2014届高考数学一轮复习教学案(基础知识 高频考点 解题训练)空间向量及其运算和空间位置关系
- 格式:doc
- 大小:1.29 MB
- 文档页数:17
学案43空间向量及其运算导学目标:1。
了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示。
2.掌握空间向量的线性运算及其坐标表示。
3.掌握空间向量的数量积及其坐标表示,能运用向量的共线与垂直证明直线、平面的平行和垂直关系.自主梳理1.空间向量的有关概念及定理(1)空间向量:在空间中,具有________和________的量叫做空间向量.(2)相等向量:方向________且模________的向量.(3)共线向量定理对空间任意两个向量a,b(a≠0),b与a共线的充要条件是________________________.(4)共面向量定理如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在有序实数对(x,y),使得p=x a+y b,推论的表达式为错误!=x错误!+y错误!或对空间任意一点O有,错误!=________________或错误!=x错误!+y错误!+z错误!,其中x+y+z=____.(5)空间向量基本定理如果三个向量e1,e2,e3不共面,那么对空间任一向量p,存在惟一的有序实数组(x,y,z),使得p=________________________,把{e1,e2,e3}叫做空间的一个基底.2.空间向量的坐标表示及应用(1)数量积的坐标运算若a=(a1,a2,a3),b=(b1,b2,b3),则a·b=__________________________________________________________ ________.(2)共线与垂直的坐标表示设a=(a1,a2,a3),b=(b1,b2,b3),若b≠0,则a∥b⇔________⇔__________,________,______________,a⊥b⇔__________⇔________________________(a,b均为非零向量).(3)模、夹角和距离公式设a=(a1,a2,a3),b=(b1,b2,b3),则|a|=a·a=________________________________,cos〈a,b>=a·b|a||b|=______________________________________________________。
§1空间向量的坐标表示及基本定理二、教学目标1.了解空间向量的基本概念;2.掌握空间向量的运算及性质. 三、重点:空间向量的运算难点:利用向量证明有关问题 四、知识导学1.共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的充要条件是存在实数,x y 使 .2.空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb =++{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,可以知道,空间任意三个不共面的向量都可以构成空间的一个基底推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 . 3.空间向量的坐标表示概念 4.设a =(a 1,a 2,a 3), b =(b 1,b 2,b 3),若a 、b 为两非零向量,则a b ⊥⇔ =0⇔ =0. 五、课前自学1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量总可以唯一表示为c z b y a x p ++=.其中正确命题的个数为 .2.在空间四边形ABCD 中,AC 和BD 为对角线, G 为△ABC 的重心,E 是BD 上一点, BE =3ED ,以{AB ,AC ,AD }为基底,则GE = .3.向量a =(1,2,-2),b =(-2,-4,4),则a 与b 位置关系是 . 4. m =(8,3,a ),n =(2b ,6,5),若m ∥n ,则a +b 的值为 . 5.a =(2,-2,-3),b =(2,0,4),则a 与b 的夹角为 . 六、合作、探究、展示例题1 已知空间四边形OABC ,其对角线,OB AC ,,M N 分别是对边,OA BC 的中点,点G 在线段MN 上,且2MG GN ,用基底向量,,OA OB OC 表示向量例题2.已知空间四边形ABCD 的各边和对角线的长都等于a ,点M 、N 分别是AB 、CD 的中点。
教案)空间向量及其运算一、教学目标1. 了解空间向量的概念,掌握空间向量的基本性质。
2. 学会空间向量的线性运算,包括加法、减法、数乘和点乘。
3. 能够运用空间向量解决实际问题,提高空间想象力。
二、教学内容1. 空间向量的概念:向量的定义、大小、方向、表示方法。
2. 空间向量的线性运算:(1) 向量加法:三角形法则、平行四边形法则。
(2) 向量减法:差向量、相反向量。
(3) 数乘向量:数乘的定义、运算规律。
(4) 向量点乘:点乘的定义、运算规律、几何意义。
三、教学重点与难点1. 教学重点:空间向量的概念、线性运算及应用。
2. 教学难点:空间向量线性运算的推导及证明,空间向量在实际问题中的应用。
四、教学方法1. 采用多媒体教学,结合图形、动画,直观展示空间向量的概念和运算。
2. 利用实际例子,引导学生运用空间向量解决实际问题。
3. 组织小组讨论,培养学生团队合作精神,提高解决问题的能力。
五、教学安排1. 第一课时:空间向量的概念及表示方法。
2. 第二课时:空间向量的线性运算(向量加法、减法)。
3. 第三课时:空间向量的线性运算(数乘向量、向量点乘)。
4. 第四课时:空间向量线性运算的应用。
5. 第五课时:总结与拓展。
六、教学评价1. 课堂参与度:观察学生在课堂上的发言和提问情况,评估学生的参与度和积极性。
2. 作业完成情况:检查学生完成的作业质量,评估学生对空间向量及其运算的理解和掌握程度。
3. 小组讨论:评估学生在小组讨论中的表现,包括团队合作、问题解决能力和创新思维。
4. 课堂测试:通过课堂测试,了解学生对空间向量及其运算的掌握情况,及时发现并解决问题。
七、教学资源1. 多媒体教学课件:通过动画、图形等展示空间向量的概念和运算,增强学生的直观感受。
2. 实际例子:收集与空间向量相关的实际问题,用于引导学生运用空间向量解决实际问题。
3. 小组讨论材料:提供相关的问题和案例,供学生进行小组讨论。
4. 课堂测试卷:编写涵盖空间向量及其运算知识的测试卷,用于评估学生的学习效果。
第一节不等关系与不等式[知识能否忆起]1.实数大小顺序与运算性质之间的关系a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b . 2.不等式的基本性质[小题能否全取]1.(教材习题改编)下列命题正确的是( ) A .若ac >bc ⇒a >b B .若a 2>b 2⇒a >b C .若1a >1b ⇒a <bD .若a <b ⇒a <b答案:D2.若x +y >0,a <0,ay >0,则x -y 的值( ) A .大于0B .等于0C .小于0D .不确定解析:选A 由a <0,ay >0知y <0,又x +y >0,所以x >0.故x -y >0. 3.已知a ,b ,c ,d 均为实数,且c >d ,则“a >b ”是“a -c >b -d ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 若a -c >b -d ,c >d , 则a >b .但c >d ,a >b ⇒/ a -c >b -d .如a =2,b =1,c =-1,d =-3时,a -c <b -d . 4.12-1________3+1(填“>”或“<”). 解析:12-1=2+1<3+1. 答案:<5.已知a ,b ,c ∈R ,有以下命题:①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ; ③若a >b ,则a ·2c >b ·2c .其中正确的是____________(请把正确命题的序号都填上). 解析:①若c =0则命题不成立.②正确.③中由2c >0知成立. 答案:②③1.使用不等式性质时应注意的问题:在使用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.如“同向不等式”才可相加,“同向且两边同正的不等式”才可相乘;可乘性中“c 的符号”等也需要注意.2.作差法是比较两数(式)大小的常用方法,也是证明不等式的基本方法.要注意强化化归意识,同时注意函数性质在比较大小中的作用.典题导入[例1] 已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,试比较S 3a 3与S 5a 5的大小.[自主解答] 当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5;当q >0且q ≠1时,S 3a 3-S 5a 5=a 1(1-q 3)a 1q 2(1-q )-a 1(1-q 5)a 1q 4(1-q )=q 2(1-q 3)-(1-q 5)q 4(1-q )=-q -1q 4<0,所以S 3a 3<S 5a 5. 综上可知S 3a 3<S 5a 5.若本例中“q >0”改为“q <0”,试比较它们的大小. 解:由例题解法知当 q ≠1时,S 3a 3-S 5a 5=-q -1q 4.当-1<q <0时,S 3a 3-S 5a 5<0,即S 3a 3<S 5a 5;当q =-1时,S 3a 3-S 5a 5=0, 即S 3a 3=S 5a 5;当q <-1时,S 3a 3-S 5a 5>0,即S 3a 3>S 5a 5.由题悟法比较大小的常用方法 (1)作差法:一般步骤是:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:一般步骤是:①作商;②变形;③判断商与1的大小;④结论. (3)特值法:若是选择题、填空题可以用特值法比较大小;若是解答题,可先用特值探究思路,再用作差或作商法判断.[注意] 用作商法时要注意商式中分母的正负,否则极易得出相反的结论.以题试法1.(2012·吉林联考)已知实数a 、b 、c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a 、b 、c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >b解析:选A c -b =4-4a +a 2=(2-a )2≥0, ∴c ≥b .将题中两式作差得2b =2+2a 2,即b =1+a 2. ∵1+a 2-a =⎝⎛⎭⎫a -122+34>0,∴1+a 2>a . ∴b =1+a 2>a .∴c ≥b >a .典题导入[例2] (1)(2011·大纲全国卷)下面四个条件中,使a >b 成立的充分而不必要的条件是( )A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 3(2)(2012·包头模拟)若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc <0;③a -c >b -d ;④a ·(d -c )>b (d -c )中成立的个数是( )A .1B .2C .3D .4[自主解答] (1)由a >b +1得a >b +1>b ,即a >b ;且由a >b 不能得出a >b +1.因此,使a >b 成立的充分不必要条件是a >b +1.(2)∵a >0>b ,c <d <0,∴ad <0,bc >0, ∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd <0,故②正确.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ), a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ), 故④正确,故选C. [答案] (1)A (2)C由题悟法1.判断一个关于不等式的命题的真假时,先把要判断的命题与不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题的真假,当然判断的同时可能还要用到其他知识,比如对数函数、指数函数的性质.2.特殊值法是判断命题真假时常用到的一个方法,在命题真假未定时,先用特殊值试试,可以得到一些对命题的感性认识,如正好找到一组特殊值使命题不成立,则该命题为假命题.以题试法2.若a 、b 、c 为实数,则下列命题正确的是( ) A .若a >b ,c >d ,则ac >bd B .若a <b <0,则a 2>ab >b 2 C .若a <b <0,则1a <1bD .若a <b <0,则b a >ab解析:选B A 中,只有a >b >0,c >d >0时,才成立;B 中,由a <b <0,得a 2>ab >b 2成立;C ,D 通过取a =-2,b =-1验证均不正确.典题导入[例3] 已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.求f (-2)的取值范围. [自主解答] f (-1)=a -b ,f (1)=a +b . f (-2)=4a -2b .设m (a +b )+n (a -b )=4a -2b .则⎩⎪⎨⎪⎧ m +n =4,m -n =-2,解得⎩⎪⎨⎪⎧m =1,n =3. ∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤f (-2)≤10.即f (-2)的取值范围为[5,10].由题悟法利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.以题试法3.若α,β满足⎩⎪⎨⎪⎧-1≤α+β ≤1,1≤α+2β ≤3,试求α+3β的取值范围.解:设α+3β=x (α+β)+y (α+2β)=(x +y )α+(x +2y )β.则⎩⎪⎨⎪⎧ x +y =1,x +2y =3,解得⎩⎪⎨⎪⎧x =-1,y =2. ∵-1≤-(α+β)≤1,2≤2(α+2β)≤6, 两式相加,得1≤α+3β≤7. ∴α+3β的取值范围为[1,7].1.已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .不确定解析:选B 由题意得M -N =a 1a 2-a 1-a 2+1=(a 1-1)·(a 2-1)>0,故M >N . 2.若m <0,n >0且m +n <0,则下列不等式中成立的是( ) A .