六年级圆柱表面积和体积提高练习-2
- 格式:doc
- 大小:25.50 KB
- 文档页数:5
圆柱表面积的变化题型一、平行底面切1、把一个底面积是15.7平方厘米的圆柱,切成两个同样大小的圆柱,表面积增加了多少平方厘米?2、把一根直径是20厘米,长是2米的圆柱形木材锯3次,表面积增加了多少平方厘米?3、把一根半径是20厘米,长是2米的圆柱形木材锯成同样的3段,表面积增加了多少平方厘米?题型二、垂直底面切割4、把一个直径为4厘米,高为5厘米的圆柱,沿底面直径切割成两个半圆柱,表面积增加了多少平方厘米?5、把一个半径为4厘米,高为5厘米的圆柱,沿底面直径切割成两个半圆柱,表面积增加了多少平方厘米?6、把一个底面周长为12.56厘米,高为5厘米的圆柱,沿底面直径切割成两个半圆柱,表面积增加了多少平方厘米?题型三、高度的变化7、一个圆柱,底面半径是5厘米,如果它的高增加1厘米,表面积增加多少平方厘米?8、一个高为10厘米的圆柱,底面半径是5厘米,如果它的高增加到15厘米,表面积增加多少平方厘米?9、一个高为10厘米的圆柱,底面半径是5厘米,如果它的高增加了5厘米,表面积增加多少平方厘米?练习一1、把一个底面半径6分米,高1米的圆柱切成3个小圆柱,表面积增加了多少?2、把一根直径是20 厘米,长是2 米的圆柱形木材锯成同样的4段,表面积增加多少立方厘米?3、工人叔叔把一根高1 米的圆柱形木料,沿与底面平行的方向锯成两段,这时表面积比原来增加了 25.12平方分米,求这根料的底面半径是多少?4、一根圆柱木棒,沿其横截面锯成3段,木棒表面积比原来增加了125.6平方厘米,求木棒的底面积是多少?练习二1、一圆柱底面直径是4米,高是6米,沿着底面直径把圆柱切成两半,求这个圆柱的表面积增加多少?2、一段圆柱体木料,如果截成两段,它的表面积增加6.28平方厘米;如果沿直径劈成两个半圆柱体,其表面积增加40平方厘米。
求此圆柱体的表面积。
3、一个圆柱高10厘米,如果它的高增加3厘米,那么它的表面积增加37.68平方厘米,求原来圆柱的表面积是多少平方厘米?4、一个圆柱高8厘米,如果它的高减少2厘米,那么它的表面积减少25.12平方厘米,求原来圆柱的表面积是多少平方厘米?5、一个圆柱体零件,高10cm,如果沿着它的一条底面直径往下切,切成大小相同的两份,表面积增加80cm²,那么原来这个圆柱体的表面积是多少?6、把一个直径为4厘米,高为5厘米的圆柱,沿底面直径切割成两个半圆柱,表面积增加了多少平方厘米?7、一段长1米,横截面半径是10厘米的圆木,若沿着它的直径剧成两半,表面积增加了多少平方米?8、一段圆柱体木料,如果截成两段,它的表面积增加25.12平方厘米;如果沿直径劈成两个半圆柱体,它的面积增加100平方厘米。
<圆柱的体积>公式:长方形的表面积:长方体的体积:正方体的表面积:正方体的体积:圆柱的侧面积:圆柱的表面积:圆柱的体积:1.一个圆柱的底面半径为3cm,高为5cm,体积为( )cm2.一个圆柱的体积是325立方米,底面积是25平方厘米,这个圆柱的高是( )cm。
3.一个圆柱的底面周长为18.84cm,高为10cm, 这个圆柱的侧面积是( ),表面积是( ),体积是( )。
4.一根圆柱形木料长6m,把它锯成同样长的两段后,表面积增加了400平方厘米,这根木料原来的体积是( )。
5.一个体积80立方厘米的圆柱,底面积是20平方厘米,高是( )cm。
6.一个底面直径6cm,高1dm 的圆柱,体积是( ).7.圆柱的底面半径扩大2倍,高也扩大2倍,圆柱的体积扩大( )倍。
8.有一个圆柱形粮囤,从里面量,它的底面半径是3m,高是2.5m。
稻谷按每立方米550kg计算,这个装满粮食的粮囤约装有多少吨稻谷? (得数保留整数)9.一根圆柱形空心钢管(内直径8cm,外直径12cm)长4m,每立方厘米钢重7.8g,这根钢管重多少千克?10.一个圆柱形保暖茶杯,从里面量高6dm,底面直径2dm。
每立方分米水重1kg,它最多能装多少千克的水?11.一根长6m、底面直径4cm 的圆柱形钢材,平均每立方厘米钢重约8g,这根钢材有多重?12.一个圆柱形蓄水池,底面周长25.12m,深3m。
(1) 水池占地多大?(2) 在底面和四周抹水泥,抹水泥的面有多大? (3)它最多蓄水多少吨?13.小明每次运动前都准备好一瓶矿泉水,瓶子的内直径是6cm,运动后他喝了一些水,剩下水高5cm。
把瓶盖拧紧后倒置放平,无水部分是圆柱形,高7cm,这瓶水共多少毫升?14.一个圆柱形铁皮水桶(无盖) 的底面直径是6dm,高是5dm。
(1) 做这个水桶大约需要多少铁皮?(2) 李师博做了50个这样的水桶。
如果每平方米铁皮的售价是35 元,买做这些水桶的铁皮共需要多少钱? (得数保留整数)。
2021-2022学年六年级数学下册典型例题系列之第二单元:圆柱表面积的三种增减变化方式专项练习(解析版)1.一个底面积为x平方厘米、高为h厘米的圆柱切成若干个小圆柱。
每切1次,表面积都增加( )平方厘米,切5次表面积增加( )平方厘米。
