B .76 C .45 D .56【解析】选D.棱长为1的正方体的体积为1,8个三棱锥的体积为8×13 ×12 ×12×12 ×12 =16 ,所以剩下的几何体的体积为1-16 =56. 2.如图,α∩β=l ,A ,B∈α,C∈β,C ∉l ,直线AB∩l=M ,过A ,B ,C 三点的平面记作γ,则γ与β的交线必通过( )A .点AB .点BC .点C 但不通过点MD .点C 和点M【解析】选D.通过A ,B ,C 三点的平面γ,即通过直线AB 与点C 的平面,因为M∈AB,所以M∈γ,而C∈γ,又M∈β,C∈β,所以γ和β的交线必通过点C 和点M.3.已知水平放置的△ABC,按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=32,那么原△ABC 的面积是( )A. 3 B .2 2 C .32 D .34【解析】选A.由斜二测画法的原则可得,BC=B′C′=2,AO=2A′O′=2×3 2= 3 ,由图易得AO⊥BC,所以S△ABC =12×2× 3 = 3 .4.如图所示的粮仓可近似为一个圆锥和圆台的组合体,且圆锥的底面圆与圆台的较大底面圆重合.已知圆台的较小底面圆的半径为1,圆锥与圆台的高分别为5 -1和3,则此组合体的外接球的表面积是( )A.16π B.20π C.24π D.28π【解析】选B.设外接球半径为R,球心为O,圆台较小底面圆的圆心为O1,则:OO21+12=R2,而OO1= 5 +2-R,故R2=1+( 5 +2-R)2,所以R= 5 ,所以S=4πR2=20π.5.如图所示,正方形ABCD中,E,F分别是AB,AD的中点,将此正方形沿EF 折成直二面角后,异面直线AF与BE所成角的余弦值为( )A.22B. 3 C.12D.32【解析】选C.过点F作FH∥DC,交BC于H,过点A作AG⊥EF,交EF于G,连接GH,AH,则∠AFH为异面直线AF与BE所成的角.设正方形ABCD的边长为2,在△AGH中,AH=52+24= 3 ,在△AFH中,AF=1,FH=2,AH= 3 ,所以cos ∠AFH=12 .6.用m,n表示两条不同的直线,α表示平面,则下列命题正确的是( ) A.若m∥n,n⊂α,则m∥αB.若m∥α,n⊂α,则m∥nC.若m⊥n,n⊂α,则m⊥αD.若m⊥α,n⊂α,则m⊥n【解析】选D.若m∥n,n⊂α,则m∥α或m⊂α,故排除A;若m∥α,n⊂α,则m∥n或m,n异面,故排除B;若m⊥n,n⊂α,则不能得出m⊥α,例如,m⊥n,n⊂α,m⊂α,则m与α不垂直,故排除C.7.在空间四边形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,则△ABC的形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【解析】选B.作AE⊥BD,交BD于E,因为平面ABD⊥平面BCD,所以AE⊥面BCD,BC⊂面BCD.所以AE⊥BC,而DA⊥平面ABC,BC⊂平面ABC,所以DA⊥BC,又因为AE∩AD=A,所以BC⊥面ABD,而AB⊂面ABD,所以BC⊥AB即△ABC为直角三角形.8.如图,四边形ABCD中,AB=AD=CD=1,BD= 2 ,BD⊥CD.将四边形ABCD 沿对角线BD折成四面体A′BCD,使平面A′BD⊥平面BCD,则下列结论正确的是( )A.A′C⊥BDB.∠BA′C=90°C.CA′与平面A′BD所成的角为30°D.四面体A′BCD的体积为1 3【解析】选B.若A成立可得BD⊥A′D,产生矛盾,故A不正确;由题设知:△BA′D为等腰Rt△,CD⊥平面A′BD,得BA′⊥平面A′CD,于是B正确;由CA′与平面A′BD所成的角为∠CA′D=45°知C不正确;VA′BCD =VCA′BD=16,D不正确.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得2分,有选错的得0分)9.等腰直角三角形直角边长为1,现将该三角形绕其某一边旋转一周,则所形成的几何体的表面积不可能是( )A. 2 π B.(1+ 2 )πC.2 2 π D.(2+ 2 π)【解析】选CD.