-n <m <n <-m B .-n <m <-m <n C .m <-n <-m <nD .m <-n <n <-m解析:选D 法一:(取特殊值法)令m =-3,n =2分别代入各选项检验即可. 法二:m +n <0⇒m <-n ⇒n <-m ,又由于m <0<n ,故m <-n <n <-m 成立. 3.“1≤x ≤4”是“1≤x 2≤16”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 由1≤x ≤4可得1≤x 2≤16,但由1≤x 2≤16可得1≤x ≤4或-4≤x ≤-1,所以“1≤x ≤4”是“1≤x 2≤16”的充分不必要条件.4.已知0<a <1b ,且M =11+a +11+b ,N =a 1+a +b 1+b ,则M 、N 的大小关系是( )A .M >NB .M <NC .M =ND .不能确定解析:选A ∵0<a <1b ,∴1+a >0,1+b >0,1-ab >0,∴M -N =1-a 1+a +1-b 1+b =2-2ab(1+a )(1+b )>0.5.若1a <1b <0,则下列结论不.正确的是( ) A .a 2<b 2 B .ab <b 2 C .a +b <0D .|a |+|b |>|a +b |解析:选D ∵1a <1b <0,∴0>a >b .∴a 2<b 2,ab <b 2,a +b <0,|a |+|b |=|a +b |.6.设a ,b 是非零实数,若a <b ,则下列不等式成立的是( ) A .a 2<b 2 B .ab 2<a 2b C.1ab 2<1a 2bD.b a <a b解析:选C 当a <0时,a 2<b 2不一定成立,故A 错. 因为ab 2-a 2b =ab (b -a ),b -a >0,ab 符号不确定, 所以ab 2与a 2b 的大小不能确定,故B 错. 因为1ab 2-1a 2b =a -b a 2b 2<0,所以1ab 2<1a 2b ,故C 正确.D 项中b a 与ab的大小不能确定.7.若1<α<3,-4<β <2,则α-|β|的取值范围是________. 解析:∵-4<β <2,∴0≤|β|<4. ∴-4<-|β|≤0.∴-3<α-|β|<3. 答案:(-3,3)8.(2012·深圳模拟)定义a *b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b . 已知a =30.3,b =0.33,c =log 30.3,则(a *b )*c=________.(结果用a ,b ,c 表示)解析:∵log 30.3<0<0.33<1<30.3,∴c <b <a , ∴(a *b )*c =b *c =c . 答案:c9.已知a +b >0,则a b 2+b a 2与1a +1b 的大小关系是________.解析:a b 2+ba 2-⎝⎛⎭⎫1a +1b =a -b b 2+b -a a 2 =(a -b )⎝⎛⎭⎫1b 2-1a 2 =(a +b )(a -b )2a 2b 2.∵a +b >0,(a -b )2≥0, ∴(a +b )(a -b )2a 2b 2≥0.∴a b 2+b a 2≥1a +1b . 答案:a b 2+b a 2≥1a +1b10.若a >b >0,c <d <0,e <0.求证:e (a -c )2>e(b -d )2. 证明:∵c <d <0,∴-c >-d >0. 又∵a >b >0,∴a -c >b -d >0. ∴(a -c )2>(b -d )2>0. ∴0<1(a -c )2<1(b -d )2. 又∵e <0,∴e (a -c )2>e (b -d )2. 11.已知b >a >0,x >y >0,求证:x x +a >y y +b .证明:x x +a -yy +b =x (y +b )-y (x +a )(x +a )(y +b )=bx -ay(x +a )(y +b ).∵b >a >0,x >y >0, ∴bx >ay ,x +a >0,y +b >0, ∴bx -ay(x +a )(y +b )>0,∴x x +a >y y +b. 12.已知函数f (x )=ax 2+bx +c 满足f (1)=0,且a >b >c ,求ca 的取值范围.解:∵f (1)=0,∴a +b +c =0, ∴b =-(a +c ).又a >b >c , ∴a >-(a +c )>c ,且a >0,c <0, ∴1>-a +c a >c a ,即1>-1-c a >ca.∴⎩⎨⎧2ca<-1,ca >-2,解得-2<c a <-12.1.已知a 、b 为实数,则“a >b >1”是“1a -1<1b -1”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A 由a >b >1⇒a -1>b -1>0⇒1a -1<1b -1,当a =0,b =2时,1a -1<1b -1,∴1a -1<1b -1⇒/ a >b >1,故选A. 2.(2012·洛阳模拟)若-1<a <b <1,-2<c <3则(a -b )·c 的取值范围是________. 解析:∵-1<a <b <1,∴-2<a -b <0,∴2>-(a -b )>0. 当-2<c <0时,2>-c >0, ∴4>(-c )[-(a -b )]>0, 即4>c ·(a -b )>0; 当c =0时,(a -b )·c =0;当0<c <3时,0<c ·[-(a -b )]<6, ∴-6<(a -b )·c <0.综上得,当-2<c <3时,-6<(a -b )·c <4. 答案:(-6,4)3.某企业去年年底给全部的800名员工共发放2 000万元年终奖,该企业计划从今年起,10年内每年发放的年终奖都比上一年增加60万元,企业员工每年净增a 人.(1)若a =10,在计划时间内,该企业的人均年终奖是否会超过3万元? (2)为使人均年终奖年年有增长,该企业每年员工的净增量不能超过多少人? 解:(1)设从今年起的第x 年(今年为第1年)该企业人均发放年终奖为y 万元. 则y =2 000+60x 800+ax (a ∈N *,1≤x ≤10).假设会超过3万元,则2 000+60x800+10x >3,解得x >403>10.所以,10年内该企业的人均年终奖不会超过3万元. (2)设1≤x 1<x 2≤10, 则f (x 2)-f (x 1)=2 000+60x 2800+ax 2-2 000+60x 1800+ax 1=(60×800-2 000a )(x 2-x 1)(800+ax 2)(800+ax 1)>0,所以60×800-2 000a >0,得a <24.所以,为使人均年终奖年年有增长,该企业每年员工的净增量不能超过23人.1.已知0<a <b ,且a +b =1,下列不等式成立的是( ) A .log 2a >0 B .2a -b >1C .2ab >2D .log 2(ab )<-2解析:选D 由已知,0<a <1,0<b <1,a -b <0,0<ab <14,log 2(ab )<-2.2.若a >b >0,则下列不等式中一定成立的是( ) A .a +1b >b +1aB.b a >b +1a +1 C .a -1b >b -1aD.2a +b a +2b >a b解析:选A 取a =2,b =1,排除B 与D ;另外,函数f (x )=x -1x 是(0,+∞)上的增函数,但函数g (x )=x +1x 在(0,1]上递减,在[1,+∞)上递增,所以,当a >b >0时,f (a )>f (b )必定成立,但g (a )>g (b )未必成立,可得,a -1a >b -1b ⇒a +1b >b +1a.3.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则 ( )A .甲先到教室B .乙先到教室C .两人同时到教室D .谁先到教室不确定解析:选B 设甲用时间为T ,乙用时间为2t ,步行速度为a ,跑步速度为b ,距离为s ,则T =s 2a +s2b =s 2a +s 2b =s (a +b )2ab ,ta +tb =s ⇒2t =2s a +b,T -2t =s (a +b )2ab -2s a +b =s ×(a +b )2-4ab 2ab (a +b )=s (a -b )22ab (a +b )>0,即乙先到教室.4.若x >y, a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤ay >bx这五个式子中,恒成立的所有不等式的序号是________. 解析:令x =-2,y =-3,a =3,b =2,符合题设条件x >y ,a >b ,∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y ,因此 ①不成立.又∵ax =-6,by =-6,∴ax =by ,因此③也不正确.又∵a y =3-3=-1,b x =2-2=-1, ∴a y =b x,因此⑤不正确. 由不等式的性质可推出 ②④成立.答案:②④。
空间向量与空间角[知识能否忆起]利用向量求空间角1.两条异面直线所成的角的求法设两条异面直线a ,b 的方向向量为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a ·b ||a||b |(其中φ为异面直线a ,b 所成的角).2.直线和平面所成角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |.3.求二面角的大小(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD〉.(2)如图2、3,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ=〈n 1,n 2〉(或π-〈n 1,n 2〉).[小题能否全取]1.(教材习题改编)已知向量m ,n 分别是直线l 和平面α的方向向量、法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为( )A .30°B .60°C .120°D .150°解析:选A 由于cos 〈m ,n 〉=-12,∴〈m ,n 〉=120°.所以直线l 与α所成的角为30°.2.(教材习题改编)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为( )A .45°B .135°C .45°或135°D .90°解析:选C cos 〈m ,n 〉=m ·n |m ||n |=11×2=22, 即〈m ,n 〉=45°,其补角为135°, ∴两平面所成的二面角为45°或135°.3.在如图所示的正方体A1B 1C 1D 1-ABCD 中,E 是C 1D 1的中点,则异面直线DE 与AC 夹角的余弦值为( )A .-1010B .-120C.120D.1010解析:选 D 如图建立直角坐标系D -xyz ,设DA =1,A (1,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫0,12,1.则AC =(-1,1,0),DE =⎝ ⎛⎭⎪⎫0,12,1,若异面直线DE 与AC 所成的角为θ,cos θ=|cos 〈AC ,DE 〉|=1010.4.已知点E 、F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值为________.解析:如图,建立直角坐标系D -xyz ,设DA =1由已知条件A (1,0,0),E ⎝ ⎛⎭⎪⎫1,1,13,F ⎝ ⎛⎭⎪⎫0,1,23,AE =⎝ ⎛⎭⎪⎫0,1,13,AF =⎝ ⎛⎭⎪⎫-1,1,23,设平面AEF 的法向量为n =(x ,y ,z ),面AEF 与面ABC 所成的二面角为θ,由⎩⎨⎧n ·AE=0,n ·AF=0,得⎩⎪⎨⎪⎧y +13z =0,-x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3). 设平面ABC 的法向量为m =(0,0,-1), 则cos θ=cos 〈n ,m 〉=311,tan θ=23. 答案:235.(教材习题改编)如图,在长方体ABCD -A 1B 1C 1D 1中,已知DA =DC =4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值________.解析:建立如图所示直角坐标系,则A 1(4,0,3),B (4,4,0),B 1(4,4,3),C (0,4,0),1A B =(0,4,-3),1B C=(-4,0,-3).设异面直线A 1B 与B 1C 所成角为θ,则cos θ=|cos 〈1A B ,1B C 〉|=925.答案:925(1)利用向量求空间角,一定要注意将向量夹角与所求角区别开来,在将向量夹角转化为各空间角时注意空间各角的取值范围,异面直线所成角的范围是⎝ ⎛⎦⎥⎤0,π2,直线与平面所成角的范围是⎣⎢⎡⎦⎥⎤0,π2,二面角的范围是[0,π].(2)利用平面的法向量求二面角的大小时,当求出两半平面α、β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等,还是互补,这是利用向量求二面角的难点、易错点.典题导入[例1] (2012·陕西高考)如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.55B.53C.255D.35[自主解答] 不妨令CB =1,则CA =CC 1=2.可得O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1),∴1BC =(0,2,-1),1AB=(-2,2,1),∴cos 〈1BC ,1AB 〉=1BC ·1AB|1BC ||1AB |=4-15×9=15=55>0.∴1BC 与1AB的夹角即为直线BC 1与直线AB 1的夹角,∴直线BC 1与直线AB 1夹角的余弦值为55. [答案] A本例条件下,在线段OB 上,是否存在一点M ,使C 1M 与AB 1所成角的余弦为13?若存在,求出M 点;不存在,说明理由.解:不妨令CB =1,CA =CC 1=2, 建系如本例题图,假设存在符合条件的点M ,设M (0,0,a ),则1C M =(0,-2,a ),又1AB=(-2,2,1), ∴|cos 〈1C M ,1AB 〉|=|a -4|4+a 2·9=13. ∴|a -4|=4+a 2,∴a 2-8a +16=a 2+4. ∴8a =12,∴a =32.又CB =1,∴a =32>1.故不存在符合条件的点M .