【解析】一个圆柱每切1次表面积就增加2个截面的面积,切5次表面积增加(2×5)个截面的面积,截面面积为x平方厘米。
一个底面积为x平方厘米、高为h厘米的圆柱切成若干个小圆柱。
每切1次,表面积都增加( 2x )平方厘米,切5次表面积增加( 10x )平方厘米。
2.把一个半径2分米、长1米的圆木平均截成3段,表面积共增加( )分米2。
【解析】把圆木截成3段,增加了3×2=6(个)面,这6个面的每个面都和圆木的底面相同。
据此,利用圆的面积公式,先求出一个面的面积,再将其乘6,求出表面积共增加的面积。
(3.14×22)×6=12.56×6=75.36(平方分米)所以,表面积共增加了75.36平方分米。
3.把一个底面半径是4dm,高10dm的圆柱沿底面直径垂直切成相同的两块(如图),表面积增加( )dm2。
【解析】看图分析,表面积增加的部分为两个切面。
每个切面均是长方形,长为高,宽为底面直径。
据此,结合长方形的面积公式,列式计算出这个圆柱的表面积增加部分。
10×(4×2)×2=10×8×2=160(平方分米)所以,表面积增加160平方分米。
4.一个圆柱,若沿着一条底面直径纵切后,可以得到一个边长是8厘米的正方形的截面,这个圆柱的表面积是( )平方厘米。
【解析】分析题干可知,这个圆柱的底面直径是8厘米,高也是8厘米。
据此,根据圆柱的表面积公式,列式计算出它的表面积即可。
3.14×(8÷2)2×2+3.14×8×8=100.48+200.96=301.44(平方厘米)所以,这个圆柱的表面积是301.44平方厘米。
六年级数学下册典型例题系列之第三单元圆柱的表面积问题提高部分(原卷版)编者的话:《2021-2022学年六年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。
典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。
本专题是第三单元圆柱的表面积问题提高部分。
本部分内容主要选取圆柱的表面积问题中较有难度的题型,包括圆柱的四种旋转构成法、圆柱的三种表面积增减变化以及不规则立体图形和组合立体图形的表面积等,这几类问题在考试中十分常见,建议作为本章核心内容进行讲解,一共划分为九个考点,欢迎使用。
【考点一】圆柱常见的四种旋转构成法。
【方法点拨】1.圆柱的旋转:一个长方形以一条边为轴顺时针或逆时针旋转一周,所经过的空间叫做圆柱体。
2.在旋转时,以谁为轴谁就是高,而另一条边就是底面半径。
第一种旋转方法:以宽为轴进行旋转。
以宽为轴进行旋转,宽就是圆柱的高,长就是底面圆的半径。
第二种旋转方法:以长为轴进行旋转。
以长为轴进行旋转,长就是圆柱的高,宽就是底面圆的半径。
第三种旋转方法:以两条长中点的连线为轴进行旋转。
以两条长中点的连线为轴进行旋转,宽就是圆柱的高,长的一半就是底面圆的半径。
第四种旋转方法:以两条宽中点的连线为轴进行旋转。
以两条宽中点的连线为轴进行旋转,长就是圆柱的高,宽的一半就是底面圆的半径。
【典型例题1】把长为4、宽为3的长方形绕着它的一条边旋转一周,则所得到的圆柱的表面积是多少?(结果保留π)【典型例题2】正方形的边长为4厘米,按照下图中所示的方式旋转,那么得到的旋转体的表面积是多少?【典型例题3】请计算下图长方形绕虚线旋转一周后得到的圆柱的表面积。
【对应练习1】一个长方形的长是5厘米,宽是2厘米。
以它的长边为轴,旋转一周,得到的圆柱表面积是多少平方厘米?【对应练习2】下图是一张长方形纸,长12cm,宽10cm。
六年级下学期数学圆柱的表面积和体积应用题训练30题。
后面带答案1、一个边长为5分米的正方形纸片卷成圆柱筒,求该圆柱的侧面积。
2、压路机的前轮是圆柱形,底面直径1.2米,轮宽1.8米。
前轮滚动一周,压过的路面的面积是多少平方米?3、压路机的前轮是圆柱形,底面直径1米,轮宽1.5米。
前轮滚动一周,压过的路面的面积是多少平方米?4、一段圆钢长4米,底面半径是5厘米,将其平均分成3段后,表面积增加了多少平方厘米?5、一个圆柱粮囤,如果它的高增加2米,表面积就增加62.8平方米,该粮囤占地多少平方米?6、在一个高为6分米的圆柱形水桶里装了半桶水,把里面的水倒出12升后,剩下的水恰好占水桶容积的30%,该水桶的底面积是多少平方分米?7、将一个横截面积为正方形的长方体削成一个最大的圆锥,已知圆锥的底面周长是6.28厘米,高为5厘米,该长方体的体积是多少立方厘米?8、一个圆柱形水池的底面直径是8米,池深2米,如果要在水池的底面和四周池壁抹上水泥,抹上水泥的面积是多少平方米?9、XXX做了一个圆柱形的抱枕,长80厘米,底面直径是18厘米,如果侧面用花布,底面用黄色的布,两种布各需要多少?10、一个圆柱形铁皮水桶(无盖),高12分米,底面直径是高的2/3,做这个水桶大约需要用多少铁皮?(用进一法,得数保留一位小数)11、将一个圆柱的侧面沿着高展开,得到一个边长是31.4厘米的正方形,求该圆柱的表面积?12、一段长2米的圆柱形木料,从一段截去0.4米厚的一段后,原木料的表面积减少了1.256平方米,原来木料的表面积是多少平方米?13、将高都是1厘米,底面半径分别为3厘米、2厘米、1厘米的三个圆柱叠成一个立体图形,求该立体图形的表面积。