若绕一条直角边旋转一周时,则圆锥的底面半径为1,高为1,所以母线长l= 2 ,这时表面积为12×2π·1·l+π·12=(1+ 2 )π;若绕斜边旋转一周时,旋转体为两个倒立圆锥对底组合在一起,且由题意底面半径为2 2,两个圆锥的母线长都为1,所以表面积S=2×12×2π·22×1= 2 π,综上所述该几何体的表面积为 2 π或(1+ 2 )π.故选项CD符合题意.10.如图,在平行六面体ABCDA1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,则下列说法正确的是( )A.A1M∥D1PB.A1M∥B1QC.A1M∥平面DCC1D1D.A1M∥平面D1PQB1【解析】选ACD.连接PM,因为M、P为AB、CD的中点,故PM平行且等于AD.由题意知AD平行且等于A1D1,故PM平行且等于A1D1,所以PMA1D1为平行四边形,所以A1M∥D1P.故A正确;显然A1M与B1Q为异面直线,故B错误;由A知A1M∥D1P,由于D1P既在平面DCC1D1内,又在平面D1PQB1内,且A1M即不在平面DCC1D1内,又不在平面D1PQB1内,故C,D正确.11.正方体ABCDA1B1C1D1的棱长为1,E,F,G分别为BC,CC1,BB1的中点.则( )A.直线D1D与直线AF垂直B.直线A1G与平面AEF平行C.平面AEF截正方体所得的截面面积为9 8D.点C与点G到平面AEF的距离相等【解析】选BC.取DD1中点M,则AM为AF在平面AA1D1D上的射影,因为AM与DD1不垂直,所以AF与DD1不垂直,故A选项错误;因为A1G∥D1F,A1G⊄平面AEFD1,所以A1G∥平面AEFD1,故B选项正确;平面AEF截正方体所得截面为等腰梯形AEFD1,易知梯形面积为98,故C选项正确;假设C与G到平面AEF的距离相等,即平面AEF将CG平分,则平面AEF必过CG中点,连接CG交EF于H,而H不是CG中点,则假设不成立.故D选项错误.12.如图,在四棱锥PABCD中,底面ABCD为菱形,∠DAB=60°,侧面PAD为正三角形,且平面PAD⊥平面ABCD,则下列说法正确的是( )A.在棱AD上存在点M,使AD⊥平面PMBB.异面直线AD与PB所成的角为90°C.二面角PBCA的大小为45°D.BD⊥平面PAC【解析】选ABC.如图所示,A.取AD的中点M,连接PM,BM,连接对角线AC,BD 相交于点O.因为侧面PAD为正三角形,所以PM⊥AD.又底面ABCD为菱形,∠DAB=60°,所以△ABD 是等边三角形. 所以AD⊥BM.又PM∩BM=M. 所以AD⊥平面PMB ,因此A 正确. B .由A 可得:AD⊥平面PMB ,所以AD⊥PB,所以异面直线AD 与PB 所成的角为90°,正确. C .因为平面PBC∩平面ABCD =BC ,BC∥AD, 所以BC⊥平面PBM ,所以BC⊥PB,BC⊥BM. 所以∠PBM 是二面角PBCA 的平面角, 设AB =1,则BM =32 =PM ,在Rt△PBM 中,tan ∠PBM=PMBM=1, 所以∠PBM=45°,因此正确. D .因为BD 与PA 不垂直,所以BD 与平面PAC 不垂直,因此D 错误. 三、填空题(每小题5分,共20分)13.在三棱柱ABC A 1B 1C 1中,点P 是棱CC 1上一点,记三棱柱ABC A 1B 1C 1与四棱锥PABB 1A 1的体积分别为V 1与V 2,则V 2V 1=________.【解析】设AB =a ,在△ABC 中AB 边所对的高为b ,三棱柱ABC A 1B 1C 1的高为h , 则V 1=12 abh ,V 2=13 ×ah·b,所以V 2V 1 =13abh 12abh =23.答案:2314.如图(1)所示,一个装了水的密封瓶子,其内部可以看成是由半径为 1 cm 和半径为3 cm 的两个圆柱组成的简单几何体.当这个几何体如图(2)水平放置时,液面高度为20 cm ;当这个几何体如图(3)水平放置时,液面高度为28 cm ,则这个简单几何体的总高度为________cm.【解析】设上、下圆柱的半径分别是r cm ,R cm ,高分别是h cm ,H cm.