由题悟法利用直线的方向向量的夹角求异面直线的夹角时,注意区别:当异面直线的方向向量的夹角为锐角或直角时,就是此异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.以题试法1.(2012·安徽模拟)如图所示,在多面体ABCD -A 1B 1C 1D 1中,上、下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值; (2)已知F 是AD 的中点,求证:FB 1⊥平面BCC 1B 1.解:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y轴,z 轴,建立如图所示的空间直角坐标系,则A (2a,0,0),B (2a,2a,0),C (0,2a,0),D 1(0,0,a ),F (a,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)∵1AB =(-a ,a ,a ),1DD=(0,0,a ),∴cos 〈1AB ,1DD 〉=1AB ·1DD|1AB|·|1DD |=33,所以异面直线AB 1与DD 1所成角的余弦值为33. (2)证明:∵1BB=(-a ,-a ,a ),BC =(-2a,0,0), 1FB=(0,a ,a ),∴⎩⎪⎨⎪⎧1FB ·1BB =0, 1FB ·BC =0,∴FB 1⊥BB 1,FB 1⊥BC .∵BB 1∩BC =B ,∴FB 1⊥平面BCC 1B 1.典题导入[例2] (2012·大纲全国卷)如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PA ⊥底面ABCD ,AC =22,PA =2,E 是PC 上的一点,PE =2EC .(1)证明:PC ⊥平面BED ;(2)设二面角A PB C 为90°,求PD 与平面PBC 所成角的大小.[自主解答] (1)证明:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz ,则C (22,0,0).设D (2,b,0),其中b >0,则P (0,0,2),E ⎝⎛⎭⎪⎫423,0,23,B (2,-b,0).于是PC=(22,0,-2),BE =⎝ ⎛⎭⎪⎫23,b ,23,DE =⎝ ⎛⎭⎪⎫23,-b ,23,从而PC ·BE=0,PC ·DE =0,故PC ⊥BE ,PC ⊥DE . 又BE ∩DE =E , 所以PC ⊥平面BED .(2) AP =(0,0,2),AB=(2,-b,0).设m =(x ,y ,z )为平面PAB 的法向量,则m ·AP =0,m ·AB=0,即2z =0且2x -by =0, 令x =b ,则m =(b ,2,0).设n =(p ,q ,r )为平面PBC 的法向量,则n ·PC =0,n ·BE=0,即22p -2r =0且2p 3+bq +23r =0, 令p =1,则r =2,q =-2b,n =⎝⎛⎭⎪⎫1,-2b,2.因为二面角A -PB -C 为90°,所以面PAB ⊥面PBC ,故m ·n =0, 即b -2b=0,故b =2,于是n =(1,-1,2),DP=(-2,-2,2),所以cos 〈n ,DP 〉=n ·DP|n ||DP |=12, 所以〈n ,DP〉=60°.因为PD 与平面PBC 所成角和〈n ,DP〉互余,故PD 与平面PBC 所成的角为30°.由题悟法利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角(钝角时取其补角),取其余角就是斜线和平面所成的角(如例2).以题试法2.(2012·宝鸡模拟)如图,已知PA ⊥平面ABC ,且PA =2,等腰直角三角形ABC 中,AB =BC =1,AB ⊥BC ,AD ⊥PB 于D ,AE ⊥PC 于E .(1)求证:PC ⊥平面ADE ;(2)求直线AB 与平面ADE 所成角的大小. 解:(1)证明:因为PA ⊥平面ABC , 所以PA ⊥BC ,又AB ⊥BC ,且PA ∩AB =A , 所以BC ⊥平面PAB ,从而BC ⊥AD . 又AD ⊥PB ,BC ∩PB =B , 所以AD ⊥平面PBC , 得PC ⊥AD ,又PC ⊥AE ,AE ∩AD =A , 所以PC ⊥平面ADE .(2)如图所示,建立空间直角坐标系B -xyz . 则A (1,0,0),C (0,1,0),P (1,0,2),因为PC ⊥平面ADE ,所以PC=(-1,1,-2)是平面ADE 的一个法向量.设直线AB 与平面ADE 所成的角为θ,则sin θ=|PC ·AB||PC||AB |=-1,1,-2·-1,0,02=12, 则直线AB 与平面ADE 所成的角为30°.典题导入[例3] (2012·江西高考)在三棱柱ABC -A 1B 1C 1中,已知AB=AC =AA 1=5,BC =4,点A 1在底面ABC 的投影是线段BC 的中点O .(1)证明在侧棱AA 1上存在一点E ,使得OE ⊥平面BB 1C 1C ,并求出AE 的长;(2)求平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值.[自主解答] (1)证明:连接AO ,在△AOA 1中,作OE ⊥AA 1于点E ,因为AA 1∥BB 1,得OE ⊥BB 1,因为A 1O ⊥平面ABC ,所以A 1O ⊥BC .因为AB =AC ,OB =OC ,得AO ⊥BC ,所以BC ⊥平面AA 1O ,所以BC ⊥OE , 所以OE ⊥平面BB 1C 1C .又AO =AB 2-BO 2=1,AA 1=5,得AE =AO 2AA 1=55.(2)如图,分别以OA ,OB ,OA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则A (1,0,0),B (0,2,0),C (0,-2,0),A 1(0,0,2),B 1(-1,2,2),由AE =151AA 得点E 的坐标是⎝ ⎛⎭⎪⎫45,0,25,由(1)得平面BB 1C 1C 的法向量是OE =⎝ ⎛⎭⎪⎫45,0,25,设平面A 1B 1C 的法向量n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·11A B=0,n ·1A C =0,得⎩⎪⎨⎪⎧-x +2y =0,y +z =0.令y =1,得x =2,z =-1,即n =(2,1,-1),所以cos 〈OE,n 〉=OE·n| OE |·|n |=3010,即平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值是3010.由题悟法求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.以题试法3.(2012·山西模拟)如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =AD =a ,点E 是SD 上的点,且DE =λa (0<λ≤1).(1)求证:对任意的λ∈(0,1],都有AC ⊥BE ; (2)若二面角C -AE -D 的大小为60°,求λ的值.解:(1)证明:如图,建立空间直角坐标系D -xyz ,则A (a,0,0,),B (a ,a,0),C (0,a,0),D (0,0,0),E (0,0,λa ),∴AC =(-a ,a,0),BE=(-a ,-a ,λa ), ∴AC ·BE=0对任意λ∈(0,1]都成立,即对任意的λ∈(0,1],都有AC ⊥BE .(2)显然n =(0,1,0)是平面ADE 的一个法向量, 设平面ACE 的法向量为m =(x ,y ,z ),∵AC =(-a ,a,0),AE=(-a,0,λa ),∴⎩⎨⎧m ·AC=0,m ·AE=0.即⎩⎪⎨⎪⎧ -ax +ay =0,-ax +λaz =0,∴⎩⎪⎨⎪⎧x -y =0,x -λz =0.取z =1,则x =y =λ,∴m =(λ,λ,1), ∵二面角C -AE -D 的大小为60°, ∴|cos 〈n ,m 〉|=|n ·m ||n ||m |=λ1+2λ2=12, ∵λ∈(0,1], ∴λ=22.1.如图所示,在三棱柱ABC -A1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角为________.解析:建立如图所示的空间直角坐标系.设AB =BC =AA 1=2,则C1(2,0,2),E (0,1,0),F (0,0,1),则EF =(0,-1,1),1BC=(2,0,2),∴EF ·1BC=2,∴cos 〈EF ,1BC〉=22×22=12,∴EF 和BC 1所成角为60°. 答案:60°2.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2.若二面角B 1-DC -C 1的大小为60°,则AD 的长为________.解析:如图,以C 为坐标原点,CA ,CB ,CC 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2).设AD =a ,则D 点坐标为(1,0,a ),CD =(1,0,a ),1CB=(0,2,2),设平面B 1CD 的一个法向量为m =(x ,y ,z ).则⎩⎪⎨⎪⎧m ·1CB =0m ·CD =0⇒⎩⎪⎨⎪⎧2y +2z =0x +az =0,令z =-1,得m =(a,1,-1),又平面C 1DC 的一个法向量为n =(0,1,0),则由cos 60°=|m·n ||m ||n |,得1a 2+2=12,即a =2,故AD = 2. 答案: 23.如图,在正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面PAC 所成角为________.解析:如图所示,以O 为原点建立空间直角坐标系O -xyz .设OD =SO =OA =OB =OC =a ,则A (a,0,0),B (0,a,0),C (-a,0,0),P ⎝ ⎛⎭⎪⎫0,-a 2,a 2. 则CA =(2a,0,0),AP =⎝ ⎛⎭⎪⎫-a ,-a 2,a 2,CB=(a ,a,0).设平面PAC 的法向量为n ,可求得n =(0,1,1),则cos 〈CB ,n 〉=CB·n| CB ||n |=a 2a 2·2=12. ∴〈CB,n 〉=60°,∴直线BC 与平面PAC 的夹角为90°-60°=30°. 答案:30°4.(2012·山西模拟)如图,在底面为直角梯形的四棱锥P -ABCD中,AD ∥BC ,∠ABC =90°,PA ⊥平面ABCD ,PA =3,AD =2,AB =23,BC =6.(1)求证:BD ⊥平面PAC ; (2)求二面角P -BD -A 的大小.解:(1)证明:由题可知,AP 、AD 、AB 两两垂直,则分别以AB 、AD 、AP 所在直线为x 、y 、z 轴建立如图所示的空间直角坐标系,则A (0,0,0),B (23,0,0),C (23,6,0),D (0,2,0),P (0,0,3),∴AP =(0,0,3),AC =(23,6,0),BD=(-23,2,0),∴BD ·AP =0,BD ·AC=0.∴BD ⊥AP ,BD ⊥AC .又PA ∩AC =A ,∴BD ⊥平面PAC .(2)显然平面ABD 的一个法向量为m =(0,0,1),设平面PBD 的法向量为n =(x ,y ,z ),则n ·BD =0,n ·BP=0.由(1)知,BP=(-23,0,3),∴⎩⎨⎧-23x +2y =0,-23x +3z =0,整理得⎩⎪⎨⎪⎧y =3x ,z =233x .令x =3,则n =(3,3,2),∴cos 〈m ,n 〉=m ·n |m ||n |=12.∴结合图形可知二面角P -BD -A 的大小为60°.5.(2012·辽宁高考)如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =λAA ′,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)若二面角A ′-MN -C 为直二面角,求λ的值.解:(1)法一:证明:如图,连接AB ′,AC ′,由已知∠BAC =90°,AB =AC ,三棱柱ABC -A ′B ′C ′为直三棱柱,所以M 为AB ′中点.又因为N 为B ′C ′的中点,所以MN ∥AC ′. 又MN ⊄平面A ′ACC ′,A ′C ⊂平面A ′ACC ′,所以MN ∥平面A ′ACC ′.法二:证明:取A ′B ′ 中点P ,连接MP ,NP ,而M ,N 分别为AB ′与B ′C ′的中点,所以MP ∥AA ′,PN ∥A ′C ′, 所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′. 又MP ∩NP =P ,因此平面MPN ∥平面A ′ACC ′.而MN ⊂平面MPN , 因此MN ∥平面A ′ACC ′.(2)以A 为坐标原点,分别以直线AB ,AC ,AA ′为x 轴,y 轴,z 轴建立空间直角坐标系O -xyz ,如图所示.设AA ′=1,则AB =AC =λ,于是A (0,0,0),B (λ,0,0),C (0,λ,0),A ′(0,0,1),B ′(λ,0,1),C ′(0,λ,1),所以M ⎝⎛⎭⎪⎫λ2,0,12,N ⎝ ⎛⎭⎪⎫λ2,λ2,1.设m =(x 1,y 1,z 1)是平面A ′MN 的法向量,由⎩⎨⎧m ·A M '=0,m ·MN=0,得⎩⎪⎨⎪⎧λ2x 1-12z 1=0,λ2y 1+12z 1=0,可取m =(1,-1,λ).设n =(x 2,y 2,z 2)是平面MNC 的法向量,由⎩⎨⎧n ·NC=0,n ·MN=0,得⎩⎪⎨⎪⎧-λ2x 2+λ2y 2-z 2=0,λ2y 2+12z 2=0,可取n =(-3,-1,λ).因为A ′-MN -C 为直二面角,所以m·n =0,即-3+(-1)×(-1)+λ2=0,解得λ=2(负值舍去).6.如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2.将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2.(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由. 解:(1)证明:因为AC ⊥BC ,DE ∥BC , 所以DE ⊥AC .所以ED ⊥A 1D ,DE ⊥CD ,所以DE ⊥平面A 1DC . 所以DE ⊥A 1C . 又因为A 1C ⊥CD . 所以A 1C ⊥平面BCDE .(2)如图,以C 为坐标原点,建立空间直角坐标系C -xyz ,则A 1(0,0,23),D (0,2,0),M (0,1, 3),B (3,0,0),E (2,2,0).