14、一根2米长的圆柱形木料,横截面的半径是10厘米,沿横截面的直径垂直锯开,分成相等的两块,每块的体积和表面积各是多少?15、XXX拿了一张长方形铁皮做油桶,做油桶的师傅根据铁皮的形状和大小量了量,标上了长度(如右图),你能算一算做成的这个油桶的表面积是多少吗?16、用铁皮做一个如图所示的工件(两端不封闭),需要铁皮多少平方厘米?17、挖一个圆柱形蓄水池,底面半径是5米,深是4米,该蓄水池可蓄水多少立方米?18、一个圆柱的底面半径为2厘米,侧面展开后正好是一个正方形,该圆柱的体积是多少立方分米?19、请计算下图所示的长方体的体积,单位为分米。
苏教版六年级数学——圆柱的表面积和体积练习教学内容:圆柱表面积和体积计算综合练习教学目标:提高学生应用公式解决实际问题的能力,帮助学生在具体的情境中进一步感受所学知识的应用价值。
教学重难点:进一步培养学生的空间想像能力和综合应用数学知识解决实际问题的能力。
教学对策:补充一些有关圆柱表面积和体积计算的基本练习及解决问题的练习,指导学生灵活运用所学知识解决问题。
教学准备:多媒体教学设备教学过程:一、揭示课题前几节课,我们学习了圆柱表面积和圆柱体积计算,运用这些知识能解决很多实际问题。
这节课,我们将这部分知识进行综合练习。
(板书课题)二、知识梳理,练习巩固。
1、知识整理。
(1)已知圆的半径和高,怎样求圆柱的表面积和体积?(2)已知圆的直径和高,怎样求圆柱的表面积和体积?(3)已知圆的周长和高,怎样求圆柱的表面积和体积?同桌之间可以互相说说,可以说说运用哪些计算公式进行计算。
2、求下面各圆柱的体积⑴底面积0.6平方米,高0.5米⑵半径4厘米,高12厘米⑶直径5分米,高6分米学生独立计算,然后指名交流,教师及时了解学生计算情况。
3、一个圆柱形水池,直径10米,深1米。
(1)这个水池占地面积是多少?(2)在池底及池壁抹一层水泥,抹水泥部分的面积是多少?(3)挖成这个水池,共需挖土多少立方米?学生读题后,独立思考并解答,交流时指名学生说说每一个问题要求的是什么?三、综合练习1、求下面圆柱的体积和表面积。
底面半径:3米,高:10米2、有两个底面积相等的圆柱,第一个圆柱的高是第二个圆柱的4/7。
第一个圆柱的体积是24立方厘米,第二个圆柱的的体积比第一个圆柱多多少立方厘米?3、压路机的滚筒是个圆柱,它的长是2米,滚筒横截面半径是1米,如果滚筒每分钟滚动5周,那么10分钟可压路多少平方米?4、在直径0.8米的水管中,水流速度是每秒2米,那么1分钟流过的水有多少立方米?四、补充练习:课前思考:通过本课练习,让学生在解决实际问题的过程中,进一步理解和掌握圆柱的体积公式,感受所学的数学知识的应用价值。
圆柱表面积和体积练习题一、选择题1.圆柱体的底面半径和高都扩大2倍,它的体积扩大()倍.①2②4③6④82.体积单位和面积单位相比较,().①体积单位大②面积单位大③一样大④不能相比3.等底等高的圆柱体、正方体、长方体的体积相比较,().①正方体体积大②长方体体积大③圆柱体体积大④一样大二、填空题1.0.9平方米=()平方分米2.3立方米5立方分米=()立方米3.4.5立方分米=()立方分米()立方厘米4.一个棱长为4厘米的正方体,它的表面积是().5.一个圆柱体的底面半径是4厘米,高6厘米,它的侧面积是(),表面积是(),体积是().6.一个圆柱体的底面直径是4厘米,高8厘米,它的侧面积是(),表面积是(),体积是().7.一个圆柱体的底面周长是6.28分米,高2分米,它的侧面积是(),表面积是(),体积是().8.一个圆柱体的侧面展开图是边长为31.4厘米的正方形,这个圆柱体的底面积(1个)是()平方厘米,这个圆柱体的体积是()立方厘米.9.圆柱体的底面周长是62.8厘米,高是20厘米,这圆柱体的表面积是(),体积是().10.一个圆柱体,它的高增加3厘米,侧面积就增加18.84平方厘米,这个圆柱体的底面积是().11.一个高5厘米的圆柱体,沿底面直径将圆柱体锯成两块,其表面积增加40平方厘米,原来这个圆柱体的体积是().12.一个圆柱体的体积是125.6立方厘米.底面直径是4厘米,它的侧面积是()平方厘米.三、判断题1.一个正方体切成两个体积相等的长方体后,每个长方体的表面积是原正方体的1/2 .()2.正方体的表面积是6平方厘米,它的体积一定是6立方厘米.()3.所有圆的直径都相等.()4.一张长40厘米,宽15厘米的长方形卡纸,围成一个圆柱纸筒,它的侧面积是600平方厘米.()5.一个圆柱的高缩小2倍,底面半径扩大2倍,体积不变.()四、计算题x+1.5×1/3 =2 4 x-8/5 x=3.6(x+35/8 )×2=10.25 3.14×x+8=20.56五、应用题1.