由水的体积不变得πR 2H +πr 2(20-H)=πr 2h +πR 2(28-h),又r =1,R =3,故H +h =29.即这个简单几何体的总高度为29 cm. 答案:2915.如图所示,ABCDA 1B 1C 1D 1是长方体,AA 1=a ,∠BAB 1=∠B 1A 1C 1=30°,则AB 与A 1C 1所成的角为________,AA 1与B 1C 所成的角为________.【解析】长方体ABCDA 1B 1C 1D 1中,∠BAB 1=∠B 1A 1C 1=30°,因为AB∥A 1B 1,A 1B 1与A 1C 1所成的角,就是AB 与A 1C 1所成的角, 所以AB 与A 1C 1所成的角为30°,因为AA 1∥BB 1,BB 1与B 1C 所成的角就是AA 1与B 1C 所成的角,连接AC ,则AC∥A 1C 1, 所以∠BAC=30°,因为AA 1=a ,∠BAB 1=30°,所以AB = 3 a ,所以BC =a ,所以∠BB 1C =45°, 所以AA 1与B 1C 所成的角为45°. 答案:30° 45°16.在正方体ABCDA1B1C1D1中,M,N分别是AB,A1B1的中点,P在AD上,若平面CMN⊥平面A1BP,则ADAP=________.【解析】因为M,N分别是AB,A1B1的中点,所以AA1∥MN.根据正方体的性质可得MN⊥面ABCD,即可得MN⊥PB.当P为AD中点时,CM⊥PB,又CM∩MN=M.所以PB⊥面NMC,即可得平面CMN⊥平面A1BP.则ADAP=2.答案:2四、解答题(共70分)17.(10分)某高速公路收费站入口处的安全标识墩如图所示,墩的上半部分是正四棱锥PEFGH,下半部分是长方体ABCDEFGH.长方体的长、宽、高分别是40 cm、40 cm、20 cm,正四棱锥PEFGH的高为60 cm.(1)求该安全标识墩的体积;(2)求该安全标识墩的侧面积.【解析】(1)该安全标识墩的体积V=VPEFGH +VABCDEFGH=13×402×60+402×20=64000 cm3.(2)如图,连接EG,HF交于点O,连接PO,结合图象可知OP=60 cm,OG=12EG=20 2 cm,可得PG=602+(202)2=2011 cm.于是四棱锥PEFGH的侧面积S1=4×12×40×(2011)2-202=1 60010 cm2,四棱柱EFGHABCD的侧面积S2=4×40×20=3 200 cm2,故该安全标识墩的侧面积S=S1+S2=1 600(10 +2) cm2.18.(12分)如图,在四棱锥PABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD= 2 ,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(1)求证:PO⊥平面ABCD;(2)求这个四棱锥的体积.【解析】(1)在△PAD中PA=PD,O为AD中点,所以PO⊥AD.又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,所以PO⊥平面ABCD.(2)因为PA=PD= 2 ,AO=1,所以PO=AP2-AO2=2-1 =1所以V=13×PO×S四边形ABCD=13×1×⎝⎛⎭⎪⎫1+22×1=12.19.(12分)如图所示,在四棱锥PABCD中,侧面PAD⊥底面ABCD,侧棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点.(1)若CD∥平面PBO,试指出点O的位置;(2)求证:平面PAB⊥平面PCD.【解析】(1)因为CD∥平面PBO,CD⊂平面ABCD,且平面ABCD∩平面PBO=BO,所以BO∥CD.又BC∥AD,所以四边形BCDO为平行四边形,则BC=DO,而AD=3BC,所以AD=3OD,即点O是靠近点D的线段AD的一个三等分点.(2)因为侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,AB⊂底面ABCD,且AB⊥AD,所以AB⊥平面PAD.又PD⊂平面PAD,所以AB⊥PD.