设平面A 1BE 的法向量为n =(x ,y ,z ),则n ·1A B=0,n ·BE =0.又1A B(3,0-= (-1,2,0),所以⎩⎨⎧3x -23z =0,-x +2y =0.令y =1,则x =2,z = 3. 所以n =(2,1,3).设CM 与平面A 1BE 所成的角为θ.因为CM=所以sin θ=|cos 〈n , CM 〉|=|n ·CM|n ||CM ||=48×4=22. 所以CM 与平面A 1BE 所成角的大小为π4.(3)线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直,理由如下:假设这样的点P 存在,设其坐标为(p,0,0),其中p ∈[0,3].设平面A 1DP 的法向量为m =(x ,y ,z ),则m ·1A D =0,m ·DP=0.又1A D=0,2,-23),DP =(p ,-2,0),所以⎩⎨⎧2y -2 3z =0,px -2y =0.令x =2,则y =p ,z =p3.所以m =(2,p ,p3).平面A 1DP ⊥平面A 1BE ,当且仅当m ·n =0, 即4+p +p =0.解得p =-2,与p ∈[0,3]矛盾.所以线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.1.(2013·湖北模拟)如图所示,四棱锥P -ABCD 中,底面ABCD为正方形,PD ⊥平面ABCD ,PD =AB =2,E 、F 、G 分别为PC 、PD 、BC 的中点.(1)求证:PA ⊥EF ;(2)求二面角D -FG -E 的余弦值.解:以D 为坐标原点,建立如图所示的空间直角坐标系D -xyz ,则D (0,0,0),A (0,2,0),C (-2,0,0),P (0,0,2),E (-1,0,1),F (0,0,1),G (-2,1,0).(1)证明:由于PA =(0,2,-2),EF =(1,0,0),则PA ·EF=1×0+0×2+(-2)×0=0,∴PA ⊥EF .(2)易知DF =(0,0,1),EF=(1,0,0),FG =(-2,1,-1),设平面DFG 的法向量m =(x 1,y 1,z 1),则⎩⎨⎧m ·DF=0,m ·FG=0,解得⎩⎪⎨⎪⎧z 1=0,-2x 1+y 1-z 1=0.令x 1=1,得m =(1,2,0)是平面DFG 的一个法向量. 设平面EFG 的法向量n =(x 2,y 2,z 2),同理可得n =(0,1,1)是平面EFG 的一个法向量.∵cos 〈m ,n 〉=m ·n |m |·|n |=25·2=210=105,设二面角D -FG -E 的平面角为θ,由图可知θ=π-〈m ,n 〉,∴cos θ=-105, ∴二面角D -FG -E 的余弦值为-105. 2.(2012·北京西城模拟)如图,在直三棱柱ABC -A1B 1C 1中,AB =BC =2AA 1,∠ABC =90°,D 是BC 的中点.(1)求证:A 1B ∥平面ADC 1; (2)求二面角C 1-AD -C 的余弦值;(3)试问线段A 1B 1上是否存在点E ,使AE 与DC 1成60°角?若存在,确定E 点位置;若不存在,说明理由.解:(1)证明:连接A 1C ,交AC 1于点O ,连接OD .由ABC -A 1B 1C 1是直三棱柱,得四边形ACC 1A 1为矩形,O 为A 1C 的中点.又D 为BC 的中点,所以OD 为△A 1BC 的中位线, 所以A 1B ∥OD ,因为OD ⊂平面ADC 1,A 1B ⊄平面ADC 1, 所以A 1B ∥平面ADC 1.(2)由ABC -A 1B 1C 1是直三棱柱,且∠ABC =90°,得BA ,BC ,BB 1两两垂直.以BC ,BA ,BB 1所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系B -xyz . 设BA =2,则B (0,0,0),C (2,0,0),A (0,2,0),C 1(2,0,1),D (1,0,0),所以AD=(1,-2,0),1AC =(2,-2,1).设平面ADC 1的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·AD =0,n ·1AC =0.所以⎩⎪⎨⎪⎧x -2y =0,2x -2y +z =0.取y =1,得n =(2,1,-2).易知平面ADC 的一个法向量为v =(0,0,1).所以cos 〈n ,v 〉=n ·v |n |·|v |=-23.因为二面角C 1-AD -C 是锐二面角, 所以二面角C 1-AD -C 的余弦值为23.(3)假设存在满足条件的点E .因为点E 在线段A 1B 1上,A 1(0,2,1),B 1(0,0,1), 故可设E (0,λ,1),其中0≤λ≤2.所以AE=(0,λ-2,1),1DC =(1,0,1).因为AE 与DC 1成60°角,所以|cos 〈AE ,1DC〉|=⎪⎪⎪⎪⎪⎪⎪⎪AE ·1DC|AE|·|1DC |=12. 即⎪⎪⎪⎪⎪⎪1λ-22+1·2=12,解得λ=1或λ=3(舍去). 所以当点E 为线段A 1B 1的中点时,AE 与DC 1成60°角.1.(2012·北京东城模拟)如图,四边形ABCD 为正方形,PD⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ; (2)求二面角Q -BP -C 的余弦值.解:(1)证明:如图,以D 为坐标原点,DA 、DP 、DC 所在的直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系D -xyz .设DA =1,则有D (0,0,0),Q (1,1,0),C (0,0,1),P (0,2,0),所以DQ =(1,1,0),DC =(0,0,1),PQ=(1,-1,0),所以PQ ·DQ =0,PQ ·DC=0,即PQ ⊥DQ ,PQ ⊥DC .又DQ ⊂平面DCQ ,DC ⊂平面DCQ ,且DQ ∩DC =D , 所以PQ ⊥平面DCQ .又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ .(2)由(1)易知B (1,0,1),CB =(1,0,0),BP=(-1,2,-1).设n =(x ,y ,z )是平面PBC 的法向量,则⎩⎨⎧n ·CB=0,n ·BP=0,即⎩⎪⎨⎪⎧x =0,-x +2y -z =0,可取n =(0,-1,-2).设m =(x 1,y 1,z 1)是平面PBQ 的法向量,则⎩⎪⎨⎪⎧m ·BP=0,m ·PQ =0,即⎩⎪⎨⎪⎧-x 1+2y 1-z 1=0,x 1-y 1=0,可取m =(1,1,1).所以cos 〈m ,n 〉=-155, 故二面角Q -BP -C 的余弦值为-155. 2.(2012·天津高考)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,PA =AD =2,AC =1.(1)证明PC ⊥AD ;(2)求二面角A -PC -D 的正弦值;(3)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长.解:如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0),C (0,1,0),B ⎝ ⎛-12,⎭⎪⎫12,0,P (0,0,2). (1)证明:易得PC=(0,1,-2), AD=(2,0,0),于是PC ·AD=0,所以PC ⊥AD .(2) PC =(0,1,-2),CD=(2,-1,0).设平面PCD 的法向量n =(x ,y ,z ),则⎩⎨⎧n ·PC=0,n ·CD=0,即⎩⎪⎨⎪⎧y -2z =0,2x -y =0.不妨令z =1,可得n =(1,2,1).可取平面PAC 的法向量m =(1,0,0).于是cos 〈m ,n 〉=m·n |m |·|n |=16=66,从而sin 〈m ,n 〉=306. 所以二面角A -PC -D 的正弦值为306. (3)设点E 的坐标为(0,0,h ),其中h ∈[0,2].由此得BE =⎝ ⎛⎭⎪⎫12,-12,h .由CD =(2,-1,0),故cos 〈BE ,CD 〉=BE ·CD|BE|·|CD |=3212+h 2×5=310+20h2,所以310+20h 2=cos 30°=32,解得h =1010, 即AE =1010. 3.如图,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2. (1)证明:当点E 在棱AB 上移动时,D 1E ⊥A 1D ;(2)在棱AB 上是否存在点E ,使二面角D 1-EC -D 的平面角为π6?若存在,求出AE 的长;若不存在,请说明理由. 解:以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则D (0,0,0),C (0,2,0),A 1(1,0,1),D 1(0,0,1).设E (1,y 0,0)(0≤y 0≤2).(1)证明:∵1D E =(1,y 0,-1),1A D=(-1,0,-1), 则1D E ·1A D=(1,y 0,-1)·(-1,0,-1)=0, ∴1D E ⊥1A D,即D 1E ⊥A 1D .(2)当AE =2-33时,二面角D 1-EC -D 的平面角为π6. ∵EC =(-1,2-y 0,0),1D C=(0,2,-1),设平面D 1EC 的一个法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·EC =0,n 1·1D C =0⇒⎩⎪⎨⎪⎧-x +y 2-y 0=0,2y -z =0.取y =1,则n 1=(2-y 0,1,2)是平面D 1EC 的一个法向量.而平面ECD 的一个法向量为n 2=1DD =(0,0,1),要使二面角D 1-EC -D 的平面角为π6,则cos π6=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=22-y 02+12+22=32,解得y 0=2-33(0≤y 0≤2). ∴当AE =2-33时,二面角D 1-EC -D 的平面角为π6.4.(2012·湖北模拟)在直三棱柱ABC -A 1B 1C 1中,AB =AC =1,∠BAC=90°.(1)若异面直线A 1B 与B 1C 1所成的角为60°,求棱柱的高; (2)设D 是BB 1的中点,DC 1与平面A 1BC 1所成的角为θ,当棱柱的高变化时,求sin θ的最大值.解:建立如图所示的空间直角坐标系A -xyz ,设AA 1=h (h >0),则有B (1,0,0),B 1(1,0,h ),C 1(0,1,h ),A 1(0,0,h ),11B C =(-1,1,0),11A C =(0,1,0),1A B=(1,0,-h ).(1)因为异面直线A 1B 与B 1C 1所成的角为60°,所以cos60°=|11B C ·1A B ||11B C |·|1A B |, 即12·h 2+1=12,得1+h 2=2,解得h =1. (2)由D 是BB 1的中点,得D ⎝⎛⎭⎪⎫1,0,h 2,于是1DC =⎝⎛⎭⎪⎫-1,1,h 2.设平面A 1BC 1的法向量为n =(x ,y ,z ),于是由n ⊥1A B ,n ⊥11A C可得⎩⎪⎨⎪⎧n ·1A B =0,n ·11A C =0,即⎩⎪⎨⎪⎧x -hz =0,y =0,可取n =(h,0,1),故sin θ=|cos 〈1DC,n 〉|, 而|cos 〈1DC ,n 〉|=|1DC·n ||1DC |·|n |=⎪⎪⎪⎪⎪⎪-h +h 214h 2+2·h 2+1=hh 4+9h 2+8. 令f (h )=hh 4+9h 2+8=1h 2+8h2+9,因为h 2+8h 2+9≥28+9,当且仅当h 2=8h2,即h =48时,等号成立.所以f (h )≤19+28=18+1=22-17,故当h =48时,sin θ的最大值为22-17.立体几何(时间:120分钟,满分150分)一、选择题(本题共12小题,每小题5分,共60分)1.(2012·重庆模拟)若两条直线和一个平面相交成等角,则这两条直线的位置关系是( )A.平行B.异面C.相交D.平行、异面或相交解析:选D 经验证,当平行、异面或相交时,均有两条直线和一个平面相交成等角的情况出现.2.(2012·福建高考)一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( )A.球B.三棱锥C.正方体D.圆柱解析:选D 球、正方体的三视图形状都相同,大小均相等,首先排除选项A和C.对于如图所示三棱锥O-ABC,当OA、OB、OC两两垂直且OA=OB=OC时,其三视图的形状都相同,大小均相等,故排除选项B.不论圆柱如何放置,其三视图的形状都不会完全相同.3.(2012·安徽模拟)在空间,下列命题正确的是( )A.若三条直线两两相交,则这三条直线确定一个平面B.若直线m与平面α内的一条直线平行,则m∥αC.若平面α⊥β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面βD.若直线a∥b,且直线l⊥a,则l⊥b解析:选D 三条直线两两相交,可确定一个平面或三个平面,故A错;m与平面α内一条直线平行,m也可在α内,故B错;若平面α⊥β,且α∩β=l,当P∈l时,过P 点与l垂直的直线可在β外,也可在β内,故C错.由等角定理知D正确.4.(2012·新课标全国卷)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为( )A.6πB.43πC.46πD.63π解析:选B 设球的半径为R ,由球的截面性质得R =22+12=3,所以球的体积V =43πR 3=43π.5.(2012·北京海淀二模)某几何体的正视图与俯视图如图所示,侧视图与正视图相同,且图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是( )A.203B.43 C .6D .4解析:选A 由三视图知,该几何体是正方体挖去一个以正方体的中心为顶点、以正方体的上底面为底面的四棱锥后的剩余部分,其体积是23-13×22×1=203.6.(2013·安徽模拟)沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为( )解析:选B 由三视图的相关知识易知选B.7.正方体ABCD -A 1B 1C 1D 1中,与体对角线AC 1异面的棱有( ) A .3条B .4条C .6条D .8条解析:选C 从定义出发,同时考虑到正方体的体对角线AC 1与正方体的6条棱有公共点A 和C 1,而正方体有12条棱,所以与AC 1异面的棱有6条.8.