把一个棱长是6分米的正方体木块,削成一个最大的圆柱体,这个圆柱体的体积是多少立方分米?2.有一个高为6.28分米的圆柱体的机件,它的侧面积展开正好是一个正方形,求这个机件的体积.3.要制作容量是62.8升的圆柱形铁桶,如果底面半径是2分米,高应是多少分米?4.一个圆柱形油桶,装满了油,把桶里的油倒出3/4 ,还剩20升,油桶高8分米,油桶的底面积是多少平方分米?5.把一种空心混凝土管道,内直径是40厘米,外直径是80厘米,长300厘米,求浇制100节这种管道需要多少混凝土?6.一个圆柱体的底面半径是4厘米,高8厘米,求它的体积和表面积.7.做一个无盖的圆柱形铁皮水桶,高30厘米,底面直径20厘米,做这个水桶至少要用多少平方分米的铁皮?这个水桶能装多少千克的水?(1立方分米水重1千克)小学数学六年级下册:圆柱表面积和体积提高练习例1:表面积变化1、一个圆柱的高减少2厘米侧面积就减少50.24平方厘米,它的体积减少多少立方厘米?练习:一个圆柱的高增加3分米,侧面积就增加56.52平方分米,它的体积增加多少立方分米?2、一个圆柱的侧面展开是一个正方形。
【专题讲义】人教版六年级数学下册第2讲圆柱的表面积专题精讲(学生版)知识要点梳理页12.会归纳出侧面展开图是正方形的圆柱的侧面积及表面积的计算方法。
(讲解,比较,练习。
)(一)圆柱的基本特征(1)圆柱的底面圆柱的上、下两个面叫做圆柱的底面。
圆柱的底面是两个完全相同的圆形。
(2)圆柱的侧面围成圆柱的曲面叫做圆柱的侧面。
(3)圆柱的高圆柱两个底面之间的距离叫做圆柱的高。
圆柱有无数条高,每条高都相等。
(4)圆柱的透视图如果把圆柱形实物画在平面上,它的透视图如上图。
(二)圆柱侧面展开图示页2页 3注意:把圆柱的侧面打开,得到一个长方形,这个长方形的长就是圆柱的底周长。
(三)圆柱的侧面积与底面积公式(1)圆柱的侧面积=底面的周长×高 S C 2h r h π==圆侧(2)圆柱的底面积2221S 24d r d πππ⎛⎫=== ⎪⎝⎭圆(3)圆柱的表面积=侧面积+两个底面积 22=22S S S r h r ππ=++圆侧表归纳:1.上、下两个面都是面积相等的圆圆柱从上到下粗细相同2.侧面展开一般是一个长方形。
这个长方形的长等于圆柱体底面的周长,宽等于圆柱体的高。
长方形注意:沿高剪斜着剪:平行四边形正方形3.圆柱的侧面积。
圆柱的侧面积=底面周长×高页44.圆柱表面积的含义。
圆柱的表面积=圆柱侧面积+两个底面的面积指出:使用的材料要比计算得到的结果多一些。
因此,这里不能用四舍五入法取近似值。
如果一道题结果要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。
这种取近似值的方法叫做进一法。
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。
如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。
1、圆柱的侧面积和表面积的计算,必需先理解圆柱的侧面展开是长方形,其中长为底面周长,宽为圆柱的高;2、探索出圆柱表面积的计算方法,能根据实际情况正确计算,解决简单的实际问题。
圆柱的表面积和体积练习测试卷一.选择题(共5小题)1.用一张长6.28cm,宽1dm的长方形铁皮,围成一个圆柱体,这个圆柱的侧面积是()A.31.4cm2B.3.14 m2C.12.56cm2 D.62.8cm22.一个底面积是20cm2的圆柱,斜着截去了一段后,剩下的图形如图.截后剩下的图形的体积是()cm3.A.140B.180C.220D.3603.压路机的前轮转动一周所压过的路面面积是指()A.前轮的表面积B.前轮的侧面积C.前轮的底面积4.在长12厘米,宽10厘米,高8厘米的长方体中切出一个体积最大的圆柱,这个圆柱的体积是()立方厘米.A.1130.4B.602.88C.628D.904.325.一个圆柱的底面直径扩大到原来的2倍,高缩小到原来的,圆柱的侧面积()A.扩大到原来的2倍B.缩小到原来的C.不变D.扩大到原来的3倍二.填空题(共10小题)6.一根长20分米的圆柱形圆木,锯成两段后表面积增加了4平方分米,它原来的体积是立方分米.7.一个长4cm,宽3cm的长方形,以一条边为轴旋转一周,得到一个,侧面积是cm2,体积最大是cm3.8.如图,把一个底面半径为4cm的圆柱,拼成一个近似的长方体,长方体的表面积比圆柱增加了40cm2,圆柱的高是cm,体积是cm3.9.李叔叔家新买了一台空调,外观为圆柱体,底面半径30厘米,高约2米,这台空调所占空间为立方米,若需要一个防尘罩,至少需要布平方米.10.一个圆柱体,底面积是3dm2,高是15cm,它的体积是dm3.11.一个正方体棱长之和是36厘米,把它挖去一个最大的圆柱体,圆柱体的体积是立方厘米.12.把一个圆柱的侧面展开是一个正方形,这个圆柱的底面直径是4厘米,圆柱的高是厘米.(ð取3.14)13.