又PA⊥PD,AB∩PA=A,AB,PA⊂平面PAB,所以PD⊥平面PAB.又PD⊂平面PCD,所以平面PAB⊥平面PCD.20.(12分)如图,三棱柱ABCA1B1C1的侧面BCC1B1是平行四边形,BC1⊥C1C,平面A1C1CA⊥平面BCC1B1,且P,E,F分别是AB,BC,A1B1的中点.(1)求证:BC1⊥平面A1C1CA;(2)求证:平面EFP⊥平面BCC1B1 .【证明】(1)因为平面A1C1CA⊥平面BCC1B1,平面A1C1C A∩平面BCC1B1=CC1,BC1⊥C1C,所以BC1⊥平面A1C1CA.(2)因为P,E,F分别是AB,BC,A1B1的中点.所以PF∥AA1,PE∥AC,因为PF∩PE=P,AA1∩AC=A,所以平面EFP∥平面A1C1 CA,因为平面A1C1CA⊥平面BCC1B1,所以平面EFP⊥平面BCC1B1 .21.(12分)如图①,在直角梯形ABCD中,AD∥BC,∠BAD=π2,AB=BC=12AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到图②中△A1BE的位置,得到四棱锥A1BCDE.(1)证明:CD⊥平面A1OC;(2)当平面A1BE⊥平面BCDE时,四棱锥A1BCDE的体积为36 2 ,求a的值.【解析】(1)在图①中因为AB=BC=12AD=a,E是AD的中点,∠BAD=π2,所以BE⊥AC.即在图②中,BE⊥A1O,BE⊥OC,又A1O∩OC=O,从而BE⊥平面A1OC.因为BC=12AD=ED,所以四边形BCDE为平行四边形,所以CD∥BE,所以CD⊥平面A1OC.(2)由已知,平面A1BE⊥平面BCDE,且平面A1BE∩平面BCDE=BE,又由(1)可得A1O⊥BE,所以A1O⊥平面BCDE.即A1O是四棱锥A1BCDE的高.由图①知,A1O=22AB=22a,平行四边形BCDE的面积S=BC·AB=a2,从而四棱锥A1BCDE的体积为V=13S·A1O=13×a2×22a=26a3.由26a3=36 2 ,得a=6.22.(12分)如图,四棱锥PABCD中,底面ABCD是边长为2的菱形,∠BAD=π3,△PAD是等边三角形,F为AD的中点,PD⊥BF.(1)求证:AD⊥PB;(2)若E在线段BC上,且EC=14BC,能否在棱PC上找到一点G,使平面DEG⊥平面ABCD?若存在,求出三棱锥DCEG的体积;若不存在,请说明理由.【解析】(1)连接PF,因为△PAD是等边三角形,所以PF⊥AD.因为底面ABCD是菱形,∠BAD=π3,所以BF⊥AD.又PF∩BF=F,所以AD⊥平面BFP,又PB⊂平面BFP,所以AD⊥PB.(2)能在棱PC 上找到一点G ,使平面DEG⊥平面ABCD. 由(1)知AD⊥BF,因为PD⊥BF,AD∩PD=D , 所以BF⊥平面PAD. 又BF ⊂平面ABCD , 所以平面ABCD⊥平面PAD ,又平面ABCD∩平面PAD =AD ,且PF⊥AD, 所以PF⊥平面ABCD.连接CF 交DE 于点H ,过H 作HG∥PF 交PC 于G ,所以GH⊥平面ABCD. 又GH ⊂平面DEG , 所以平面DEG⊥平面ABCD. 因为AD ∥BC,所以△DFH∽△ECH, 所以CH HF =CE DF =12 ,所以CG GP =CH HF =12 ,所以GH =13 PF =33 ,所以V DCEG =V GCDE =13 S △CDE ·GH=13 ×12 DC·CE·sin π3 ·GH=112.第九章统计(120分钟150分)一、单选题(每小题5分,共40分)1.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( ) A.9 B.10 C.12 D.13【解析】选D.n=3+120×360+80×360=13.2.某校有住宿的男生400人,住宿的女生600人,为了解住宿生每天运动时间,通过分层随机抽样的方法抽到100名学生,其中男生、女生每天运动时间的平均值分别为100分钟、80分钟.结合此数据,请你估计该校全体住宿学生每天运动时间的平均值为( )A.98分钟 B.90分钟 C.88分钟 D.85分钟【解析】选 C.