(2012·衡阳模拟)如图,一个空间几何体的正视图和侧视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的侧面积为( )A.π4 B.π2 C.2π2D.2π4解析:选B 此几何体是底面半径为12,母线长为1的圆锥,其侧面积S =πrl =π×12×1=π2. 9.如图,在正方体ABCD -A1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列判断错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与A 1B 1平行解析:选D 由于C 1D 1与A 1B 1平行,MN 与C 1D 1是异面直线,所以MN 与A 1B 1是异面直线,故选项D 错误.10.(2012·皖南八校三联)某几何体的三视图如图所示(单位:cm),则此几何体的体积为( )A .18 cm 3B .15 cm 3C .12 cm 3D .9 cm 3解析:选B 由三视图可知,该几何体是一个上下均为长方体的组合体.如图所示,由图中数据可得该几何体体积为3×3×1+1×2×3=15(cm 3).11.在正四面体A -BCD 中,棱长为4,M 是BC 的中点,P 在线段AM 上运动(P 不与A 、M 重合),过点P 作直线l ⊥平面ABC ,l 与平面BCD 交于点Q ,给出下列命题:①BC ⊥面AMD ;②Q 点一定在直线DM 上;③V C -AMD =4 2. 其中正确的是( ) A .①② B .①③ C .②③D .①②③解析:选A ∵A -BCD 是正四面体,M 为BC 中点,∴AM ⊥BC ,DM ⊥BC ,且AM ∩DM =M ,∴BC ⊥面AMD .∴①正确.V C -AMD =13S △AMD ·CM (∵BC ⊥面AMD ,∴CM 为四面体C -AMD 的高).如图,在△AMD 中,AM =DM =AB 2-BM 2=42-22=23,MN =AM 2-AN 2=12-22=22,∴S △AMD =12AD ·MN =12×4×22=42,∴V C -AMD =13×42×2=823,故③不正确.由排除法知选A.12.(2012·浙江高考)已知矩形ABCD ,AB =1,BC = 2.将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 解析:选B 对于AB ⊥CD ,因为BC ⊥CD ,可得CD ⊥平面ACB ,因此有CD ⊥AC .因为AB =1,BC =2,CD =1,所以AC =1,所以存在某个位置,使得AB ⊥CD .二、填空题(本题共4小题,每小题5分,共20分)13.(2012·肇庆二模)已知某几何体的三视图如图所示,则该几何体的表面积和体积分别为________,________.解析:由三视图可知,该几何体的下部是一底边长为2,高为4的长方体,上部为一球,球的直径等于正方形的边长.所以长方体的表面积为S 1=2×2×2+4×2×4=40,长方体的体积为V 1=2×2×4=16,球的表面积和体积分别为S 2=4×π×12=4π,V 2=43×π×13=4π3, 故该几何体的表面积为S =S 1+S 2=40+4π, 该几何体的体积为V =V 1+V 2=16+4π3.答案:40+4π 16+4π314. (2012·北京怀柔模拟)P 为△ABC 所在平面外一点,且PA 、PB 、PC 两两垂直,则下列命题:①PA ⊥BC ;②PB ⊥AC ;③PC ⊥AB ;④AB ⊥BC .其中正确的个数是________. 解析:如图所示.∵PA ⊥PC ,PA ⊥PB ,PC ∩PB =P ,∴PA ⊥平面PBC . 又∵BC ⊂平面PBC ,∴PA ⊥BC .同理PB ⊥AC ,PC ⊥AB .但AB 不一定垂直于BC .共3个.答案:315.已知正三棱柱ABC -A 1B 1C 1的所有棱长都等于6,且各顶点都在同一球面上,则此球的表面积等于________.解析:如图,三棱柱的外接球球心为O ,其中D 为上底面三角形外接圆的圆心,其中AD =33×6=23,又OD =3,故在Rt △OAD 中可得R =|OA |=232+32=21,故球的表面积为4π(21)2=84π.答案:84π16.(2012·长春名校联考)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ∈AB 1,N ∈BC 1,且AM =BN ≠2,有以下四个命题:①AA 1⊥MN ;②A 1C 1∥MN ;③MN ∥平面A 1B 1C 1D 1;④MN 与A 1C 1是异面直线.其中正确命题的序号是________.(注:把你认为正确命题的序号都填上)解析:过N 作NP ⊥BB 1于点P ,连接MP ,可证AA 1⊥平面MNP ,∴AA 1⊥MN ,①正确;过M 、N 分别作MR ⊥A 1B 1、NS ⊥B 1C 1于点R 、S ,则当M 不是AB 1的中点,N 不是BC 1的中点时,直线A 1C 1与直线RS 相交;当M 、N 分别是AB 1、BC 1的中点时,A 1C 1∥RS ,∴A 1C 1与MN 可以异面,也可以平行,故②④错误.由①正确知,AA 1⊥平面MNP ,而AA 1⊥平面A 1B 1C 1D 1,∴平面MNP ∥平面A 1B 1C 1D 1,故③对.综上所述,其中正确命题的序号是①③.答案:①③三、解答题(本大题有6小题,共70分)17.(本小题满分10分)(2012·陕西高考)在直三棱柱ABC -A 1B 1C 1中,AB =AA 1,∠CAB =π2.(1)证明:CB 1⊥BA 1;(2)已知AB =2,BC =5,求三棱锥C 1-ABA 1的体积. 解:(1)证明:如图所示,连接AB 1,∵ABC -A 1B 1C 1是直三棱柱,∠CAB =π2,∴AC ⊥平面ABB 1A 1, 故AC ⊥BA 1.又∵AB =AA 1,∴四边形ABB 1A 1是正方形, ∴BA 1⊥AB 1,又CA ∩AB 1=A ,∴BA 1⊥平面CAB 1,故CB 1⊥BA 1.(2)∵AB =AA 1=2,BC =5,∴AC =A 1C 1=1, 由(1)知,A 1C 1⊥平面ABA 1,∴VC 1-ABA 1=13S △ABA 1·A 1C 1=13×2×1=23.18.(本小题满分12分) (12分)如图所示,四棱锥P -ABCD 的底面是边长为a 的正方形,侧棱PA ⊥底面ABCD ,侧面PBC 内有BE ⊥PC 于E ,且BE =63a ,试在AB 上找一点F ,使EF ∥平面PAD . 解:在平面PCD 内,过E 作EG ∥CD 交PD 于G ,连接AG ,在AB 上取点F ,使AF =EG ,则F 即为所求作的点.∵EG ∥CD ∥AF ,EG =AF , ∴四边形FEGA 为平行四边形, ∴FE ∥AG . 又AG ⊂平面PAD ,FE ⊄平面PAD ,∴EF ∥平面PAD . 又在Rt △BCE 中,CE =BC 2-BE 2=a 2-23a 2=33a . 在Rt △PBC 中,BC 2=CE ·CP , ∴CP =a 23a 3=3a , 又EG CD =PE PC,∴EG =PE PC ·CD =23a ,∴AF =EG =23a .∴点F 为AB 靠近点B 的一个三等分点.19.(本小题满分12分) (12分)(2012·新课标全国卷)如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,AC =BC =12AA1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ;(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.解:(1)证明:由题设知BC ⊥CC 1,BC ⊥AC ,CC 1∩AC =C ,所以BC ⊥平面ACC 1A 1. 又DC 1⊂平面ACC 1A 1,所以DC 1⊥BC .由题设知∠A 1DC 1=∠ADC =45°,所以∠CDC 1=90°,即DC 1⊥DC .又DC ∩BC =C ,所以DC 1⊥平面BDC .又DC 1⊂平面BDC 1,故平面BDC 1⊥平面BDC . (2)设棱锥B -DACC 1的体积为V 1,AC =1.由题意得V 1=13×1+22×1×1=12. 又三棱柱ABC -A 1B 1C 1的体积V =1, 所以(V -V 1)∶V 1=1∶1.故平面BDC 1分此棱柱所得两部分体积的比为1∶1.20.(本小题满分12分) (12分)(2012·安徽高考)如图,长方体ABCD-A 1B 1C 1D 1中,底面A 1B 1C 1D 1是正方形,O 是BD 的中点,E 是棱AA 1上任意一点.(1)证明:BD ⊥EC 1;(2)如果AB =2,AE =2,OE ⊥EC 1,求AA 1的长. 解:(1)证明:连接AC ,A 1C 1. 由底面是正方形知,BD ⊥AC .因为AA 1⊥平面ABCD ,BD ⊂平面ABCD , 所以AA 1⊥BD .又AA 1∩AC =A ,所以BD ⊥平面AA 1C 1C . 由EC 1⊂平面AA 1C 1C 知,BD ⊥EC 1. (2)法一:设AA 1的长为h ,连接OC 1. 在Rt △OAE 中,AE =2,AO =2, 故OE 2=(2)2+(2)2=4. 故Rt △EA 1C 1中,A 1E =h -2,A 1C 1=22,故EC 21=(h -2)2+(22)2.在Rt △OCC 1中,OC =2,CC 1=h ,OC 21=h 2+(2)2. 因为OE ⊥EC 1,所以OE 2+EC 21=OC 21,即 4+(h -2)2+(22)2=h 2+(2)2,解得h=32,所以AA1的长为3 2.法二:∵OE⊥EC1,∴∠AEO+∠A1EC1=90°.又∵∠A1C1E+∠A1EC1=90°,∴∠AEO=∠A1C1E. 又∵∠OAE=∠C1A1E=90°,∴△OAE∽△EA1C1,∴AEA1C1=AOA1E,即222=2A1E,∴A1E=22,∴AA1=AE+A1E=3 2.21.(本小题满分12分) (12分)(2012·郑州一模)如图,在四棱锥S-ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD上一点,AE=ED=3,SE⊥AD.(1)证明:平面SBE⊥平面SEC;(2)若SE=1,求三棱锥E-SBC的高.解:(1)证明:∵平面SAD⊥平面ABCD且平面SAD∩平面ABCD=AD,SE⊂平面SAD,SE ⊥AD,∴SE⊥平面ABCD.∵BE⊂平面ABCD,∴SE⊥BE.∵AB⊥AD,AB∥CD,CD=3AB=3,AE=ED=3,∴∠AEB=30°,∠CED=60°.∴∠BEC=90°,即BE⊥CE.又SE∩CE=E,,∴BE⊥平面SEC,∵BE⊂平面SBE,∴平面SBE⊥平面SEC.(2)如图,过点E作EF⊥BC于点F,连接SF.由(1)知SE⊥平面ABCD,而BC⊂平面ABCD,∴BC⊥SE,又SE∩EF=E,∴BC⊥平面SEF,∵BC⊂平面SBC,∴平面SEF⊥平面SBC.过点E作EG⊥SF于点G,则EG ⊥平面SBC ,即线段EG 的长即为三棱锥E -SBC 的高. 由(1)易知,BE =2,CE =23, 则BC =4,EF = 3.在Rt △SEF 中,SE =1,SF =SE 2+EF 2=2, 则EG =ES ·EF SF =32, ∴三棱锥E -SBC 的高为32. 22.(本小题满分12分) (14分)(2012·北京昌平二模)在正四棱柱ABCD -A 1B 1C 1D 1中,E 为AD 的中点,F 为B 1C 1的中点.(1)求证:A 1F ∥平面ECC 1;(2)在CD 上是否存在一点G ,使BG ⊥平面ECC 1?若存在,请确定点G 的位置,并证明你的结论;若不存在,请说明理由.解:(1)证明:在正四棱柱ABCD -A 1B 1C 1D 1中,取BC 的中点M ,连接AM ,FM .∴B 1F ∥BM 且B 1F =BM .∴四边形B 1FMB 是平行四边形. ∴FM ∥B 1B 且FM =B 1B . ∴FM ∥A 1A 且FM =A 1A , ∴四边形AA 1FM 是平行四边形. ∴FA 1∥AM . ∵E 为AD 的中点, ∴AE ∥MC 且AE =MC .∴四边形AMCE 是平行四边形. ∴CE ∥AM .∴CE ∥A 1F .∵A 1F ⊄平面ECC 1,EC ⊂平面ECC 1, ∴A 1F ∥平面ECC 1.(2)在CD 上存在一点G ,使BG ⊥平面ECC 1. 取CD 的中点G ,连接BG .在正方形ABCD 中,DE =GC ,CD =BC ,∠ADC =∠BCD , ∴△CDE ≌△BCG .∴∠ECD =∠GBC .∵∠CGB +∠GBC =90°,∴∠CGB +∠DCE =90°. ∴BG ⊥EC .∵CC 1⊥平面ABCD ,BG ⊂平面ABCD ,∴CC1⊥BG,又EC∩CC1=C,∴BG⊥平面ECC1.故在CD上存在中点G,使得BG⊥平面ECC1.。
第三课时 空间向量及其运算强化训练一、复习目标:1、了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;2、 掌握空间向量的线性运算及其坐标表示;3、 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直;4、通过本课强化训练,使学生进一步熟练理解和掌握上述概念和运算方法,提高学生的灵活和综合运用能力。
二、重难点:空间向量及其运算的综合运用。
三、教学方法:讲练结合,探析归纳。
四、教学过程 (一)、基础自测(分组训练、共同交流) 1.有4个命题:①若p =x a +y b ,则p 与a 、b 共面;②若p 与a 、b 共面,则p =x a +y b ; ③若MP =x MA +y MB ,则P 、M 、A 、B 共面;④若P 、M 、A 、B 共面,则MP =x MA +y MB . 其中真命题的个数是( B )。
A.1 B.2 C.3 D.4 2.下列命题中是真命题的是( D )。
A.分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量不是共面向量B.若|a |=|b |,则a ,b 的长度相等而方向相同或相反C.若向量AB ,CD 满足|AB |>|CD |,且AB 与CD 同向,则AB >CDD.若两个非零向量AB 与CD 满足AB +CD =0,则AB ∥CD 3.若a =(2x,1,3),b =(1,-2y,9),且a ∥b ,则( C )。