一根长1米的圆柱形木棒,锯成3段后,表面积增加了64平方分米,这根木棒的体积是.14.如图,一个内直径是6cm的瓶里装满矿泉水,小兰喝了一些后,这时瓶里水的高度是12cm,把瓶盖拧紧后倒置放平,无水部分高8cm.小兰喝了ml水;这个瓶子的容积是ml.15.一个高20cm的圆柱,沿着底面直径切成两个半圆柱,表面积增加360cm2,这个圆柱的底面直径是cm.三.判断题(共5小题)16.两个圆柱的侧面积相等,它们的高一定相等.(判断对错)17.圆柱的表面积等于底面积乘高.(判断对错)18.圆柱的侧面展开是正方形时,这个圆柱的高和它的底面周长相等.(判断对错)19.压路机滚筒滚动一周能压多少路面是求滚筒的侧面积.(判断对错)20.做一个铁皮烟囱需要多少铁皮,就是求烟囱的表面积.(判断对错)四.计算题(共2小题)21.计算下面圆柱的表面积和体积.22.如图,阴影部分的材料正好可以做成一个圆柱,求这个圆柱的体积.五.应用题(共5小题)23.一种无盖的消防桶是圆柱形.底面半径是10cm,高40cm.现在要在桶的外侧面和外底面涂上油漆.(1)涂油漆的面积是多少平方厘米?(2)这个消防桶的容积是多少立方厘米?(桶的厚度忽略不计).24.一种圆柱形的铁皮通风管长4米,横截面的直径是3分米,要做20节这样的通风管,至少需要多少平方分米的铁皮?25.100个无盖油桶的外表面要刷油添,每平方米需油漆0.5kg.每个油桶的底面直径是40cm,高是60cm.刷这100个无盖油桶需多少千克油漆?26.一个圆柱形水桶,从里面量底面直径是2.6米,深2米,这个水桶能装多少吨花水?(每立方米水重1吨)(最后结果保留一位小数)27.一个盛有水的圆柱形容器的底面直径是10厘米,水深12厘米,放入一块石头,从容器中溢出50毫升水,这个容器的高是22厘米,石头的体积是多少?圆柱的表面积和体积练习测试卷参考答案与试题解析一.选择题(共5小题)1.用一张长6.28cm,宽1dm的长方形铁皮,围成一个圆柱体,这个圆柱的侧面积是()A.31.4cm2B.3.14 m2C.12.56cm2 D.62.8cm2【解答】解:1dm=10cm6.28×10=62.8(平方厘米)答:这个圆柱的侧面积是62.8平方厘米.故选:D.【点评】此类题解答的关键是理解圆柱侧面积的计算方法,然后根据计算公式代入数据解答即可.2.一个底面积是20cm2的圆柱,斜着截去了一段后,剩下的图形如图.截后剩下的图形的体积是()cm3.A.140B.180C.220D.360【解答】解:20×(7+11)÷2=20×18÷2=180(立方厘米)答:节后剩下的图形的体积是180立方厘米.故选:B.【点评】此题主要考查圆柱体积公式的灵活运用,关键是熟记公式.3.压路机的前轮转动一周所压过的路面面积是指()A.前轮的表面积B.前轮的侧面积C.前轮的底面积【解答】解:压路机的前轮转动一周所压过的路面面积是指前轮的侧面积.故选:B.【点评】压路机的前轮的形状是圆柱,这个圆柱是侧躺在地面,转动一周,所压过的面正好是圆柱的侧面.4.在长12厘米,宽10厘米,高8厘米的长方体中切出一个体积最大的圆柱,这个圆柱的体积是()立方厘米.A.1130.4B.602.88C.628D.904.32【解答】解:以10厘米为底面直径,高是8厘米;3.14×(10÷2)2×8=3.14×25×8=78.5×8=628(立方厘米答:这个圆柱体的体积是628立方厘米.故选:C.【点评】解答此题的关键是,如何将一个长方体削成一个最大的圆柱,并找出它们之间的联系,再根据相应的公式解决问题.5.一个圆柱的底面直径扩大到原来的2倍,高缩小到原来的,圆柱的侧面积()A.扩大到原来的2倍B.缩小到原来的C.不变D.扩大到原来的3倍【解答】解:根据圆的周长公式:C=ðd,因为圆周率一定,所以圆的周长和直径成正比例,因此,一个圆柱的底面直径扩大到原来的2倍,也就是圆柱的底面周长扩大2倍,高缩小到原来的,所以圆柱的侧面积不变.故选:C.【点评】此题考查的目的是理解掌握圆柱的侧面积公式及应用,以及因数与积的变化规律及应用.二.填空题(共10小题)6.一根长20分米的圆柱形圆木,锯成两段后表面积增加了4平方分米,它原来的体积是40立方分米.【解答】解:4÷2×20=2×20=40(立方分米)答:它用来的体积是40立方分米.故答案为:40.【点评】此题考查的目的是理解掌握圆柱表面积的意义,以及圆柱体积公式的灵活运用,关键是熟记公式.7.一个长4cm,宽3cm的长方形,以一条边为轴旋转一周,得到一个圆柱,侧面积是75.36cm2,体积最大是150.72cm3.【解答】解:(1)以4厘米的边为轴旋转一周得到的圆柱的底面半径是3厘米,高是4厘米;2×3.14×3×4=18.84×4=75.36(平方厘米);3.14×32×4=3.14×9×4=28.26×4=113.04(立方厘米);(2)以3厘米的边为轴旋转一周得到的圆柱的底面半径是4厘米,高是3厘米;2×3.14×4×3=25.12×3=75.36(平方厘米);3.14×42×3=3.14×16×3=50.24×3=150.72(立方厘米);150.72>113.04;答:得到一个圆柱,侧面积是75.36平方厘米,体积最大是150.72立方厘米.