由分层抽样的性质可得抽取男生100×400400+600=40人,女生100×600400+600=60人,则样本中学生每天运动时间的平均值x=40×100+60×80100=88(分钟),故可估计该校全体住宿学生每天运动时间的平均值为88分钟.3.若样本1+x1,1+x2,1+x3,…,1+xn的平均数是10,方差为2,则对于样本2+2x1,2+2x2,2+2x3,…,2+2xn,下列结论正确的是( )A.平均数为20,方差为4 B.平均数为11,方差为4 C.平均数为21,方差为8 D.平均数为20,方差为8【解析】选D.样本1+x1,1+x2,1+x3,…,1+xn的平均数是10,方差为2,所以样本2+2x1,2+2x2,2+2x3,…,2+2xn的平均数为2×10=20,方差为22×2=8.4.某工厂12名工人的保底月薪如下表所示,第80百分位是( )工人保底月薪工人保底月薪1 2 890 7 2 8502 2 860 83 1303 3 050 9 2 8804 2 940 10 3 3255 2 755 11 2 9206 2 710 12 2 950A.3 050 B.2 950 C.3 130 D.3 325【解析】选A.把这组数据从小到大排序:2 710,2 755,2 850,2 860,2 880,2 890,2 920,2 940,2 950,3 050,3 130,3 325,所以i=n×p%=12×80%=9.6,所以第80百分位是3 050.5.某市在“一带一路”国际合作高峰论坛前夕,在全市高中学生中进行“我和‘一带一路’”的学习征文,收到的稿件经分类统计,得到如图所示的扇形统计图.又已知全市高一年级共交稿2000份,则高三年级的交稿数为( )A.2 800 B.3 000 C.3 200 D.3 400【解析】选D.高一年级交稿2 000份,在总交稿数中占比80360=29,所以总交稿数为2 000÷29=9 000,高二年级交稿数占总交稿数的144360=25,所以高三年级交稿数占总交稿数的1-2 9-25=1745,所以高三年级交稿数为9 000×1745=3 400.6.一般来说,一个班级的学生学号是从1开始的连续正整数,在一次课上,老师随机叫起班上8名学生,记录下他们的学号是:3,21,17,19,36,8,32,24,则该班学生总数最可能为( )A.39人B.49人C.59人D.超过59人【解析】选A.因为随机抽样中,每个个体被抽到的机会都是均等的,所以1~10,11~20,21~30,31~40,…,每组抽取的人数,理论上应均等;又所抽取的学生的学号按从小到大顺序排列为3,8,17,19,21,24,32,36,恰好使1~10,11~20,21~30,31~40四组中各有两个,因此该班学生总数应为40左右.7.对一批产品的长度(单位:毫米)进行抽样检测,如图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[10,15)和[25,30)为二等品,在区间[10,15)和[30,35)为三等品.用频率估计概率,现从这批产品中随机抽取1件,则其为三等品的概率是( )A.0.03 B.0.05C.0.15 D.0.25【解析】选D.在区间[10,15)和[30,35)为三等品,由频率分布直方图得在区间[10,15)和[30,35)的频率为(0.02+0.03)×5=0.25,所以从这批产品中随机抽取1件,其为三等品的概率是0.25.8.“一世”又叫“一代”.东汉·王充《论衡·宜汉篇》:“且孔子所谓一世,三十年也”,清代·段玉裁《说文解字注》:“三十年为一世,按父子相继曰世”.而当代中国学者测算“一代”平均为25年.另根据国际一家研究机构的研究报告显示,全球家族企业的平均寿命其实只有26年,约占总量的28%的家族企业只能传到第二代,约占总量的14%的家族企业只能传到第三代,约占总量4%的家族企业可以传到第四代甚至更久远(为了研究方便,超过四代的可忽略不计).根据该研究机构的研究报告,可以估计该机构所认为的“一代”大约为( )A.23年 B.22年 C.21年 D.20年【解析】选B.