A.x=1,y=1B.x=21,y=-21C.x=61,y=-23D.x=-61,y=234.已知A (1,2,3),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA ·QB 取最小值时,点Q 的坐标是 . 答案 ⎪⎭⎫ ⎝⎛38,34,345.在四面体O-ABC 中,OA =a ,OB =b , OC =c ,D 为BC 的中点,E 为AD 的中点,则OE = (用a ,b ,c 表示).答案 21a +41b +41c(二)、典例探析例1、如图所示,在平行六面体ABCD-A 1B 1C 1D 1中,设1AA =a ,AB =b ,AD =c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量: (1)AP ;(2)N A 1;(3)MP +1NC .解 (1)∵P 是C 1D 1的中点,∴AP =1AA +11D A +P D 1=a +AD +2111C D =a +c +21AB =a +c +21b . (2)∵N 是BC 的中点,∴N A 1=A A 1+AB +BN =-a +b +21BC =-a +b +21AD =-a +b +21c . (3)∵M 是AA 1的中点,∴MP =MA +AP =21A A 1+AP =-21a +(a +c +21b )= 21a +21b +c , 又1NC =NC +1CC =21BC +1AA =21AD +1AA =21c +a ,∴MP +1NC =(21a +21b +c)+(a +21c )=23a +21b +23c . 例2、如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M 、N分别是AB 、CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求MN 的长; (3)求异面直线AN 与CM 夹角的余弦值. (1)证明 设AB =p , AC =q ,AD =r .由题意可知:|p |=|q |=|r |=a ,且p 、q 、r 三向量两两夹角均为60°.MN =AN -AM =21(AC +AD )-21AB =21(q +r -p ),∴MN ·AB =21(q +r -p )·p =21(q ·p +r ·p -p 2)=21(a 2·cos60°+a 2·cos60°-a 2)=0. ∴MN ⊥AB,同理可证MN ⊥CD.(2)解 由(1)可知MN =21(q +r -p )∴|MN |2=MN 2=41(q +r -p )2=41[q 2+r 2+p 2+2(q ·r -p ·q -r ·p )]=41[a 2+a 2+a 2+2(22a -22a -22a )] =41×2a 2=22a . ∴|MN |=22a,∴MN 的长为22a. (3)解 设向量AN 与MC 的夹角为θ.∵AN =21(AC +AD )=21(q +r ), MC =AC -AM =q -21p ,∴AN ·MC =21(q +r )·(q -21p )=21(q 2-21q ·p +r ·q -21r ·p )=21(a 2-21a 2·cos60°+a 2·cos60°-21a 2·cos60°)=21(a 2-42a +22a -42a )=22a .又∵|AN |=|MC |=a 23,∴AN ·MC =|AN |·|MC |·cos θ=a 23·a 23·cos θ=22a . ∴cos θ=32, ∴向量AN 与MC 的夹角的余弦值为32,从而异面直线AN 与CM 夹角的余弦值为32.例3、 (1)求与向量a =(2,-1,2)共线且满足方程a ·x =-18的向量x 的坐标;(2)已知A 、B 、C 三点坐标分别为(2,-1,2),(4,5,-1),(-2,2,3),求点P 的坐标使得AP =21(AB -AC ); (3)已知a =(3,5,-4),b =(2,1,8),求:①a ·b ;②a 与b 夹角的余弦值;③确定λ,μ的值使得λa +μb 与z 轴垂直,且(λa +μb )·(a +b )=53.解 (1)∵x 与a 共线,故可设x =k a ,由a ·x =-18得a ·k a =k|a |2=k (414++)2=9k ,∴9k=-18,故k=-2. ∴x =-2a =(-4,2,-4).(2)设P (x ,y ,z ),则AP =(x-2,y+1,z-2), AB =(2,6,-3),AC =(-4,3,1),∵AP =21(AB -AC ). ∴(x-2,y+1,z-2)=21[(2,6,-3)-(-4,3,1)]=21(6,3,-4)=(3,23,-2)∴⎪⎪⎩⎪⎪⎨⎧-=-=+=-2223132z y x ,解得⎪⎪⎩⎪⎪⎨⎧===0215z y x ∴P 点坐标为(5,21,0).(3)①a ·b =(3,5,-4)·(2,1,8)=3×2+5×1-4×8=-21. ②∵|a |=222)4(53-++=52, |b |=222812++=69,∴cos 〈a ,b 〉=b b a a ⋅ =692521⋅-=-2301387.∴a 与b 夹角的余弦值为-2301387.③取z 轴上的单位向量n =(0,0,1),a +b =(5,6,4).依题意()()()⎩⎨⎧=+⋅+=⋅+530b b b a a a a μλμλ 即()()()()⎩⎨⎧=⋅+-++=⋅+-++534,6,584,5,2301,0,084,5,23μλμλμλμλμλμλ 故⎩⎨⎧=+=+-531829084μλμλ 解得⎪⎩⎪⎨⎧==211μλ. (三)、强化训练:如图所示,正四面体V —ABC 的高VD 的中点为O ,VC 的中点为M. (1)求证:AO 、BO 、CO 两两垂直; (2)求〈DM ,AO 〉.(1)证明 设VA =a ,VB =b , VC =c ,正四面体的棱长为1, 则VD =31(a +b +c ),AO =61(b +c -5a ),BO =61(a +c-5b ), CO =61(a +b -5c ) ∴AO ·BO =361(b +c -5a )·(a +c -5b )=361(18a ·b -9|a |2) =361(18×1×1·cos60°-9)=0.∴AO ⊥BO ,∴AO ⊥BO ,同理AO ⊥CO ,BO ⊥CO , ∴AO 、BO 、CO 两两垂直.(2)解 DM =DV +VM =-31(a +b +c )+21c =61(-2a -2b +c ).∴|DM |=()22261⎥⎦⎤⎢⎣⎡+--c b a =21,|AO |=()2561⎥⎦⎤⎢⎣⎡-+a c b =22,DM ·AO =61(-2a -2b +c )·61(b +c -5a )=41,∴cos 〈DM ,AO 〉=222141⋅=22,∵〈DM ,AO 〉∈(0,π),∴〈DM , AO 〉=45°. (四)、小结:本节主要有空间向量的坐标表示,空间向量的坐标运算,平行向量,垂直向量坐标之间的关系以及中点公式,要充分利用空间图形中已有的直线的关系和性质;空间向量的坐标运算同平面向量类似,具有类似的运算法则.一个向量在不同空间的表达方式不一样,实质没有改变.因而运算的方法和运算规律结论没变。
第二课时 空间向量的应用对应学生用书P151考点一 空间向量法解决探索性问题探索存在性问题在立体几何综合考查中是常考的命题角度,也是考生感觉较难,失分较多的问题,归纳起来立体几何中常见的探索性问题有:1探索性问题与空间角结合;2探索性问题与垂直相结合;3探索性问题与平行相结合.角度一 探索性问题与空间角相结合1.(2014·哈师大附中模拟)如图,三棱柱ABC A 1B 1C 1的侧棱AA 1⊥底面ABC ,∠ACB =90°,E 是棱CC 1上的动点,F 是AB 的中点,AC =1,BC =2,AA 1=4.(1)当E 是棱CC 1的中点时,求证:CF ∥平面AEB 1;(2)在棱CC 1上是否存在点E ,使得二面角A EB 1 B 的余弦值是21717?若存在,求CE 的长,若不存在,请说明理由.『解析』(1)证明:取AB 1的中点G ,连结EG ,FG .∵F ,G 分别是棱AB ,AB 1的中点,∴FG ∥BB 1,FG =12BB 1, 又B 1B 綊C 1C ,EC =12C 1C , ∴B 1B ∥EC ,EC =12B 1B . ∴FG 綊EC .∴四边形FGEC 是平行四边形,∴CF ∥EG .∵CF ⊄平面AEB 1,EG ⊂平面AEB 1,∴CF ∥平面AEB 1.(2)以C 为坐标原点,射线CA ,CB ,CC 1为x ,y ,z 轴正半轴,建立如图所示的空间直角坐标系C xyz ,则C (0,0,0),A (1,0,0),B 1(0,2,4).设E (0,0,m )(0≤m ≤4),平面AEB 1的法向量n 1=(x ,y ,z ).则1AB =(-1,2,4), AE =(-1,0,m ).由1AB ⊥n 1,AE ⊥n 1,得⎩⎪⎨⎪⎧-x +2y +4z =0,-x +mz =0. 令z =2,则n 1=(2m ,m -4,2).连结BE ,∵CA ⊥平面C 1CBB 1,∴CA 是平面EBB 1的一个法向量,令n 2=CA ,∵二面角A EB 1 B 的余弦值为21717, ∴21717=cos 〈n 1,n 2〉 =n 1·n 2|n 1||n 2|=2m 4m 2+m -42+4,解得m =1(0≤m ≤4).∴在棱CC 1上存在点E ,符合题意,此时CE =1.角度二 探索性问题与垂直相结合2.正方体ABCD A 1B 1C 1D 1中,在对角线A 1C 上是否存在这样的一点E ,使BE ⊥A 1D ?若存在,指出点E 的位置;若不存在,请说明理由.『解』存在以点A 为坐标原点,分别以AB ,AD ,AA 1为x 轴,y 轴,z 轴建立空间直角坐标系,设B (a,0,0),D (0,a,0),A 1(0,0,a ),C (a ,a,0),由题意,可设1A E =λ1A C =λ(a ,a ,-a )=(aλ,aλ,-aλ),又A 1(0,0,a ),得E (aλ,aλ,a -aλ).从而BE =(aλ-a ,aλ,a -aλ),1A D =(0,a ,-a ),若BE ⊥A 1D ,则BE ·1A D =0.所以a 2λ-a (a -aλ)=0,解得λ=12, 即存在点E ,且点E 是A 1C 的中点时,使BE ⊥A 1D .角度三 探索性问题与平行相结合3.如图,四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ∥DE ,DE =3AF ,BE 与平面ABCD 所成的角为60°.(1)求证:AC ⊥平面BDE ;(2)求二面角F BE D 的余弦值;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.『解』(1)证明:∵DE ⊥平面ABCD ,∴DE ⊥AC ,∵四边形ABCD 是正方形,∴AC ⊥BD ,又DE ∩BD =D ,∴AC ⊥平面BDE .(2)∵DE ⊥平面ABCD ,∴∠EBD 就是BE 与平面ABCD 所成的角,即∠EBD =60°. ∴ED BD = 3.由AD =3,得DE =36,AF = 6. 如图,分别以DA ,DC ,DE 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (3,0,0),F (3,0,6),E (0,0,36),B (3,3,0),C (0,3,0),∴BF =(0,-3,6),EF =(3,0,-26).设平面BEF 的一个法向量为n =(x ,y ,z ),则⎩⎨⎧ n ·BF =0,n ·EF =0,即⎩⎨⎧-3y +6z =0,3x -26z =0.令z =6,则n =(4,2,6).∵AC ⊥平面BDE ,∴CA =(3,-3,0)为平面BDE 的一个法向量,∴cos 〈n ,CA 〉=n ·CA |n ||CA |=626×32=1313. 故二面角F BE D 的余弦值为1313. (3)依题意,设M (t ,t,0)(t >0),则AM =(t -3,t,0),∵AM ∥平面BEF ,∴AM ·n =0,即4(t -3)+2t =0,解得t =2.∴点M 的坐标为(2,2,0),此时DM =23DB , ∴点M 是线段BD 上靠近B 点的三等分点.『备课札记』『类题通法』解决立体几何中探索性问题的基本方法1.通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理,若能推导出与条件吻合的数据或事实,说明假设成立,即存在,并可进一步证明;若推导出与条件或实际情况相矛盾的结论,则说明假设不成立,即不存在.2.探索线段上是否存在点时,注意三点共线条件的应用.如角度二中的CE =λ1EC ,这样可减少坐标未知量. 考点二 空间向量的综合应用『典例』 (2013·郑州模拟)如图,△ABC 是等腰直角三角形,∠ACB =90°,AC =2a ,D ,E 分别为AC ,AB 的中点,沿DE 将△ADE 折起,得到如图所示的四棱锥A ′ BCDE .(1)在棱A ′B 上找一点F ,使EF ∥平面A ′CD ;(2)当四棱锥A ′ BCDE 的体积取最大值时,求平面A ′CD 与平面A ′BE 夹角的余弦值. 『自主解答』 (1)点F 为棱A ′B 的中点.证明如下:取A ′C 的中点G ,连结DG ,EF ,GF ,则由中位线定理得DE ∥BC ,DE =12BC ,且GF ∥BC ,GF =12BC . 所以DE ∥GF ,DE =GF ,从而四边形DEFG 是平行四边形,EF ∥DG .又EF ⊄平面A ′CD ,DG ⊂平面A ′CD ,故点F 为棱A ′B 的中点时,EF ∥平面A ′CD .(2)在平面A ′CD 内作A ′H ⊥CD 于点H ,⎭⎪⎬⎪⎫DE ⊥A ′D DE ⊥CD A ′D ∩CD =D ⇒DE ⊥平面A ′CD ⇒DE ⊥A ′H ,又DE ∩CD =D ,故A ′H ⊥底面BCDE ,即A ′H 就是四棱锥A ′ BCDE 的高.由A ′H ≤AD 知,点H 和D 重合时,四棱锥A ′ BCDE 的体积取最大值.分别以DC ,DE ,DA ′所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系, 则A ′(0,0,a ),B (a,2a,0),E (0,a,0),A B ′=(a,2a ,-a ),A E ′=(0,a ,-a ).设平面A ′BE 的法向量为m =(x ,y ,z ),由⎩⎨⎧ m ·A B ′=0,m ·A E ′=0得⎩⎪⎨⎪⎧ ax +2ay -az =0,ay -az =0,即⎩⎪⎨⎪⎧x +2y -z =0,y =z . 可取m =(-1,1,1).同理可以求得平面A ′CD 的一个法向量n =(0,1,0).故cos 〈m ,n 〉=m·n |m|·|n|=-1×0+1×1+1×03×1=33, 故平面A ′CD 与平面A ′BE 夹角的余弦值为33. 