故答案为:圆柱、75.36、150.72.【点评】此题考查的目的是理解掌握圆柱的特征,以及圆柱的侧面积公式、体积公式的灵活运用,关键是熟记公式.8.如图,把一个底面半径为4cm的圆柱,拼成一个近似的长方体,长方体的表面积比圆柱增加了40cm2,圆柱的高是5cm,体积是251.2cm3.【解答】解:40÷2÷4=5(厘米)3.14×42×5=3.14×16×5=50.24×5=251.2(立方厘米)答:圆柱的高是5厘米,体积是251.2立方厘米.故答案为:5、251.2.【点评】此题考查的目的是理解掌握圆柱体积公式的推导过程及应用,以及圆柱体积公式的灵活运用,关键是熟记公式.9.李叔叔家新买了一台空调,外观为圆柱体,底面半径30厘米,高约2米,这台空调所占空间为0.5652立方米,若需要一个防尘罩,至少需要布 4.0506平方米.【解答】解:30厘米=0.3米3.14×0.32×2=3.14×0.09×2=0.5652(立方米)3.14×0.3×2×2+3.14×0.32=3.14×1.2+3.14×0.09=3.14×1.29=4.0506(平方米)答:这台空调所占空间为0.5652立方米,至少需要布4.0506平方米.故答案为:0.5652;4.0506.【点评】解答此题主要分清所求物体的形状,转化为求有关圆柱体表面积的问题,把实际问题转化为数学问题,再运用圆柱的表面积公式和体积公式解决问题.10.一个圆柱体,底面积是3dm2,高是15cm,它的体积是 4.5dm3.【解答】解:15厘米=1.5分米答:它的体积是4.5立方分米.故答案为:4.5.【点评】此题主要考查圆柱体积公式的灵活运用,关键是熟记公式,注意:底面积与高单位的对应.11.一个正方体棱长之和是36厘米,把它挖去一个最大的圆柱体,圆柱体的体积是21.195立方厘米.【解答】解:36÷12=3(厘米)3.14×(3÷2)2×3=3.14×2.25×3=7.065×3=21.195(立方厘米)答:圆柱的体积是21.195立方厘米.故答案为:21.195.【点评】此题主要考查正方体的棱长总和公式、圆柱的体积搜狗的灵活运用,关键是熟记公式.12.把一个圆柱的侧面展开是一个正方形,这个圆柱的底面直径是4厘米,圆柱的高是12.56厘米.(ð取3.14)【解答】解:3.14×4=12.56(厘米)答:圆柱的高是12.56厘米.故答案为:12.56.【点评】解答此题的关键是根据侧面展开图是一个正方形,明确圆柱的高与底面周长相等.13.一根长1米的圆柱形木棒,锯成3段后,表面积增加了64平方分米,这根木棒的体积是160立方分米.【解答】解:1米=10分米64÷4×10=16×10=160(立方分米)答:这根木棒的体积是160立方分米.【点评】抓住圆柱的切割特点和增加的表面积,先求出圆柱的底面积是解决此类问题的关键.14.如图,一个内直径是6cm的瓶里装满矿泉水,小兰喝了一些后,这时瓶里水的高度是12cm,把瓶盖拧紧后倒置放平,无水部分高8cm.小兰喝了226.08ml水;这个瓶子的容积是565.2ml.【解答】解:3.14×(6÷2)2×8=3.14×9×8=28.26×8=226.08(立方厘米)3.14×(6÷2)2×(12+8)=3.14×9×20=28.26×20=565.2(立方厘米)226.08立方厘米=226.08毫升565.2立方厘米=565.2毫升答:小红喝了226.08毫升,这个瓶子的容积是565.2毫升.故答案为:226.08、565.2.【点评】此题主要考查圆柱的容积(体积)公式在实际生活中的应用,关键是熟记公式,注意:体积单位与容积单位之间的换算.15.一个高20cm的圆柱,沿着底面直径切成两个半圆柱,表面积增加360cm2,这个圆柱的底面直径是9cm.【解答】解:360÷2÷20=180÷20=9(厘米)答:这这个圆柱的底面直径是9厘米.故答案为:9.【点评】此题主要考查圆柱的表面积公式、体积公式的灵活运用,关键是熟记公式,重点是明确:表面积增加的360平方厘米是两个截面的面积,每个截面的长等于圆柱的高,宽等于圆柱的直径.三.判断题(共5小题)16.两个圆柱的侧面积相等,它们的高一定相等.×(判断对错)【解答】解:侧面积相等的两个圆柱,它们的底面周长和高不一定相等.如侧面积是6.28,即底面周长×高=6.28,因为3.14×2=6.28,6.28×1=6.28,所以它们的底面周长和高不一定相等.原题说法错误.故答案为:×.【点评】本题考查了圆柱的侧面积公式的应用和积一定,一个数越大另一个数就越小的规律.17.圆柱的表面积等于底面积乘高.×(判断对错)【解答】解:圆柱的表面积=侧面积+底面积×2,因此,圆柱的表面积等于底面积乘高.这种说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握圆柱表面积的意义,以及圆柱的表面积公式.18.