设“一代”为x年,由题意得:企业寿命的频率分布表为:又因为全球家族企业的平均寿命其实只有26年,所以家族企业的平均寿命为:0.54×0.5x+0.28×1.5x+0.14×2.5x+0.04×3.5x=26,解得x≈22.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得2分,有选错的得0分)9.某旅行社调查了所在城市20户家庭2020年的旅行费用,汇总得到如下表格:则这20户家庭该年的旅行费用的( )A.众数是1.4 B.中位数是1.5C.中位数是1.6 D.众数是1.62【解析】选AB.依题意可得这组数据分别为:1.2,1.2,1.2,1.2,1.4,1.4,1.4,1.4,1.4,1.4,1.6,1.6,1.6,1.8,1.8,1.8,1.8,1.8,2,2;故众数为:1.4,中位数为:1.5.10.某学校对甲、乙两个班级的某次成绩进行统计分析,制成了如图的条形图与扇形图,则下列说法不正确的是( )A.甲班成绩优良人数超过了乙班成绩优良人数B.甲班平均成绩高于乙班平均成绩C.甲班学生比乙班学生发挥稳定D.甲班不及格率高于乙班不及格率【解析】选ABC.A.因为每个班的总人数不确定,故无法比较;B.甲班及格人数占比80%,乙班及格人数占比90%,故甲班平均成绩显然高于乙班平均成绩;C.无法确定甲班和乙班学生成绩的方差,故错误;D.甲班不及格率为20%,乙班不及格率为10%,故D 正确.11.某班统计一次数学测验的平均分与方差,计算完毕才发现有位同学的分数还未录入,只好重算一次.已知原平均分和原方差分别为x ,s 2,新平均分和新方差分别为x 1,s 21 ,若此同学的得分恰好为x ,则( ) A.x =x 1 B .s 2<s 21 C.s 2>s 21D .s 2=s 21【解析】选AC.设这个班有n 个同学,分数分别是a 1,a 2,a 3,…,a n ,假设第i 个同学的成绩没录入,这一次计算时,总分是()n -1 x ,方差为s 2=1n -1。
《金版新学案》高一数学第一章1.2.1函数的概念练习题新人教A版(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(《金版新学案》高一数学第一章1.2.1函数的概念练习题新人教A版(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为《金版新学案》高一数学第一章1.2.1函数的概念练习题新人教A版(word版可编辑修改)的全部内容。
1.下列四组中f(x),g(x)表示相等函数的是()A.f(x)=x,g(x)=(错误!)2B.f(x)=x,g(x)=错误!C.f(x)=1,g(x)=错误! D.f(x)=x,g(x)=|x|【解析】对于A、C,函数定义域不同;对D,两函数对应关系不同,故选B.【答案】B2.下列函数中,定义域不是R的是( )A.y=kx+b B.y=k x+1C.y=x2-c D.y=错误!【解析】选项A、C都是整式函数,符合题意,选项D中,对任意实数x都成立.故选B。
【答案】B3.已知函数f(x)=2x-3,x∈{1,2,3},则f(x)的值域为________.【解析】当x=1时,f(1)=2×1-3=-1,当x=2时,f(2)=2×2-3=1,当x=3时,f(3)=2×3-3=3,∴f(x)的值域为{-1,1,3}.【答案】{-1,1,3}4.已知函数f(x)=x2+x-1。
(1)求f(2),f(1x),f(a).(2)若f(x)=5,求x.【解析】(1)f(2)=22+2-1=5,f(错误!)=错误!+错误!-1=错误!,f(a)=a2+a-1. (2)∵f(x)=x2+x-1=5,∴x2+x-6=0,∴x=2或x=-3。
(本栏目内容,在学生用书中以独立形式分册装订)
一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.观察图中的四个几何体,其中判断正确的是()
A.(1)是棱台B.(2)是圆台
C.(3)是棱锥D.(4)不是棱柱
解析:图(1)不是由棱锥截得的,图(2)的上、下两个面不平行,图(4)的前、后两个面平行,其他面都是平行四边形,且每相邻两个四边形的公共边平行,所以A,B,D都不正确.
答案: C
2.一个几何体的三视图如图所示,则该几何体可以是()
A.棱柱B.棱台
C.圆柱D.圆台
解析:从俯视图可看出该几何体上下底面为半径不等的圆,正视图与侧视图为等腰梯形,故此几何体为圆台.
答案: D
3.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为1,6,3,其四面体的四个顶点在一个球面上,则这个球的表面积为()
A.16π B.32π
C.36π D.64π
解析:将四面体可补形为长方体,此长方体的对角线即为球的直径,而长方体的对角线长为12+62+32=4,即球的半径为2,故这个球的表面积为4πr2=16π.
答案: A
4.已知水平放置的△ABC按斜二测画法得到如图所示的直观图,其中B′O′=C′O′=1,
A ′O ′=
3
2
,那么△ABC 是一个( )
A .等边三角形
B .直角三角形
C .三边中只有两边相等的等腰三角形
D .三边互不相等的三角形
解析: 由斜二测画法的规则可得BC =B ′C ′=2,AO =2A ′O ′=2×3
2=3,
又∵AO ⊥BC ,∴AB =AC =2,故△ABC 是等边三角形. 答案: A
5.一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V 1,V 2,V 3,V 4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )
A .V 1<V 2<V 4<V 3
B .V 1<V 3<V 2<V 4
C .V 2<V 1<V 3<V 4
D .V 2<V 3<V 1<V 4
解析: 由三视图可知,四个几何体自上而下分别为圆台,圆柱,四棱柱,四棱台.结合题中所给数据可得:
V 1=13(4π+π+2π)=7π
3,V 2=2π,
V 3=23=8,V 4=13(16+4+8)=283.
故V 2<V 1<V 3<V 4.
答案: C
6.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥的侧面分成的三部分的面积之比为( )
A .1∶2∶3
B .1∶3∶5
C .1∶2∶4
D .1∶3∶9
解析: 如图,由题意知O 1A 1∶O 2A 2∶OA =1∶2∶3,以O 1A 1,O 2A 2,OA 为半径的圆锥的侧面积之比为1∶4∶9.
故圆锥被截面分成的三部分侧面的面积之比为1∶(4-1)∶(9-4)=1∶3∶5. 答案: B
7.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( ) A.32π3 B.8π3 C .82π D.82π3
解析: 设截面圆的半径为r ,则πr 2=π,故r =1,由勾股定理求得球的半径为1+1=2,
所以球的体积为43π(2)3=82π3,故选D.
答案: D
8.如图,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=1
4A 1B 1,
则多面体P -BCC 1B 1的体积为( )
A.83
B.163 C .4
D .5
解析: V 多面体P -BCC 1B 1=13S 正方形BCC 1B 1·PB 1=13×42×1=163.
答案: B
9.如图所示,三棱台ABC -A 1B 1C 1中,A 1B 1∶AB =1∶2,则三棱锥B -A 1B 1C 1与三棱锥A 1-ABC 的体积比为( )
A .1∶2
B .1∶3
C .1∶ 2
D .1∶4
解析: 三棱锥B -A 1B 1C 1与三棱锥A 1-ABC 的高相等,故其体积之比等于△A 1B 1C 1
与△ABC 的面积之比,而△A 1B 1C 1与△ABC 的面积之比等于A 1B 1与AB 比的平方,即1∶4.故三棱锥B -A 1B 1C 1与三棱锥A 1-ABC 的体积比为1∶4.
答案: D
10.一个正三棱柱的三视图如图所示,则此三棱柱的表面积和体积分别为( )
A .24+83,8 3
B .43,4 3
C .12+23,4 3
D .24+43,4 3
解析: 由三视图可知此正三棱柱的底面三角形的高为23,三棱柱的高为2,所以其底面边长为4,于是S 表=24+83,V =12×32
×42
×2=8 3.
答案: A
二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.棱锥的高为16,底面积为512,平行于底面的截面面积为50,则截得的棱台的高为________.
解析: 设棱台的高为x ,则有⎝⎛⎭⎫16-x 162=50
512,
解之,得x =11. 答案: 11
12.把球的表面积扩大到原来的2倍,那么体积扩大到原来的________倍. 解析: 设原来球的半径为r ,扩大后的半径为R , 则有4πR 2=2×4πr 2,则R =2r .
则扩大后的体积V =43πR 3=43π(2r )3=22·4
3
πr 3,即体积扩大到原来的22倍.
答案: 2 2
13.已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =6,BC =23,则棱锥O -ABCD 的体积为________.
解析: 如图所示,OO ′垂直于矩形ABCD 所在的平面,垂足为O ′,连接O ′B ,OB ,则在Rt △OO ′B 中,由OB =4,O ′B =23,可得OO ′=2,故V O -ABCD =13S 矩形ABCD ·OO ′=1
3
×6×23×2=8 3.
答案: 8 3
14.如图所示,已知正三棱柱ABC -A 1B 1C 1的底面边长为2,高为5,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达A 1点的最短路线的长为________.
解析: 如图所示,将三棱柱沿AA 1剪开,可得一矩形,其长为6,宽为5,其最短路线为两相等线段之和,其长度等于2
⎝⎛⎭
⎫522+62=13.
答案: 13
三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)
15.(本小题满分12分)画出下图中几何体的三视图.
解析: 图中几何体组合体,下部是三个正方体,上部是一个圆柱,按照正方体和圆柱的三视图的画法画出该组合体的三视图.
该几何体的三视图如图所示.
16.(本小题满分12分)如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台O ′O 的母线长.
解析: 设圆台O ′O 的母线长为l ,由截得圆台上、下底面的面积之比
为1∶16,可设截得圆台的上、下底面的半径分别为r,4r .过轴SO 作截面,如图所示.
则△SO ′A ′∽△SOA ,SA ′=3 cm.故SA ′SA =O ′A ′OA
, 即
33+l =r 4r
. 解得l =9,故圆台O ′O 的母线长为9 cm.
17.(本小题满分12分)轴截面为正三角形的圆锥内有一个内切球,若圆锥的底面半径为1 cm ,求球的体积.
解析: 如图作出轴截面,
∵△ABC 是正三角形,∴CD =1
2AC .
∵CD =1 cm ,∴AC =2 cm ,AD = 3 cm. ∵Rt △AOE ∽Rt △ACD ,∴
OE AO =CD AC
. 设OE =R ,则AO =3-R ,∴R 3-R =1
2
, ∴R =
3
3
(cm).
∴V 球=43π⎝⎛⎭⎫3
33=4327π(cm 3).
∴球的体积等于43
27
π cm 3.
18.(本小题满分14分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连接A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:
(1)三棱锥A ′-BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′-BC ′D 的体积.
解析: (1)∵ABCD -A ′B ′C ′D ′是正方体, ∴A ′B =A ′C ′=A ′D =BC ′=BD =C ′D =2a ,
∴三棱锥A ′-BC ′D 的表面积为4×12×2a ×3
2
×2a =23a 2.
而正方体的表面积为6a 2
,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为
23a 2
6a 2
=
33
. (2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的. 故V 三棱锥A ′-BC ′D =V 正方体-4V 三棱锥A ′-ABD =a 3
-4×13×12a 2×a =a 3
3
.。