『备课札记』 『类题通法』立体几何的综合应用问题中常涉及最值问题,处理时常用如下两种方法(1)结合条件与图形恰当分析取得最值的条件(2)直接建系后,表示出最值函数,转化为求最值问题.『针对训练』已知正方体ABCD A 1B 1C 1D 1的棱长为1,点P 在线段BD 1上.当∠APC 最大时,三棱锥P ABC 的体积为________.『解析』以B 为坐标原点,BA 为x 轴,BC 为y 轴,BB 1为z 轴建立空间直角坐标系(如图),设BP =λ1BD ,可得P (λ,λ,λ),再由cos ∠APC=AP ·CP | AP ||CP |可求得当λ=13时,∠APC 最大,故V P -ABC =13×12×1×1×13=118. 『答案』118『课堂练通考点』 对应学生用书P152(2014·成都模拟)如图,在直三棱柱(侧棱与底面垂直的三棱柱)ABC A 1B 1C 1中,AC =AA 1=2AB =2,∠BAC =90°,点D 是侧棱CC 1延长线上一点,EF 是平面ABD 与平面A 1B 1C 1的交线.(1)求证:EF ⊥A 1C ;(2)当平面DAB 与平面CA 1B 1所成锐二面角的余弦值为2626时,求DC 1的长. 『解』(1)证明:∵三棱柱ABC A 1B 1C 1为直三棱柱, ∴平面ABC ∥平面A 1B 1C 1.又平面ABC ∩平面ABD =AB ,平面A 1B 1C 1∩平面ABD =EF ,∴EF ∥AB .∵三棱柱ABC A 1B 1C 1为直三棱柱,且∠BAC =90°, ∴AB ⊥AA 1,AB ⊥AC .而AA 1∩AC =A ,∴AB ⊥平面ACC 1A 1. 又A 1C ⊂平面ACC 1A 1,∴AB ⊥A 1C . ∴EF ⊥A 1C .(2)建立如图所示的空间直角坐标系A xyz . 设C 1D =t (t >0).则B (1,0,0),C (0,2,0),D (0,2,2+t ),A 1(0,0,2),B 1(1,0,2). ∴11A B =(1,0,0),1A C =(0,2,-2).设平面CA 1B 1的法向量为n =(x 1,y 1,z 1). 则⎩⎪⎨⎪⎧ n ·11A B =0,n ·1A C =0,得⎩⎪⎨⎪⎧x 1=0,y 1-z 1=0,令z 1=1,则y 1=1, ∴n =(0,1,1).同理,可求得平面DAB 的一个法向量m =⎝⎛⎭⎫0,1,-2t +2. 由|cos 〈n ,m 〉|=1-2t +22× 1+⎝⎛⎭⎫2t +22=2626, 得t =1或t =-23(舍去). ∴DC 1=1.。
教案)空间向量及其运算一、教学目标1. 理解空间向量的概念,掌握空间向量的基本性质。
2. 学会空间向量的表示方法,能够熟练地在坐标系中表示和计算空间向量。
3. 理解空间向量的运算规则,包括加法、减法、数乘和点乘。
4. 能够运用空间向量的运算解决实际问题。
二、教学内容1. 空间向量的概念:向量的定义、大小、方向。
2. 空间向量的表示方法:坐标表示、图形表示。
3. 空间向量的运算规则:a. 加法:三角形法则、平行四边形法则。
b. 减法:向量的减法等于加法的相反向量。
c. 数乘:数乘向量的概念、运算规则。
d. 点乘:点乘的定义、运算规则、几何意义。
三、教学重点与难点1. 教学重点:a. 空间向量的概念及其基本性质。
b. 空间向量的表示方法。
c. 空间向量的运算规则。
2. 教学难点:a. 空间向量的运算规则的理解与应用。
b. 空间向量在实际问题中的应用。
四、教学方法与手段1. 教学方法:a. 采用讲授法,讲解空间向量的概念、性质和运算规则。
b. 采用示例法,展示空间向量的运算过程和应用实例。
c. 采用练习法,让学生通过练习巩固空间向量的知识。
2. 教学手段:a. 使用多媒体课件,展示空间向量的图形和运算过程。
b. 使用黑板和粉笔,绘图和演算空间向量的运算。
五、教学安排1课时教案)空间向量及其运算六、教学过程1. 导入:通过简单的二维向量例子,引导学生思考空间向量的概念。
2. 新课:讲解空间向量的定义、性质,以及各种表示方法。
3. 示范:展示空间向量的加法、减法、数乘和点乘运算,并用多媒体课件演示运算过程。
4. 练习:让学生在多媒体课件上进行空间向量的运算练习,巩固所学知识。
5. 应用:举例说明空间向量在实际问题中的应用,如物体运动、空间几何等。
七、教学反思课后,教师应认真反思本节课的教学效果,包括学生的课堂表现、教学内容的掌握程度等。
针对存在的问题,调整教学方法,为下一节课的教学做好准备。
八、课后作业1. 复习空间向量的概念、性质和运算规则。
空间向量及其运算和空间位置关系(理)[知识能否忆起]一、空间向量及其有关概念二、数量积及坐标运算1.两个向量的数量积(1)a·b=|a||b|cos〈a,b〉;(2)a⊥b⇔a·b=0(a,b为非零向量);(3)|a|2=a2,|a|=x2+y2+z2.2.向量的坐标运算三、平面的法向量(1)所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量有无数多个,它们是共线向量.(2)在空间中,给定一个点A和一个向量a,那么以向量a为法向量且经过点A的平面是唯一的.[小题能否全取]1.(课本习题改编)已知a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2)则下列结论正确的是()A.a∥c,b∥c B.a∥b,a⊥cC.a∥c,a⊥b D.以上都不对解析:选C∵c=(-4,-6,2)=2a,∴a∥c.又a·b=0,故a⊥b.2.(2012·济宁一模)若{a,b,c}为空间的一组基底,则下列各项中,能构成基底的一组向量是()A.{a,a+b,a-b} B.{b,a+b,a-b}C.{c,a+b,a-b} D.{a+b,a-b,a+2b}解析:选C若c、a+b、a-b共面,则c=λ(a+b)+m(a-b)=(λ+m)a+(λ-m)b,则a、b、c为共面向量,与{a,b,c}为空间向量的一组基底矛盾,故c,a+b,a-b可构成空间向量的一组基底.3.(教材习题改编)下列命题:①若A、B、C、D是空间任意四点,则有AB+BC+CD+DA=0;②若MB=x MA+y MB,则M、P、A、B共面;③若p=x a+y b,则p与a,b共面.其中正确的个数为()A.0B.1C.2 D.3解析:选D可判断①②③正确.4.在四面体O-ABC中,OA=a,OB=b,OC=c,D为BC的中点,E为AD的中点,则OE=________(用a,b,c表示).解析:如图,OE =12OA +12OD=12OA +14OB +14OC =12a +14b +14c . 答案:12a +14b +14c5.已知ABCD -A 1B 1C 1D 1为正方体,①(1A A +11A D +11A B )2=311A B 2;②1A C ·(11A B -1A A )=0;③向量1AD 与向量1A B 的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB ·1AA ·AD |.其中正确命题的序号是________.解析:设正方体的棱长为1,①中(1A A +11A D +11A B )2=311A B 2=3,故①正确;②中11A B -1A A =1AB ,由于AB 1⊥A 1C ,故②正确;③中A 1B 与AD 1两异面直线所成角为60°,但1AD 与1A B 的夹角为120°,故③不正确;④中|AB ·1AA ·AD |=0.故④也不正确.答案:①②1.用空间向量解决立体几何中的平行或共线问题一般用向量共线定理;求两点间距离或某一线段的长度,一般用向量的模来解决;解决垂直问题一般可转化为向量的数量积为零;求异面直线所成的角,一般可以转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.2.直线的方向向量与平面的法向量的确定:(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB 为直线l 的方向向量,与AB 平行的任意非零向量也是直线l 的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.典题导入[例1] 如图,在平行六面体ABCD -A 1B 1C 1D 1中G 为△A 1BD 的重心,设AB =a ,AD =b ,1AA =c ,试用a ,b ,c 表示1AC ,AG .[自主解答] 1AC =AB +BC +1CC =AB +AD +1AA =a +b +c .AG =1AA +1A G=1AA +13(1A D +1A B )=1AA +13(AD -1AA )+13(AB -1AA )=131AA +13AD +13AB =13a +13b +13c .本例条件不变,设A 1C 1与B 1D 1交点为M ,试用a ,b ,c 表示MG . 解:如图,MG =1MA +1A G=-12(11A B +11A D )+13(1A D +1A B )=-12a -12b +13(AD -1AA )+13(AB -1AA )=-12a -12b +13b -13c +13a -13c=-16a -16b -23c由题悟法用已知向量表示未知向量,一定要结合图形,以图形为指导是解题的关键,要正确理解向量加法、减法与数乘运算的几何意义,灵活运用三角形法则及四边形法则.以题试法1.如图所示,已知空间四边形OABC ,其对角线为OB 、AC ,M 、N分别为OA 、BC 的中点,点G 在线段MN 上,且MG =2GN ,若OG =x OA +y OB +z OC ,则x ,y ,z 的值分别为________.解析:∵OG =OM +MG =12OA +23MN=12OA +23(ON -OM ) =12OA +23ON -23OM =12OA +23×12(OB +OC )-23×12OA =16OA +13OB +13OC ∴x ,y ,z 的值分别为16,13,13.答案:16,13,13典题导入[例2] 如右图,已知平行六面体ABCD -A ′B ′C ′D ′,E 、F 、G 、H 分别是棱A ′D ′、D ′C ′、C ′C 和AB 的中点,求证E 、F 、G 、H 四点共面.[自主解答] 取ED '=a ,EF =b ,EH =c ,则HG =HB +BC +CG =D F '+2ED '+12AA '=b -a +2a +12(AH +HE +EA ')=b +a +12(b -a -c -a )=32b -12c ,∴HG 与b 、c 共面.即E 、F 、G 、H 四点共面.由题悟法应用共线向量定理、共面向量定理证明点共线、点共面的方法比较:对空间任一点O ,OP =OA OP =x OA +(1-x ) OB对空间任一点OP =x OM +y OA +(1-x -y ) OB以题试法2.已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点,用向量方法,求证:(1)E 、F 、G 、H 四点共面; (2)BD ∥平面EFGH .证明:(1)连接BG ,则EG =EB +BG =EB +12(BC +BD )=EB +BF +EH =EF +EH , 由共面向量定理知: E 、F 、G 、H 四点共面. (2)因为EH =AH -AE=12AD -12AB =12(AD -AB )=12BD , 又因为E 、H 、B 、D 四点不共线,所以EH ∥BD . 又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .典题导入[例3] (2012·湖南模拟)已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,边长为2a ,AD =DE =2AB ,F 为CD 的中点.(1)求证:AF ∥平面BCE ; (2)求证:平面BCE ⊥平面CDE .[自主解答] 依题意,以AC 所在的直线为x 轴,AB 所在的直线为z 轴,过点A 且垂直于AC 的直线为y 轴,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),C (2a,0,0),B (0,0,a ),D (a ,3a,0),E (a ,3a,2a ).∵F 为CD 的中点,∴F ⎝⎛⎭⎫32a ,32a ,0.(1)易知,AF =⎝⎛⎭⎫32a ,32a ,0,BE =(a ,3a ,a ),BC =(2a,0,-a ),∵AF =12(BE +BC ),AF ⊄平面BCE ,∴AF ∥平面BCE .(2)∵AF =⎝⎛⎭⎫32a ,32a ,0,CD =(-a ,3a,0),ED =(0,0,-2a ),∴AF ·CD =0,AF ·ED =0, ∴AF ⊥CD ,AF ⊥ED ,即AF ⊥CD ,AF ⊥ED . 又CD ∩ED =D ,∴AF ⊥平面CDE . 又AF ∥平面BCE ,∴平面BCE ⊥平面CDE .由题悟法利用直线的方向向量与平面的法向量,可以判定直线与直线、直线与平面、平面与平面的平行和垂直.(1)设直线l 1的方向向量v 1=(a 1,b 1,c 1),l 2的方向向量v 2=(a 2,b 2,c 2). 则l 1∥l 2⇔v 1∥v 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ). l 1⊥l 2⇔v 1⊥v 2⇔a 1a 2+b 1b 2+c 1c 2=0.(2)设直线l 的方向向量为v =(a 1,b 1,c 1),平面α的法向量为n =(a 2,b 2,c 2),则l ∥α⇔v ⊥n ⇔a 1a 2+b 1b 2+c 1c 2=0.l ⊥α⇔v ∥n ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2).(3)设平面α的法向量n 1=(a 1,b 1,c 1),β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2,α⊥β⇔n 1⊥n 2.以题试法3.(2012·汕头模拟)如图所示的长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为2的正方形,O 为AC 与BD 的交点,BB 1=2,M 是线段B 1D 1的中点.(1)求证:BM ∥平面D 1AC ; (2)求证:D 1O ⊥平面AB 1C .证明:(1)建立如图所示的空间直角坐标系,则点O (1,1,0)、D 1(0,0,2), ∴1OD =(-1,-1,2),又点B (2,2,0),M (1,1,2), ∴BM =(-1,-1,2), ∴1OD =BM , 又∵OD 1与BM 不共线, ∴OD 1∥BM .又OD 1⊂平面D 1AC ,BM ⊄平面D 1AC , ∴BM ∥平面D 1AC .(2)连接OB 1.