圆柱的侧面展开是正方形时,这个圆柱的高和它的底面周长相等.√(判断对错)【解答】解:如果圆柱的侧面展开是一个正方形,那么这个圆柱的底面周长和高相等.所以题干说法正确.故答案为:√.【点评】此题考查的目的是理解掌握圆柱侧面展开图的特征.19.压路机滚筒滚动一周能压多少路面是求滚筒的侧面积.√(判断对错)【解答】解:因为压路机的滚筒是一个圆柱,所以压路机滚筒滚动一周能压多少路面是求滚筒的侧面积.因此,压路机滚筒滚动一周能压多少路面是求滚筒的侧面积.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握圆柱的特征,以及圆柱侧面积的意义.20.做一个铁皮烟囱需要多少铁皮,就是求烟囱的表面积.×(判断对错)【解答】解:因为,烟囱是通风的,是没有上下两个底的所以,做一个铁皮烟囱需要多少铁皮,就是求烟囱的侧面积,题干的说法是错误的.故答案为:×.【点评】此题主要考查了圆柱体的侧面积的意义,及在生活中的实际应用.四.计算题(共2小题)21.计算下面圆柱的表面积和体积.【解答】解:侧面积:3.14×8×10=251.2(平方厘米)表面积:251.2+3.14×(8÷2)2×2=251.2+3.14×16×2=251.2+100.48=351.68(平方厘米)体积:3.14×(8÷2)2×10=3.14×16×10=502.4(立方厘米);答:表面积是351.68平方厘米,体积是502.4立方厘米.【点评】此题主要考查圆柱的侧面积、表面积、体积的计算,直接根据它们的计算公式,把数据代入公式解答即可.22.如图,阴影部分的材料正好可以做成一个圆柱,求这个圆柱的体积.【解答】解:设圆柱的底面直径为x分米,3.14x+x=16.564.14x=16.56x=4.3.14×(4÷2)2×(4×2)=3.14×4×8=12.56×8=100.48(立方分米),答:这个圆柱的体积是100.48立方分米.【点评】此题主要考查圆的周长公式、圆柱的体积公式的灵活运用,关键是熟记公式.五.应用题(共5小题)23.一种无盖的消防桶是圆柱形.底面半径是10cm,高40cm.现在要在桶的外侧面和外底面涂上油漆.(1)涂油漆的面积是多少平方厘米?(2)这个消防桶的容积是多少立方厘米?(桶的厚度忽略不计).【解答】解:(1)3.14×102+3.14×10×2×40=3.14×100+3.14×800=3.14×900=2826(平方厘米)答:涂油漆的面积是2826平方厘米;(2)3.14×102×40=3.14×100×40=12560(立方厘米)答:这个消防桶的容积是12560立方厘米.【点评】解答此题主要分清所求物体的形状,转化为求有关圆柱体表面积的问题,把实际问题转化为数学问题,再运用圆柱的表面积公式和体积公式解决问题.24.一种圆柱形的铁皮通风管长4米,横截面的直径是3分米,要做20节这样的通风管,至少需要多少平方分米的铁皮?【解答】解:4米=40分米3.14×3×40×20=3.14×2400=7536(平方分米)答:至少需要7536平方分米的铁皮.【点评】此题考查了圆柱的侧面积公式的计算应用,此类问题要结合生活实际进行解答.25.100个无盖油桶的外表面要刷油添,每平方米需油漆0.5kg.每个油桶的底面直径是40cm,高是60cm.刷这100个无盖油桶需多少千克油漆?【解答】解:侧面积=底面周长×高=3.14×40×60=7536(平方厘米)底面积S=ðr2=3.14×(40÷2)2=1256(平方厘米)表面积=侧面积+底面积=7536+1256=8792(平方厘米)=0.8792(平方米)0.8792×0.5×100=43.96(千克)答:需要43.96千克油漆.【点评】在物体表面刷漆的问题,都是求物体的表面积,搞清物体的形状和面数解答即可.26.一个圆柱形水桶,从里面量底面直径是2.6米,深2米,这个水桶能装多少吨花水?(每立方米水重1吨)(最后结果保留一位小数)【解答】解:2.6÷2=1.3(米)3.14×1.32×2=3.14×3.38=10.6032(立方米)10.6032×1≈10.6(吨)答:这个水桶大约能装10.6吨水.【点评】从里面量圆柱的底面直径和高,根据V=Sh算出来的是圆柱的容积.27.一个盛有水的圆柱形容器的底面直径是10厘米,水深12厘米,放入一块石头,从容器中溢出50毫升水,这个容器的高是22厘米,石头的体积是多少?【解答】解:50毫升=50立方厘米3.14×(10÷2)2×(22﹣12)+50=3.14×25×10+50=78.5×10+50=785+50=835(立方厘米)答:石头的体积是835立方厘米.【点评】此题主要考查圆柱的容积(体积)公式的灵活运用,关键是熟记公式,注意:容积单位与体积单位之间的换算.。
圆柱表面积和体积提高练习
例1:表面积变化
1、一个圆柱的高减少2厘米,侧面积就减少50.24平方厘米,它的体积减少多少立方厘米?
2、一个圆柱的高增加3分米,侧面积就增加56.52平方分米,它的体积增加多少立方分米?
3、一个圆柱的侧面展开是一个正方形。
如果高增加2厘米,表面积增加12.56平方厘米。
原来这个圆柱的侧面积是多少平方厘米?
4、一个圆柱的侧面展开是一个正方形。
如果高减少3分米,表面积减少94.2平方分米。
原来这个圆柱的体积是多少立方分米?
例2:拼、切圆柱
1、把一个高是6分米的圆柱,沿着底面直径竖直切开,平均分成两半,表面积增加48平方分米。
原来这个圆柱的体积是多少立方分米?
2、把两个完全一样的半个圆柱合并成一个圆柱,底面半径是3厘米,表面积减少72平方厘米。
现在这个圆柱的侧面积是多少平方厘米?
3、把一个长3分米的圆柱,平均分成两段圆柱,表面积增加6.28平方分米。
原来这个圆柱体积是多少立方分米?
4、把3完全一样的圆柱,连接成一个大圆柱,长9厘米,表面积减少12.56平方分米。
原来每个圆柱的体积是多少立方厘米?
例3:加工圆柱
1、一个正方体棱长是4分米,把它削成一个最大的圆柱,削去的体积是多少?
2、一个正方体棱长是20厘米,把它削成一个最大的圆柱,这个圆柱的表面积是多少平方厘米?
3、一个长方体,长8分米,宽8分米,高12分米。
把它削成一个最大的圆柱,这个圆柱的体积为多少立方分米?
4、一个长方体,长8厘米,宽6厘米,高8厘米。
把它削成一个最大的圆柱,这个圆柱体积是多少立方厘米?
综合练习:
1、一个圆柱的高是5厘米,侧面展开是一个长为31.4厘米的长方形.这个圆柱体积是多少立方厘米?
2、一个圆柱体的高和底面周长相等。
如果高缩短2厘米,表面积就减少12.56平方厘米,求这个圆柱的表面积。
3、一个长方形的长是5厘米,宽是2厘米,以其中的一条边为轴旋转一周,可以得到一个圆柱,圆柱体积最大是多少立方厘米?
4、一根圆柱形木材长2米,把它截成相等的4段后,表面积增加了18.84平方厘米。
截成后每段圆木的体积是多少立方厘米?
4、底面直径是20厘米的圆钢,将其截成两段同样的圆钢,两段表面积的和为7536平方厘米,原来圆钢的体积是多少立方厘米?
5、把一根圆柱形木材沿底面直径切开成两个半圆柱体,已知一个剖面的面积是960平方厘米,半圆柱的体积是3014.4立方厘米,求原来圆柱形木材的体积和侧面积。
6、把一个圆柱的底面平均分成若干个扇形,然后切开拼成一个近似的长方体,表面积比原来增加了200平方厘米。
已知圆柱高20厘米,求圆柱的体积。
7、把一个正方体削成一个体积最大的圆柱体。
如果圆柱的侧面积是314平方厘米,求正方体的表面积。
8、一个圆柱体和一个圆锥体等底等高,它们的体积相差50.24立方厘米。
如果圆锥体的底面半径是2厘米,这个圆锥体的高是多少厘米?
10、一个圆柱体和一个圆锥体的体积相等,它们底面积的比是3:5,圆柱的高8厘米,圆锥的高是()厘米。
11、一个菱形的两条对角线分别为4厘米和6厘米,以菱形的对角线为轴旋转,转成的立体图形的体积是()立方厘米或()立方厘米。
12、在一只底面半径为10厘米的圆柱形玻璃容器中,水深8厘米,要在容器中放入长和宽都是8厘米,高15厘米的一块铁块。
如果把铁块横放在水中水面上升多少厘米?
1、把一个高为5厘米的圆柱从直径处沿高剖成两上半圆柱,这两个半圆柱的表面积比原来增加80平方厘米,求原来圆柱的表面积。
2、把一个圆柱底面平均分成若干个扇形,沿高切开拼成一个近似长方体,这个长方体的长是6.28厘米,高是5厘米,求它的体积。
3、把一个圆柱底面平均分成若干个扇形,沿高切开拼成一个近似长方体,这个长方体的宽是4厘米,高是5厘米,求它的体积。
4、把一个圆柱底面平均分成若干个扇形,沿高切开拼成一个近似长方体,这个长方体的底周长是41.4厘米,高是5厘米,求它的体积。
5、一个圆柱的侧面积是125.6平方厘米,半径是8厘米,求它的体积。
6、把一个棱长为4厘米的正方体削成一个最大的圆柱,求削成圆柱的体积。
7、一个长方体木块,长10厘米,宽8厘米,高4厘米,把它削成一个圆柱,求削成圆柱体积最大是多少?
8、把一个长2米的圆柱木料戴成4段,表面积增加了56.52平方厘米,求原来木料的体积
9、一个圆柱高为15厘米,把它的高增加2厘米后表面积增加25.12平方厘米,求原来圆柱的体积。
10、一个圆柱高为20厘米,如果把高减少3厘米,它的表面积就减少31.68平方厘米,求原来圆柱的体积。
11、把一个底半径为5厘米的圆柱铁块放入一个底半径10厘米,高14厘米的容器里,水面上升了3厘米,求这个圆柱铁块的体积。
12、把一个底半径为5厘米的圆柱铁块放入一个底半径10厘米,高14厘米的容器里,水面上升了3厘米,求这个圆柱铁块的高。