∵1OD ·1OB =(-1,-1,2)·(1,1,2)=0,1OD ·AC =(-1,-1,2)·(-2,2,0)=0,∴1OD ⊥1OB ,1OD ⊥AC , 即OD 1⊥OB 1,OD 1⊥AC ,又OB 1∩AC =O ,∴D 1O ⊥平面AB 1C .1.(2013·大同月考)若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1)解析:选D 若l ∥α,则a ·n =0.而A 中a ·n =-2, B 中a ·n =1+5=6,C 中a ·n =-1, 只有D 选项中a ·n =-3+3=0.2.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627 B.637 C.607D.657解析:选D 由题意得c =t a +μ b =(2t -μ,-t +4μ,3t -2μ),∴⎩⎪⎨⎪⎧7=2t -μ,5=-t +4μ,λ=3t -2μ.∴⎩⎪⎨⎪⎧t =337,μ=177,λ=657.3.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB =a ,AD =b ,1AA =c ,则下列向量中与BM 相等的向量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 解析:选A BM =1BB +1B M =1AA +12(AD -AB )=c +12(b -a )=-12a +12b +c .4.(2013·晋中调研)如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA ,BC 〉的值为( )A .0 B.12 C.32D.22解析:选A 设OA =a ,OB =b ,OC =c , 由已知条件〈a ,b 〉=〈a ,c 〉=π3,且|b |=|c |,OA ·BC =a ·(c -b )=a ·c -a ·b=12|a ||c |-12|a ||b |=0,∴cos 〈OA ,BC 〉=0. 5.(2012·舟山月考)平行六面体ABCD -A 1B 1C 1D 1中,向量AB 、AD 、1AA 两两的夹角均为60°,且|AB |=1,|AD |=2,|1AA |=3,则|1AC |等于()A .5B .6C .4D .8解析:选A 设AB =a ,AD =b ,1AA =c ,则1AC =a +b +c , 1AC 2=a 2+b 2+c 2+2a ·c +2b ·c +2c ·a =25, 因此|1AC |=5.6.在正方体ABCD -A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 内一点,线段D 1Q 与OP 互相平分,则满足MQ =λMN 的实数λ的值有( )A .0个B .1个C .2个D .3个解析:选C 建立如图所示的坐标系,设正方体的棱长为2, 则P (x ,y,2),O (1,1,0), ∴OP 的中点坐标为⎝⎛⎭⎫x +12,y +12,1,又知D 1(0,0,2),∴Q (x +1,y +1,0), 而Q 在MN 上,∴x Q +y Q =3, ∴x +y =1,即点P 坐标满足x +y =1. ∴有2个符合题意的点P ,即对应有2个λ.7.在下列条件中,使M 与A 、B 、C 一定共面的是________.①OM =2OA -OB -OC ;②OM =15OA +13OB +12OC ;③MA +MB +MC =0;④OM +OA +OB +OC =0.解析:∵MA +MB +MC =0,∴MA =-MB -MC ,则MA 、MB 、MC 为共面向量,即M 、A 、B 、C 四点共面.答案:③8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.解析:以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴1B E =(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB =(1,1,y ),由于AB ⊥B 1E ,故若B 1E ⊥平面ABF ,只需PB ―→·1B E =(1,1,y )·(x -1,0,1)=0⇒x +y =1. 答案:19.如图所示,PD 垂直于正方形ABCD 所在平面,AB =2,E 为PB的中点,cos 〈DP ,AE 〉=33,若以DA 、DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则点E 的坐标为________.解析:设PD =a ,则A (2,0,0),B (2,2,0),P (0,0,a ),E ⎝⎛⎭⎫1,1,a 2. ∴DP =(0,0,a ),AE =⎝⎛⎭⎫-1,1,a 2. 由cos 〈DP ,AE 〉=33, ∴a 22=a 2+a 24·33,∴a =2. ∴E 的坐标为(1,1,1).答案:(1,1,1)10.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点.证明:(1)AE ⊥CD ;(2)PD ⊥平面ABE .证明:AB 、AD 、AP 两两垂直,建立如图所示的空间直角坐标系,设P A =AB =BC =1,则P (0,0,1).(1)∵∠ABC =60°,∴△ABC 为正三角形.∴C ⎝⎛⎭⎫12,32,0,E ⎝⎛⎭⎫14,34,12.设D (0,y,0),由AC ⊥CD ,得AC ·CD =0, 即y =233,则D ⎝⎛⎭⎫0,233,0, ∴CD =⎝⎛⎭⎫-12,36,0.又AE =⎝⎛⎭⎫14,34,12, ∴AE ·CD =-12×14+36×34=0, ∴AE ⊥CD ,即AE ⊥CD .(2)法一:∵P (0,0,1),∴PD =⎝⎛⎭⎫0,233,-1. 又AE ·PD =34×233+12×(-1)=0, ∴PD ⊥AE ,即PD ⊥AE .∵AB =(1,0,0),∴PD ·AB =0.∴PD ⊥AB ,又AB ∩AE =A ,∴PD ⊥平面AEB .法二:AB =(1,0,0),AE =⎝⎛⎭⎫14,34,12, 设平面ABE 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ x =0,14x +34y +12z =0,令y =2,则z =-3,∴n =(0,2,-3).∵PD =⎝⎛⎭⎫0,233,-1,显然PD =33n . ∵PD ∥n ,∴PD ⊥平面ABE ,即PD ⊥平面ABE .11.已知矩形ABCD 中,AB =6,BC =62,E 为AD 的中点(图甲).沿BE 将△ABE 折起,使二面角A -BE -C 为直二面角(图乙),且F 为AC 的中点.(1)求证:FD ∥平面ABE ;(2)求证:AC ⊥BE .证明:(1)如图1,设M为BC的中点,连接DM、MF.∵F为AC的中点,M为BC的中点,∴MF∥AB.又∵BM綊DE,∴四边形BMDE为平行四边形,∴MD∥BE.∵MF∩MD=M,AB∩BE=B,∴平面DFM∥平面ABE.又∵PD⊂平面DFM,FD⊄平面ABE,∴FD∥平面ABE.(2)在矩形ABCD(如图2)中,连接AC,交BE于G.BE·AC=(BA+AE)·(AB+BC)=-AB2+AE·BC=-36+36=0.∴AC⊥BE.∴在图3中,AG⊥BE,CG⊥BE.又∵AG∩GC=G,∴BE⊥平面AGC.又∵AC⊂平面AGC,∴AC⊥BE.12.(2012·长春模拟)如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PD⊥平面ABCD,AD=1,AB=3,BC=4.(1)求证:BD⊥PC;(2)设点E在棱PC上,PE=λPC,若DE∥平面P AB,求λ的值.解:(1)证明:如图,在平面ABCD内过点D作直线DF∥AB,交BC于点F,以D为坐标原点,DA、DF、DP所在的直线分别为x、y、z轴建立空间直角坐标系D-xyz,则A(1,0,0),B(1,3,0),D(0,0,0),C(-3,3,0).(1)设PD=a,则P(0,0,a),BD=(-1,-3,0),PC=(-3,3,-a),∵BD·PC=3-3=0,∴BD⊥PC.(2)由题意知,AB =(0,3,0),DP =(0,0,a ),PA =(1,0,-a ),PC =(-3,3,-a ),∵PE =λPC ,∴PE =(-3λ,3λ,-aλ), DE =DP +PE =(0,0,a )+(-3λ,3λ,-aλ)=(-3λ,3λ,a -aλ).设n =(x ,y ,z )为平面P AB 的法向量,则⎩⎪⎨⎪⎧ AB ·n =0,PA ·n =0, 即⎩⎪⎨⎪⎧3y =0,x -az =0.令z =1,得x =a ,∴n =(a,0,1),∵DE ∥平面P AB ,∴DE ·n =0,∴-3aλ+a -aλ=0,即a (1-4λ)=0,∵a ≠0,∴λ=14.1.已知AB =(1,5,-2),BC =(3,1,z ),若AB ⊥BC ,BP =(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为( )A.337,-157,4 B.407,-157,4 C.407,-2,4 D .4,407,-15 解析:选B ∵AB ⊥BC ,∴AB ·BC =0, 即3+5-2z =0,得z =4.又BP ⊥平面ABC ,∴BP ⊥AB ,BP ⊥BC ,BC =(3,1,4),则⎩⎪⎨⎪⎧ (x -1)+5y +6=0,3(x -1)+y -12=0,解得⎩⎨⎧ x =407,y =-157.2.设空间四点O ,A ,B ,P 满足OP =OA +t AB ,其中0<t <1,则有( )A .点P 在线段AB 上B .点P 在线段AB 的延长线上C .点P 在线段BA 的延长线上D .点P 不一定在直线AB 上解析:选A ∵0<t <1,∴P 点在线段AB 上.3.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E 、F 分别是BB 1、DD 1的中点.求证:(1)FC 1∥平面ADE ;(2)平面ADE ∥平面B 1C 1F .证明:(1)如图所示,建立空间直角坐标系D -xyz ,则有D (0,0,0)、A (2,0,0)、C (0,2,0)、C 1(0,2,2)、E (2,2,1)、F (0,0,1),所以1FC =(0,2,1),DA =(2,0,0),AE =(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的一个法向量,则n 1⊥DA ,n 1⊥AE ,即⎩⎪⎨⎪⎧ n 1·DA =2x 1=0,n 1·AE =2y 1+z 1=0. 解得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1.令z 1=2,则y 1=-1,所以n 1=(0,-1,2).因为1FC ·n 1=-2+2=0,所以1FC ⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE .(2)由(1)得B 1(2,2,2),11C B =(2,0,0).设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量,则n 2⊥1FC ,n 2⊥11C B , 即⎩⎪⎨⎪⎧ n 2·1FC =2y 2+z 2=0,n 2·11C B =2x 2=0.解得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2. 令z 2=2,则y 2=-1,所以n 2=(0,-1,2).因为n 1=n 2,所以平面ADE ∥平面B 1C 1F .1.已知在一个60°的二面角的棱上,如图有两个点A ,B ,AC ,BD 分别是在这个二面角的两个半平面内垂直于AB 的线段,且AB=4 cm ,AC =6 cm ,BD =8 cm ,则CD 的长为________.解析:设BD =a ,AB =b ,AC =c ,由已知条件|a |=8,|b |=4,|c |=6,〈a ,b 〉=90°,〈b ,c 〉=90°,〈a ,c 〉=60°,|CD |2=|CA +AB +BD |2=|-c +b +a |2=a 2+b 2+c 2+2a ·b -2a ·c -2b ·c =68,则|CD |=217.答案:217 cm2.如图所示,平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CD =∠C 1CB =∠BCD =60°.(1)求证:C 1C ⊥BD ;(2)当CDCC 1的值是多少时,能使A 1C ⊥平面C 1BD ?请给出证明.解:(1)证明:设CD =a ,CB =b ,1CC =c ,由已知|a |=|b |,且〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, BD =CD -CB =a -b ,1CC ·BD =c ·(a -b )=c ·a -c ·b=12|c ||a |-12|c ||b |=0,∴1C C ⊥BD ,即C 1C ⊥BD .(2)若A 1C ⊥平面C 1BD ,则A 1C ⊥C 1D ,1CA =a +b +c ,1C D =a -c .∴1CA ·1C D =0,即(a +b +c )·(a -c )=0.整理得:3a 2-|a ||c |-2c 2=0,(3|a |+2|c |)(|a |-|c |)=0,∴|a |-|c |=0,即|a |=|c |.即当CD CC 1=|a ||c |=1时,A 1C ⊥平面C 1BD .3.如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E 、F 、G 分别是线段P A 、PD 、CD 的中点.求证:PB ∥平面EFG .证明:∵平面P AD ⊥平面ABCD ,且ABCD 为正方形,∴AB 、AP 、AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0)、B (2,0,0)、C (2,2,0)、D (0,2,0)、P (0,0,2)、E (0,0,1)、F (0,1,1)、G (1,2,0).∴PB =(2,0,-2),FE =(0,-1,0), FG =(1,1,-1),设PB =s FE +t FG ,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧ t =2,t -s =0,-t =-2,解得s =t =2.∴PB =2FE +2FG ,又∵FE 与FG 不共线,∴PB 、FE 与FG 共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG .。