高三第一次月考3
- 格式:doc
- 大小:402.50 KB
- 文档页数:15
大联考湖南师大附中2025届高三月考试卷(三)数学时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}0,1,2,3的真子集个数是()A .7B .8C .15D .162.“11x -<”是“240x x -<”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知角α的终边上有一点P 的坐标是)4,3(a a ,其中0a ≠,则sin2α=()A .43B .725C .2425D .2425-4.设向量a,b 满足+=-=a b a b ,则⋅a b 等于()A .B .2C .5D .85.若无论θ为何值,直线sin cos 10y x θθ⋅+⋅+=与双曲线2215x y m -=总有公共点,则m的取值范围是()A.1m ≥B .01m <≤C .05m <<,且1m ≠D .1m ≥,且5m ≠6.已知函数()2f x 的图象关于原点对称,且满足()()130f x f x ++-=,且当()2,4x ∈时,()()12log 2f x x m =--+,若()()2025112f f -=-,则m 等于()A .13B .23C .23-D .13-7.已知正三棱台111ABC A B C -所有顶点均在半径为5的半球球面上,且AB =11A B =()A .1B .4C .7D .1或78.北宋数学家沈括博学多才、善于观察.据说有一天,他走进一家酒馆,看见一层层垒起的酒坛,不禁想到:“怎么求这些酒坛的总数呢?”经过反复尝试,沈括提出对于上底有ab 个,下底有cd 个,共n 层的堆积物(如图所示),可以用公式()()()2266n nS b d a b d c c a ⎡⎤=++++-⎣⎦求出物体的总数,这就是所谓的“隙积术”,相当于求数列()()(),11,2ab a b a +++.()()()2,,11b a n b n cd ++-+-= 的和.若由小球堆成的上述垛积共7层,小球总个数为238,则该垛积最上层的小球个数为()A .2B .6C .12D .20二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若()202422024012202412x a a x a x a x +=++++ ,则下列正确的是()A .02024a =B .20240120243a a a +++= C .012320241a a a a a -+-++= D .12320242320242024a a a a -+--=- 10.对于函数()sin cos f x x x =+和()sin cos 22g x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭,下列说法中正确的有()A .()f x 与()g x 有相同的零点B .()f x 与()g x 有相同的最大值点C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图象有相同的对称轴11.过点()0,2P 的直线与抛物线2:4C x y =交于()()1122,,,A x y B x y 两点,抛物线C 在点A 处的切线与直线2y =-交于点N ,作NM AP ⊥交AB 于点M ,则()A .5OA OB ⋅=-B .直线MN 恒过定点C .点M 的轨迹方程是()()22110y x y -+=≠D .AB MN选择题答题卡题号1234567891011得分答案三、填空题:本题共3小题,每小题5分,共15分.12.已知复数12,z z 的模长为1,且21111z z +=,则12z z +=_____.13.在ABC 中,角,,A B C 所对的边分别为,,a b c 已知5,4a b ==,()31cos 32A B -=,则sin B =_____.14.若正实数1x 是函数()2e e x f x x x =--的一个零点,2x 是函数()g x =()()3e ln 1e x x ---的一个大于e 的零点,则()122e ex x -的值为_____.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)现有某企业计划用10年的时间进行技术革新,有两种方案:贷款利润A 方案一次性向银行贷款10万元第1年利润1万元,以后每年比前一年增加25%的利润B 方案每年初向银行贷款1万元第1年利润1万元,以后每年比前一年增加利润3000元两方案使用期都是10年,贷款10年后一次性还本付息(年末结息),若银行贷款利息均按10%的复利计算.(1)计算10年后,A 方案到期一次性需要付银行多少本息?(2)试比较A B 、两方案的优劣.(结果精确到万元,参考数据:10101.1 2.594,1.259.313≈≈)如图,四棱锥P ABCD -中,底面ABCD 为等腰梯形,22AD AB BC ==2=.点P 在底面的射影点Q 在线段AC 上.(1)在图中过A 作平面PCD 的垂线段,H 为垂足,并给出严谨的作图过程;(2)若2PA PD ==.求平面PAB 与平面PCD 所成锐二面角的余弦值.已知函数()()e sin cos ,x f x x x f x =+-'为()f x 的导数.(1)证明:当0x ≥时,()2f x '≥;(2)设()()21g x f x x =--,证明:()g x 有且仅有2个零点.在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b +=>>的两个焦点为12,F F P、为椭圆C 上一动点,设12F PF ∠θ=,当23πθ=时,12F PF ∆.(1)求椭圆C 的标准方程.(2)过点()0,2B 的直线l 与椭圆交于不同的两点(M N M 、在,B N 之间),若Q 为椭圆C上一点,且OQ OM ON =+,①求OBM OBNSS ∆∆的取值范围;②求四边形OMQN 的面积.飞行棋是大家熟悉的棋类游戏,玩家通过投掷骰子来决定飞机起飞与飞行的步数.当且仅当玩家投掷出6点时,飞机才能起飞.并且掷得6点的游戏者可以连续投掷骰子,直至显示点数不是6点.飞机起飞后,飞行步数即骰子向上的点数.(1)求甲玩家第一轮投掷中,投掷次数X 的均值()()1(k E X kP k ∞===∑()1lim n n k kP k ∞→=⎫⎛⎫⎪ ⎪⎝⎭⎭∑;(2)对于两个离散型随机变量,ξη,我们将其可能出现的结果作为一个有序数对,类似于离散型随机变量的分布列,我们可以用如下表格来表示这个有序数对的概率分布:(记()()()()()(1211,,mni i i j j j i j i p x p x p x y p y p y p x ξη========∑∑,)j y .)ξη1x 2x ...n X 1y ()11,p x y ()21,p x y ...()1,n p x y ()21p y 2y ()12,p x y ()22,p x y ...()2,n p x y ()22p y ...⋯⋯...⋯...my ()1,m p x y ()2,m p x y ...(),n m p x y ()2m p y ()11p x ()12p x ...()1n p x 1若已知i x ξ=,则事件{}j y η=的条件概率为{}j i P y x ηξ===∣{}{}()()1,,j i i j i i P y x p x y P x p x ηξξ====.可以发现i x ηξ=∣依然是一个随机变量,可以对其求期望{}{}()111mi j j i j i E x y P y x p x ηξηξ===⋅===∑∣∣.()1,mj i j j y p x y =∑(i )上述期望依旧是一个随机变量(ξ取值不同时,期望也不同),不妨记为{}E ηξ∣,求{}E E ηξ⎡⎤⎣⎦∣;(ii )若修改游戏规则,需连续掷出两次6点飞机才能起飞,记0ξ=表示“甲第一次未能掷出6点”,1ξ=表示“甲第一次掷出6点且第二次未能掷出6点”,2ξ=表示“甲第一次第二次均掷出6点”,η为甲首次使得飞机起飞时抛掷骰子的次数,求E η.炎德・英才大联考湖南师大附中2025届高三月考试卷(三)数学参考答案题号1234567891011答案C A C B B D A B BC ACD BC一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 【解析】集合{}0,1,2,3共有42115-=(个)真子集.故选C .2.A 【解析】解不等式240x x -<,得04x <<,解不等式11x -<,得02x <<,所以“11x -<”是“240x x -<”的充分不必要条件.3.C 【解析】根据三角函数的概念,2442sin cos 2tan 24tan ,sin23311tan 25y a x a αααααα======+,故选C .4.B 【解析】()()()22111911244⎡⎤⋅=+--=-=⎣⎦a b a b a b .5.B 【解析】易得原点到直线的距离1d ==,故直线为单位圆的切线,由于直线与双曲线2215x y m -=总有公共点,所以点()1,0±必在双曲线内或双曲线上,则01m <≤.6.D 【解析】依题意函数()f x 的图象关于原点对称,所以()f x 为奇函数,因为()()()133f x f x f x +=--=-,故函数()f x 的周期为4,则()()20251f f =,而()()11f f -=-,所以由()()2025112f f -=-可得()113f =,而()()13f f =-,所以()121log 323m --=,解得13m =-.7.A 【解析】上下底面所在外接圆的半径分别为123,4r r ==,过点112,,,A A O O 的截面如图:22222121534,543,1OO OO h OO OO =-==-∴=-=,故选A .8.B 【解析】由题意,得6,6c a d b =+=+,则由()()()772223866b d a b d c c a ⎡⎤++++-=⎣⎦得()()7[26212(6b b a b b a ++++++6)]()762386a a ++-=,整理得()321ab a b ++=,所以773aba b +=-<.因为,a b 为正整数,所以3ab =或6.因此有6,3a b ab +=⎧⎨=⎩或5,6.a b ab +=⎧⎨=⎩而63a b ab +=⎧⎨=⎩无整数解,因此6ab =.故选B .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.BC 【解析】对于A :令0x =,则01a =,故A 错误;对于B :令1x =,则20240120243a a a +++= ,故B 正确;对于C :令1x =-,则012320241a a a a a -+-++= ,故C 正确;对于D ,由()202422024012202412x a a x a x a x +=++++ ,两边同时求导得()20232202312320242024212232024x a a x a x a x ⨯⨯+=++++ ,令1x =-,则12320242320244048a a a a -++-=- ,故D 错误.故选BC .10.ACD 【解析】()()32sin ,2sin 2sin 4244f x x g x x x ππππ⎛⎫⎛⎫⎛⎫=+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()0f x =,则,4x k k ππ=-+∈Z ;令()0g x =,则3,4x k k ππ=+∈Z ,两个函数的零点是相同的,故选项A 正确.()f x 的最大值点是()2,,4k k g x ππ+∈Z 的最大值点是32,4k k ππ-+∈Z ,两个函数的最大值虽然是相同的,但最大值点是不同的,故选项B 不正确.由正弦型函数的最小正周期为2πω可知()f x 与()g x 有相同的最小正周期2π,故选项C 正确.曲线()y f x =的对称轴为,4x k k ππ=+∈Z ,曲线()y g x =的对称轴为5,4x k k ππ=+∈Z ,两个函数的图象有相同的对称轴,故选项D 正确.故选ACD.设直线AB 的方程为2y tx =+(斜率显然存在),221212,,,44x x A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,联立22,4,y tx x y =+⎧⎨=⎩消去x 整理可得2480x tx --=,由韦达定理得12124,8x x t x x +==-,A .22121212124,84444x x y y OA OB x x y y =⋅=⋅=+=-+=- ,故A 错误;B .抛物线C 在点A 处的切线为21124x x x y ⎛⎫=+ ⎪⎝⎭,当2y =-时,11121244282222x x x x x t x x =-=-=+=-,即()2,2N t -,直线MN 的方程为()122y x t t +=--,整理得xy t=-,直线MN 恒过定点(0,0),故B 正确;C .由选项B 可得点M 在以线段OP 为直径的圆上,点O 除外,故点M 的轨迹方程是()()22110y x y -+=≠,故C 正确;D.222t MN +==,AB =则()2221412222t AB MNt +⎫==+,,m m =≥则12ABm MN m ⎛⎫=- ⎪⎝⎭,设()1,f m m m m =-≥,则()2110f m m=+>',当m ≥,()f m 单调递增,所以()min f m f==,故D 错误.故选BC .三、填空题:本题共3小题,每小题5分,共15分.12.1【解析】设()()12i ,,i ,z a b a b z c d c d =+∈=+∈R R ,因为21111z z +=,所以2122111z zz z z z +=.因为11221,1z z z z ==,所以121z z +=,所以()()i i i 1a b c d a c b d -+-=+-+=,所以1,0a c b d +=+=,所以()()12i 1z z a c b d +=+++=.13.74【解析】在ABC 中,因为a b >,所以A B >.又()31cos 32A B -=,可知A B-为锐角且()sin 32A B -=.由正弦定理,sin 5sin 4A aB b ==,于是()()()5sin sin sin sin cos cos sin 4B A A B B A B B A B B ⎡⎤==-+=-+-⎣⎦.将()cos A B -及()sin AB -的值代入可得3sin B B =,平方得2229sin 7cos 77sin B B B ==-,故7sin 4B =.14.e 【解析】依题意得,1211e e 0x x x --=,即()()12311122e e ,0,e ln 1e 0x x x x x x -=>---=,即()()3222e ln 1e ,e x x x --=>,()()()131122e e e e ln 1x x x x x ∴-==--,()()()()()()211ln 111112212e e ln 1e ,e e ln 1e e x x x x x x x x -+++⎡⎤∴-=--∴-=--⎣⎦,又22ln 1,ln 10,x x >->∴ 同构函数:()()1e e ,0x F x x x +=->,则()()312ln 1e F x F x =-=,又()()111e e e e e 1e x x x x F x x x +++=-+=-+',00,e e 1,e 10x x x >∴>=∴-> ,又()()1e 0,0,x x F x F x +>'>∴单调递增,()()()3122212222e ln 1e e ln 1,e e e ex x x x x x ---∴=-∴===.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解析】(1)A 方案到期时银行贷款本息为()1010110%26⨯+≈(万元).……(3分)(2)A 方案10年共获利:()()1091.2511125%125%33.31.251-+++++=≈- (万元),……(5分)到期时银行贷款本息为()1010110%25.9⨯+≈(万元),所以A 方案净收益为:33.325.97-≈(万元),……(7分)B 方案10年共获利:()()101010.31 1.3190.310123.52⨯-⨯++++⨯=⨯+= (万元),……(9分)到期时银行贷款本息为()()()()101091.11.11110%110%110%17.51.11-++++++=≈- (万元),……(11分)所以B 方案净收益为:23.517.56-≈(万元),……(12分)由比较知A 方案比B 方案更优.……(13分)16.【解析】(1)连接PQ ,有PQ ⊥平面ABCD ,所以PQ CD ⊥.在ACD 中,2222cos 54cos AC AD CD AD CD ADC ADC ∠∠=+-⋅⋅=-.同理,在ABC 中,有222cos AC ABC ∠=-.又因为180ABC ADC ∠∠+= ,所以()1cos ,0,1802ADC ADC ∠∠=∈ ,所以60ADC ∠= ,3AC =故222AC CD AD +=,即AC CD ⊥.又因为,,PQ AC Q PQ AC ⋂=⊂平面PAC ,所以CD ⊥平面PAC .CD ⊂平面PCD ,所以平面PCD ⊥平面PAC .……(5分)过A 作AH 垂直PC 于点H ,因为平面PCD ⊥平面PAC ,平面PCD ⋂平面PAC PC =,且AH ⊂平面PAC ,有AH ⊥平面PCD .……(7分)(2)依题意,22AQ PA PQ DQ =-=.故Q 为,AC BD 的交点,且2AQ ADCQ BC==.所以2222326,333AQ AC PQ PA AQ ===-.过C 作直线PQ 的平行线l ,则,,l AC CD 两两垂直,以C 为原点建立如图所示空间直角坐标系,则:()()36131,0,0,0,,0,3,0,,,03322D P A B ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以()326232613261,0,0,0,,0,,,,,3333263CD CP AP BP ⎛⎛⎛===-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .设平面PCD 的法向量为(),,x y z =m ,则()0,0,3CD x CP y ⎧⋅==⎪⎨⋅=+=⎪⎩m m取()0,=-m .同理,平面PAB的法向量)1=-n ,1cos<,3⋅>==m n m n m n ……(14分)故所求锐二面角余弦值为13.……(15分)17.【解析】(1)由()e cos sin x f x x x =++',设()e cos sin x h x x x =++,则()e sin cos x h x x x '=-+,当0x ≥时,设()()e 1,sin x p x x q x x x =--=-,()()e 10,1cos 0x p x q x x ''=-≥=-≥ ,()p x ∴和()q x 在[)0,∞+上单调递增,()()()()00,00p x p q x q ∴≥=≥=,∴当0x ≥时,e 1,sin x x x x ≥+≥,则()()()e sin cos 1sin cos sin 1cos 0x h x x x x x x x x x '=-+≥+-+=-++≥,∴函数()e cos sin x h x x x =++在[)0,∞+上单调递增,()()02h x h ∴≥=,即当0x ≥时,()2f x '≥.……(7分)(2)由已知得()e sin cos 21x g x x x x =+---.①当0x ≥时,()()()e cos sin 220,x g x x x f x g x ≥''=++-=-∴ 在[)0,∞+上单调递增,又()()010,e 20g g πππ=-<=->∴ 由零点存在定理可知,()g x 在[)0,∞+上仅有一个零点.……(10分)②当0x <时,设()()2sin cos 0e x x xm x x --=<,则()()2sin 10exx m x '-=≤,()m x ∴在(),0∞-上单调递减,()()01m x m ∴>=,()e cos sin 20,e cos sin 20x x x x g x x x '∴++-<∴=++-<,()g x ∴在(),0∞-上单调递减,又()()010,e 20g g πππ-=-<-=+> ,∴由零点存在定理可知()g x 在(),0∞-上仅有一个零点,综上所述,()g x 有且仅有2个零点.……(15分)18.【解析】(1)设()00,,P x y c 为椭圆C 的焦半距,12122F PF p S c y ∆=⋅⋅,00y b <≤ ,当0y b =时,12F PF S 最大,此时()0,P b 或()0,P b -,不妨设()0,P b ,当23πθ=时,得213OPF OPF π∠∠==,所以c =,又因为12F PF S bc ∆==,所以1,b c ==从而2,a =∴椭圆C 的标准方程为2214x y +=.……(3分)(2)由题意,直线l 的斜率显然存在.设()()1122: 2.,,,l y kx M x y N x y =+.……(4分)1112OBM S OB x x ∆∴=⋅=,同理,2OBN S x ∆=.12OBM OBN S xS x ∆∆∴= (6))联立()22222,141612044y kx k x kx x y =+⎧⇒+++=⎨+=⎩,……(8分)()()()22223164121416430,4k k k k ∴∆=-⨯⨯+=->∴>.……(9分)又121212221612,0,,1414k x x x x x x k k-+==>∴++ 同号.()()2222122121212216641421231414k x x x x k k x x x x kk-⎛⎫ ⎪++⎝⎭∴===+++.()22212122364641616,4,,42143331434x x k k x x k k ⎛⎫>∴=∈∴<++< ⎪⎛⎫+⎝⎭+ ⎪⎝⎭ .令()120x x λλ=≠,则116423λλ<++<,解得()()11,11,3,,11,333OBM OBN S S λ∆∆⎛⎫⎛⎫∈∴∈ ⎪ ⎪⎝⎭⎝⎭ .……(12分)(3)()1212,,OQ OM ON Q x x y y =+∴++.且四边形OMQN 为平行四边形.由(2)知()12121222164,41414k x x y y k x x k k-+=∴+=++=++,22164,1414kQ k k -⎛⎫∴ ⎪++⎝⎭.而Q 在椭圆C 上,2222164441414k k k -⎛⎫⎛⎫∴+⨯= ⎪ ⎪++⎝⎭⎝⎭.化简得2154k =.……(14分)∴线段161219357115224MN ==⋅+,……(15分)O到直线MN的距离d == (16))OMQN 574S MN d ∴=⋅=四边形.……(17分)19.【解析】(1)()115,1,2,3,66k P X k k -⎛⎫==⨯= ⎪⎝⎭ ,所以()()215111,1,2,3,,5126666nk n k k k P X k k kP k n =⎛⎫⋅====⨯+⨯+⨯ ⎪⎝⎭∑ ,记211112666n n S n =⨯+⨯++⨯ ,则2311111126666n n S n +=⨯+⨯++⨯ .作差得:1211111511111111661666666556616nn n n n n n S n n ++⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-⨯=-⨯=-+ ⎪⎪⎝⎭⎝⎭- ,所以()16111661,555566556n nn n n k n S kP k S n =⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⋅-+==-+⎢⎥ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∑.故()()()116616lim lim 5565nn n n k k E X kP k kP k n ∞∞∞→→==⎡⎤⎛⎫⎛⎫⎛⎫===-+=⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∑∑.……(6分)(2)(i ){}E ηξ∣所有可能的取值为:{},1,2,,i E x i n ηξ== ∣.且对应的概率{}{}()()()1,1,2,,i i i p E E x p x p x i n ηξηξξ====== ∣∣.所以{}{}()()()()()111111111,,,nnmn m i i j i j i j i j i i j i j i E E E x p x y p x y p x y p x y p x ηξηξ=====⎛⎫⎡⎤==⋅=⋅= ⎪⎣⎦ ⎪⎝⎭∑∑∑∑∑∣∣又()()()()21111111,,,nmmnmn mj i j j i j j i j j j i j j i j i j y p x y y p x y y p x y y p y E η=======⎛⎫⋅=⋅==⋅= ⎪⎝⎭∑∑∑∑∑∑∑,所以{}E E E ηξη⎡⎤=⎣⎦∣.……(12分)(ii ){}{}{}12355101,;12,;22,63636E E p E E p E p ηξηηξηη==+===+====∣∣,{}()()5513542122636363636E E E E E ηηξηηη⎡⎤==++++⨯=+⎣⎦∣,故42E η=.……(17分)。
高三语文试卷(答案在最后)考生注意:1.本试卷共150分,考试时间150分钟。
2.请将各题答案填写在答题卡上3.本试卷主要考试内容:高考全部内容。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一:根据第四次中国城乡老年人生活状况抽样调查数据,2015年中国空巢老人占老年人口的比重为51.3%,其中农村地区略高,为51.7%。
《2020中国农村养老现状国情调研报告》统计,大约有50%的农村老人处于空巢状态。
专家预测,到2030年,中国空巢老人比例将高达90%,预计将有超过2亿老年人成为空巢老人,农村地区空巢老人数量显著高于城市。
2020年第七次全国人口普查数据显示,中国留守老年人数量超过1亿。
老龄化与数字化相伴而生,相向而行。
信息化、数字化、智能化为人口老龄化社会发展提供支持和帮助。
将信息技术运用到养老产业、医疗领域,大力发展智慧养老,完善养老服务体系,提供全面的智慧养老解决方案,同时要看到老年人面临的“数字鸿沟”。
人口老龄化为经济发展带来斯的增长点。
老年人的健康、养老、医疗需求及对于休闲娱乐、文化教育的需求都会给经济发展带来新的活力。
虽然老年人口的增多会增加社会保障支出,但是老年人并不是“负担”,而是一座“金矿”;不是“人口负债”,而是“人口红利”。
数字经济时代,消费升级,互联网市场下沉,依托数字技术开拓老年人消费市场,发展银发产业,既有利于社会的和谐发展,又有利于社会经济高质量发展。
老年人的消费结构与其他消货群体有显著区别。
首先,饮食方面,老年人更加注重健康饮食,对保健食品和营养品有较大的消费需求;其次,医养护理方面,随着年龄的增加,老年人的身体机能逐步下降,对医疗保健、日常护理服务的需求增加;再次,随着社会的进步及消费观念的改变,老年人在满足物质需求的基础上,更加注重社交、尊重等精神层面的需求,包括体育健身、文化旅游、休闲服务、社交活动等;最后,老年人对家居用品和辅助器具的需求也与年轻人有显著区别,例如老花镜、助听器、按摩椅等。
2024-2025学年安徽省芜湖市无为中学高三(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={x|x 2−x−2≤0},B ={x|2x−3<0},则A ∩B =( )A. [−2,1]B. [−1,32)C. (−∞,32)D. (−∞,−1]2.下列函数中,既为偶函数,又在(0,+∞)上为增函数的是( )A. y =x 2+1xB. y =2−x 2C. y =x 2+log 2|x|D. y =2|x|−x 23.已知函数f(x)为定义在R 上的奇函数,对于任意的x 1,x 2∈(0,+∞),且x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2>0,f(−1)=0,则xf(x)<0的解集为( )A. (−1,0)∪(1,+∞)B. (−1,0)∪[1,+∞)C. (−1,0)∪(0,1]D. (−1,0)∪(0,1)4.设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是( )A. 62 B. 2 105 C. 1 D. 35.函数f(x)=3|x|⋅cos2x x的部分图象大致是( )A. B.C. D.6.已知随机变量X ~N(1,σ2).若P(1≤X ≤3)=0.3,设事件A =“X <1”,事件B =“|X|>1”,则P(A|B)=( )A. 38B. 35C. 58D. 277.已知函数f(x)={|log 3x|,x >03x ,x ≤0,若函数g(x)=[f(x)]2−(m +2)f(x)+2m 恰好有5个不同的零点,则实数m 的取值范围是( )A. (0,1]B. (0,1)C. [1,+∞)D. (1,+∞)8.已知f(x)是定义在R 上的函数,且满足f(3x−2)为偶函数,f(2x−1)为奇函数,则下列说法正确的( )①函数f(x)的图象关于直线x =1对称;②函数f(x)的图象关于点(−1,0)中心对称;③函数f(x)的周期为4;④f(2023)=0.A. ①②③B. ①②④C. ②③④D. ①③④二、多选题:本题共3小题,共18分。
渭南市三贤中学2023-2024学年高三上学期第一次月考语文试卷(卷面总分150分答题时间:150 分钟)一。
选择题(每小题 3 分,共36 分)1. 下列句子中的“人”和文中画横线处的“人”,用法相同的一项是()作为飞船上最后一个实现国产化的单机设备,“伽马刹车指令员”在此次返回舱顺利着陆中,交上了令人满意的答卷。
A. 人怎么还不来?B. 他人在心不在。
C. 人不可貌相,海水不可斗量。
D. 柴门闻犬吠,风雪夜归人。
2. 依次填入文中横线上的词语,全都恰当的一项是()1899 年发现的殷墟甲骨文,是近代中国史料“四大发现”之一。
从目前的发掘情况看,甲骨文不止出现在殷墟,在北京、山西、陕西、山东、湖北,宁夏都发现了刻有卜辞的甲骨。
殷墟甲骨文年代最早,数量最多,但它不是当时唯一的文字。
《尚书·多士》记载“惟殷先人,有册有典”,甲骨文有“典”“册”“聿(笔)”这样的文字,说明殷人祖先常规的书写材料是简册,书写工具是毛笔。
只是用竹木做成的简册腐烂,似乎无法在北方的地下长期保存,所以至今没有发现商代的竹简。
文字本质上是记录语言的,受书写材质和体裁所限,甲骨文不能全面记录当时的语言现象,但是已经能够反映汉语的基本语法、词汇系统。
A. 以及容易尚且然而B. 乃至容易仍然虽然C. 以及易于仍然然而D. 乃至易于尚且虽然3. 下列各句中加点成语的使用,全都不正确的一项是()①他在学习上坚持博学审问,对待工作更是兢兢业业,经过长时间的努力,终于取得了突出的成就。
②宋朝商品经济发达,在临安,私营旅馆临街而立,热闹非凡,尤其是西湖岸边的湖景旅馆,密密匝匝,令人左顾右盼。
③今年,公司加大公益广告创新力度,制作出一批画面清新、意味深长的精品,有效发挥了公益广告引领社会风尚的积极作用。
④野花肆意开放,花丛间常可见一对对小而伶俐的麻褐色野兔,在那里追逐嬉戏,天真烂漫,活灵活现。
⑤目前,快递业已经成为一个不可忽视的行业,快递服务虽不能说万无一失,但的确为百姓生活提供了极大便利。
常德市第一中学2025届高三第一次月水平检测数学时量:120分钟满分:150分一、单选题。
(本题共8小题,每题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的。
)1.已知集合{}{}21,24A x x B x x =-≤=-<≤,则A B = ()A .{}4x x ≤B .{}34x x ≤≤C .{}23x x -<≤D .{}24x x -<≤2.命题“x ∃∈R ,ln e 0x x x ++>”的否定是()A .x ∃∈R ,ln e 0x x x ++≤B .x ∀∈R ,ln e 0x x x ++≤C .x ∀∉R ,ln e 0x x x ++≤D .x ∃∉R ,ln e 0x x x ++<3.设5log 2a =,25log 3b =,0.20.6c =,则()A .c b a>>B .c a b>>C .b a c>>D .a c b>>4.近年,“人工智能”相关软件以其极高的智能化水平引起国内关注,深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为181425G L ⎛⎫=⨯ ⎪⎝⎭,其中L 表示每一轮优化时使用的学习率,G 表示训练迭代轮数,则学习率衰减到0.2及以下所需的训练迭代轮数至少为(参考数据:lg20.301≈)()A .16B .72C .74D .905.“1m £”是“函数()()22log 1f x x mx =--在()1,+∞单调递增”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.对于三次函数()()³²0f x ax bx cx d a =+++≠给出定义:设()f x '是函数()y f x =的导数,()f x ''是()f x '的导数,若方程()0f x ''=有实数解0x ,则称点00(,())x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数32115()33212f x x x x =-+-,请你根据上面探究结果,计算12320202021202120212021f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()A .1010B .2020C .2023D .20247.()1212,[1,e]x x x x ∀∈≠,均有122121ln ln x x x x a x x -<-成立,则a 的取值范围为()A .(],0-∞B .[)1,+∞C .[]0,1D .[)0,+∞8.已知函数()()22e ,e xf x x x ag x x =-+=-,若(][]12,0,1,e x x ∞∀∈-∃∈,使()()12g x f x ≤成立,则实数a 的取值范围是()A .[)2e 1,-+∞B .12e 1,e ∞⎡⎫+-+⎪⎢⎣⎭C .)2e ,⎡+∞⎣D .21e ,e ⎡⎫++∞⎪⎢⎣⎭二、多选题(本题有3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对得部分分,选错得0分)9.下列选项中正确的有()A .若a b >,则22ac bc >B .若集合{}{}20|1,2,A B x ax =-=+=,且B A ⊆,则实数a 的取值所组成的集合是{}1,2-.C .若不等式20ax bx c ++>的解集为{}3|1x x <<,则不等式20cx bx a ++<的解集为1{3x x <或1}x >D .已知函数()1y f x =+的定义域是[]2,3-,则()1y f x =-的定义域是[]0,5.10.已知0,0a b >>,且1a b +=,则()A .ab 的最小值是14B .222a b +最小值为23CD .12aa b+的最小值是111.已知函数()1e ,01ln ,04x x x f x x x +⎧-≤⎪=⎨->⎪⎩,下列选项中正确的是()A .()f x 在(),1-∞-上单调递增,在()1,0-上单调递减B .()f x 有极大值C .()f x 无最小值D .若函数()()()()2[]24h x f x af x a =-+∈R 恰有6个零点,则实数a 的取值范围是5,2⎛⎫+∞ ⎪⎝⎭三、填空题(本题共3小题,每小题5分,共15分)12.已知命题“[]1,5x ∃∈,使得1e 0xa x--<”是假命题,则实数a 的取值范围是.13.已知函数()f x ,()g x 分别是定义在R 上的奇函数,偶函数,且()()e xf xg x +=,则()()22f xg x -=⎡⎤⎡⎤⎣⎦⎣⎦.14.设函数()2e e xf x ax x =--,若在()0,∞+上满足()0f x <的正整数至多有两个,则实数a 的取值范围是.四、解答题(本题共5小题,共77分,解答应写出文字说明,证明过程和演算步骤)15.(13分)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知向量,m n 满足(2,6m a =-,)2sin ,n B b =,且m n ⊥.(1)求角A ;(2)若ABC 是锐角三角形,且3a =,求ABC 周长的取值范围.16.(15分)已知正方体1111ABCD A B C D -的棱长为3,11113PD A D =,11123QC C D =,M 为线段BD 上的动点,M '是点M 关于AD 所在直线的对称点.(1)求证:1MB PQ ⊥;(2)求三棱锥1Q PMB -的体积;(3)当2BM DM =时,求二面角M PQ M '--的余弦值的绝对值.17.(15分)数列{}n a 满足321212222n n a a a a n -+++⋯+=.(1)求{}n a 的通项公式;(2)若n nnb a =,求{}n b 的前n 项和n T .18.(17分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点与点3,12P ⎛⎫ ⎪⎝⎭连线的斜率为2,且点()1,e 在椭圆C 上(其中e 为C 的离心率).(1)求椭圆C 的标准方程.(2)已知点(2,0)D ,过点P 的直线l 与C 交于A ,B 两点,直线DA ,DB 分别交C 于M ,N 两点,试问直线MN 的斜率是否为定值?若是,求出该定值;若不是,请说明理由.19.(17分)已知()2ln x ax x bf x x++=(1)当3,1a b =-=-时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)已知()f x 有两个极值点12,x x ,且满足()()120f x f x +=,求b 的值;(3)在(2)的条件下,若()1f x x ≥-+在[)1,+∞上恒成立,求a 的取值范围.参考答案:1.C 2.B3.B4.C5.B 6.B 7.B 8.B9.CD10.BC 11.ABD 12.(],e 1∞--13.1-14.3e 3e ,9⎛⎤--∞ ⎥⎝⎦11.【详解】对于A ,当0x ≤时,1()e x f x x +=-,则111()(e e )e (1)x x x f x x x +++'=-+=-+,当1x <-时,()0f x '>,当10x -<<时,()0f x '<,所以()f x 在(),1∞--上单调递增,在()1,0-上单调递减,所以A 正确,对于B ,由选项A 可知()f x 在(),1∞--上单调递增,在()1,0-上单调递减,所以()f x 在=1x -处取得极大值,所以B 正确,对于C ,当0x >时,14141ln ,e 14()ln 41ln ,0e 4x x f x x x x ⎧-≥⎪⎪=-=⎨⎪-<<⎪⎩,当14e x ≥时,1ln 04x -≥,当140e x <<时,1ln 04x ->,所以当0x >时,()0f x ≥,因为()f x 在(),1∞--上单调递增,在()1,0-上单调递减,且当0x ≤时,()0f x ≥恒成立,综上,()f x 的值域为[0,)+∞,所以()f x 有最小值0,所以C 错误,对于D ,因为()f x 在(),1∞--上单调递增,在()1,0-上单调递减,()11f -=,(0)0f =,14141ln ,e 14()ln 41ln ,0e 4x x f x x x x ⎧-≥⎪⎪=-=⎨⎪-<<⎪⎩所以()f x 的大致图象如图所示由()0h x =,得()()2[]240f x af x -+=,令()f x t =,则2240t at -+=,由()f x 的图象可知,要使()h x 有6个零点,则方程2240t at -+=有两个不相等的实数根12,t t ,不妨令12t t <,若120,01t t =<<,则由图可知()h x 有6个零点,但202040a -⨯+≠,所以不符合题意,所以1201,1t t <<>,因为2020440a -⨯+=>,所以21240a -+<,解得52a >,即实数a 的取值范围是5,2∞⎛⎫+ ⎪⎝⎭,所以D 正确,故选:ABD 14.3e 3e ,9⎛⎤--∞ ⎝⎦【详解】由在()0,∞+上满足()2e e 0xf x ax x =--<的正整数至多有两个,即在()0,∞+上满足2e e x x a x ->的正整数至多有两个,设()2e e x xg x x -=,0x >,则()()3e 2e xx x g x x -+'=,设()()e 2e x h x x x =-+,0x >,则()()e 1e x h x x '=-+,0x >,设()()e 1e x m x x =-+,0x >,则()e 0xm x x '=>恒成立,则()m x 在()0,∞+上单调递增,即()()0e 10m x m >=->,即()0h x '>,所以()h x 在()0,∞+上单调递增,又()10h =,所以当()0,1x ∈时,()0h x <,即()0g x '<,()g x 单调递减;当()1,x ∈+∞时,()0h x >,即()0g x '>,()g x 单调递增;所以当1x =时,()g x 取最小值,又在()0,∞+上满足()2e e x x a g x x ->=的正整数至多有两个,则()3e 3e39a g -≤=,即3e 3e ,9a ⎛⎤-∈-∞ ⎥⎝⎦,故答案为:3e 3e ,9⎛⎤--∞ ⎥⎝⎦.15.(1)π3A =或2π3.(2)(333,9]+【详解】(1)解:∵m n ⊥,∴22sin 60a B b =,即22sin 6a B b =.由正弦定理得2sin sin 3A B B .∵sin 0B ≠,∴3sin 2A =,∵(0,π)A ∈,∴π3A =或2π3.(2)∵3a =,且三角形ABC 为锐角三角形,∴π3A =.∴由正弦定理得23sin sin sin 32a b cA B C====.∴23sin b B =,23sin c C =.∴)2π23sin sin 3sin sin 3b c B C B B⎤⎛⎫+=+=+- ⎪⎥⎝⎭⎦,31333sin cos sin 3sin 2222B B B B B ⎫⎫=++=+⎪⎪⎪⎪⎭⎭)331π33sin cos 32sin cos 6sin 2226B B B B B ⎛⎫⎛⎫=+=⨯+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭.又∵ABC 为锐角三角形,∴π02B <<,∴2π0π32B <-<,得ππ62B <<,ππ2π363B <+<.∴3πsin()126B <+≤,336sin 66B π⎛⎫<+≤ ⎪⎝⎭,∴336b c <+≤,又∵3a =,∴3339a b c +<++≤.∴ABC 的周长的取值范围为(333,9]+.16.(1)证明见解析(2)52(3)1719【详解】(1)证明:连接1111,AC B D .由11123QC C D =,得11113QD C D =,又11113PD A D =,则有11//PQ AC ,正方体1111ABCD A B C D -中,1BB ⊥平面1111D C B A ,11AC ⊂平面1111D C B A ,得111BB A C ⊥,又正方形1111D C B A 中,1111B D AC ⊥,1111BB B D B ⋂=,111,BB B D ⊂平面11BB D D ,所以11AC ⊥平面11BB D D ,由1MB ⊂平面11BB D D ,得111AC MB ⊥.又11//PQ A C ,所以1PQ MB ⊥.(2)111D P D Q ==,22112PQ D P D Q =+=,111111,A B C B A P C Q ==,1111Rt Rt A B P C B Q ≅ ,222222*********B P B Q A P A B ==+=+=,有1113B P B Q ==1221111521322222PQB PQ S PQ PB ⎛⎫=-=-= ⎪⎝⎭,∴11115332Q PMB M PQB PQB V V S --==⨯⨯= .(3)如图所示,以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z 轴建立空间直角坐标系.则(0,0,0)D ,(3,0,0)A ,(1,0,3)P ,(0,1,3)Q ,当2BM DM =时,有(1,1,0)M ,则(1,1,0)M -',(1,1,0)PQ =- ,(1,2,3)QM -'=- .(0,1,3)PM =-设()111,,m x y z = 为平面QPM '的一个法向量,∴111110230PQ m x y QM m x y z ⎧⋅=-+=⎪⎨⋅='--=⎪⎩ ,令13x =,得113,1y z ==-,可得()3,3,1m =- .设()222,,n x y z = 为平面QPM 的一个法向量,∴2222030PQ n x y PM n y z ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,令23x =,得223,1y z ==,可得(3,3,1)n = .设M PQ M '--所成的角为θ∴17cos 19991991m n m n θ⋅==⋅++⨯++ .17.(1)2nn a =(2)222n nn T +=-【详解】(1)数列{}n a 满足321212222n n a a a a n -++++= ,当2n ≥时,()31212221222n n a a a a n --+++⋯+=-,两式相减可得,122nn a -=,所以2n n a =,当1n =时,1122a ==也满足上式,所以2n n a =;(2)由(1)得2n n n b =,所以231232222nn nT =++++ ,则234111*********n n n n n T +-=+++++ ,两式相减的,2311111(1)11111222112222222212n n n n n n n n n T +++-+=++++-=-=-- ,所以222n nn T +=-.18.(1)2212x y +=(2)是定值,定值为2-(1)由题意可得22222221023211c c a a b a b c-⎧=⎪-⎪⎪⎪+=⎨⎪=+⎪⎪⎪⎩,解得222211a b c ⎧=⎪=⎨⎪=⎩故椭圆C 的标准方程为2212xy +=;(2)由题意可知直线l 的斜率不为0,设直线l 的方程为()312x m y =-+,()11,A x y ,()22,B x y ,()33,M x y ,()44,N x y ,则直线DA 的方程为1122x x y y -=+.联立11222212x x y y x y -⎧=+⎪⎪⎨⎪+=⎪⎩,整理得()()22111132220x y x y y y -+-+=则2113132y y y x =-,即13132y y x =-.代入1122x x y y -=+,得()13112312322232x x x x -=+=---.同理可得()2442231,322232y y x x x ==---.因为()()()()21211213214312123232323211232232MNy y y x y x y y x x k x x x x x x -------===-----()()()21112112123332322222,y my m y my m m y y m y y m y y ⎡⎤⎡⎤⎛⎫⎛⎫--+---+ ⎪ ⎪⎢⎥⎢⎥-⎝⎭⎝⎭⎣⎦⎣⎦===---所以直线MN 的斜率为定值,且定值为2-.19.(1)1y x =-+(2)1b =-(3)[)3,2--【详解】(1)当3,1a b =-=-时,()()13ln ,10f x x x f x =--=,所以()2311f x x x '=-+,所以()11f '=-.所以曲线()y f x =在点()()1,1f 处的切线方程为1y x =-+.(2)因为()()ln ,0,b f x x a x x x =++∈+∞,所以()2221a b x ax bf x x x x +-=+-=',因为()f x 有两个极值点12,x x ,所以()f x '有两个大于0的变号零点,所以方程20x ax b +-=有两个不等正根,所以21212Δ4000a b x x b x x a ⎧=+>⎪=->⎨⎪+=->⎩,解得2400a bb a ⎧>-⎪<⎨⎪<⎩,又因为()()120f x f x +=,即有112212ln ln 0b b x a x x a x x x +++++=,整理得()()12121212ln 0x x x x a x x bx x ++++=,代入1212,x x b x x a =-+=-,可得()()ln 0aa ab b b--+-+=-,解得1b =-,又因为240a ba ⎧>-⎨<⎩,所以可得2a <-,经检验,符合题意.(3)由(2)可知1b =-且2a <-,从而()1ln f x x a x x=+-,因为()1f x x ≥-+在[)1,+∞上恒成立,令()()[)112ln 1,1,g x f x x x a x x x=+-=+--∈+∞,则有()0g x ≥在[)1,+∞上恒成立,易得()12ln1110g a =+--=,因为()2221212a x ax g x x x x ++=++=',所以()13g a '=+,令()[)()221,1,,13h x x ax x h a =++∈+∞=+,对称轴4a x =-,①当32a -≤<-时,()3130,44a h a x =+≥=-≤,所以()h x 在[)1,+∞单调递增,从而()()130h x h a ≥=+≥恒成立,所以()()20h x g x x ='≥在[)1,+∞也恒成立,所以()g x 在[)1,+∞单调递增,从而()()10g x g ≥=恒成立.②当3a <-时,()130h a =+<,所以2210x ax ++=有两个不等实根34,x x (不妨设34x x <),所以341x x <<,且当()41,x x ∈时,()0h x <,从而()()20h x g x x='<,所以()g x 在[]41,x 上单调递减,所以()()410g x g <=,与“()0g x ≥在[)1,+∞上恒成立”矛盾,综上,a 的取值范围是[)3,2--。
辽宁省实验中学25届高三上学期第一次月考英语科试卷考试时间:120分钟试卷满分:150分命题人:校对人:第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What will the speakers do with the phone?A. Have it updated.B. Have it charged.C. Have it checked.2. What kind of T-shirts does the woman prefer?A. Short.B. Loose.C. Tight.3. Who is the woman probably?A. A language teacherB. A writer.C. A musician4. What does the man have with his coffee?A. Low-fat milk.B. Goat’s milkC. Cream5. What are the speakers probably going to do next?A. Put up a tentB. Fish in the lakeC. Get food at a store.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
6. Where does the conversation probably take place?A. In a library.B. At a print shop.C. In a classroom.7. What did the woman do last night?A. She worked on a presentation.B. She watched a show.C. She shared a story.听第7段材料,回答第8至10题。
2024届河南省鹤壁一中高三下学期第一次月考(3月)数学试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()f x 是定义在R 上的偶函数,且在(0,)+∞上单调递增,则( ) A .()()0.63(3)log 132f f f -<-<B .()()0.63(3)2log 13f f f -<<-C .()()0.632log 13(3)ff f <-<- D .()()0.632(3)log 13ff f <-<-2.若实数x ,y 满足条件25024001x y x y x y +-≤⎧⎪+-≤⎪⎨≥⎪⎪≥⎩,目标函数2z x y =-,则z 的最大值为( )A .52B .1C .2D .03.已知函数()1xf x xe-=,若对于任意的0(0,]x e ∈,函数()20()ln 1g x x x ax f x =-+-+在(0,]e 内都有两个不同的零点,则实数a 的取值范围为( ) A .(1,]eB .2(,]e e e-C .22(,]e e e e-+ D .2(1,]e e-4.某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )A .203π B .6πC .103π D .163π 5.数列{a n }是等差数列,a 1=1,公差d ∈[1,2],且a 4+λa 10+a 16=15,则实数λ的最大值为( ) A .72B .5319C .2319- D .12-6.设函数()()f x x R ∈满足()(),(2)()f x f x f x f x -=+=,则()y f x =的图像可能是A .B .C .D .7.抛物线方程为24y x =,一直线与抛物线交于A B 、两点,其弦AB 的中点坐标为(1,1),则直线的方程为( )A .210x y --=B .210x y +-=C .210x y -+=D .210x y ---=8.已知抛物线C :22y px =(0p >)的焦点为F ,01,2M y ⎛⎫⎪⎝⎭为该抛物线上一点,以M 为圆心的圆与C 的准线相切于点A ,120AMF ∠=︒,则抛物线方程为( ) A .22y x =B .24y x =C .26y x =D .28y x =9.设集合{|3}{|02}A x x B x x x =<=,或,则A B ⋂=( ) A .()0-∞,B .()23,C .()()023-∞⋃,, D .()3-∞, 10.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线y bx a =+近似地刻画其相关关系,根据图形,以下结论最有可能成立的是( )A .线性相关关系较强,b 的值为1.25B .线性相关关系较强,b 的值为0.83C .线性相关关系较强,b 的值为-0.87D .线性相关关系太弱,无研究价值11.已知2π()12cos ()(0)3f x x ωω=-+>.给出下列判断: ①若12()1,()1f x f x ==-,且12minπx x -=,则2ω=;②存在(0,2)ω∈使得()f x 的图象向右平移6π个单位长度后得到的图象关于y 轴对称; ③若()f x 在[]0,2π上恰有7个零点,则ω的取值范围为4147,2424⎡⎫⎪⎢⎭⎣; ④若()f x 在ππ,64⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为20,3⎛⎤ ⎥⎝⎦.其中,判断正确的个数为( ) A .1B .2C .3D .412.圆锥底面半径为5,高为2,SA 是一条母线,P 点是底面圆周上一点,则P 点到SA 所在直线的距离的最大值是( ) A .253B .453C .3D .4二、填空题:本题共4小题,每小题5分,共20分。
新疆维吾尔自治区吐鲁番市高昌区二中2024年高三下学期第一次月考(3月)数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.为得到的图象,只需要将的图象( )A .向左平移个单位B .向左平移个单位C .向右平移个单位D .向右平移个单位2.设复数z 满足21z i z -=+,z 在复平面内对应的点为(,)x y ,则( ) A .2430x y --= B .2430x y +-=C .4230x y +-=D .2430x y -+=3.如图,四边形ABCD 为正方形,延长CD 至E ,使得DE CD =,点P 在线段CD 上运动.设AP x AB y AE =+,则x y +的取值范围是( )A .[]1,2B .[]1,3C .[]2,3D .[]2,44.若复数221a ii++(a R ∈)是纯虚数,则复数22a i +在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限5.若圆锥轴截面面积为2360°,则体积为( )A 3B 6C 23D 266.已知实数,x y 满足约束条件11220220x y x y x y ≥-⎧⎪≥-⎪⎨-+≥⎪⎪--≤⎩,则23x y -的最小值是A .2-B .72-C .1D .47.定义在R 上的偶函数()f x ,对1x ∀,()2,0x ∈-∞,且12x x ≠,有()()21210f x f x x x ->-成立,已知()ln a f π=,12b f e -⎛⎫= ⎪⎝⎭,21log 6c f ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .b a c >>B .b c a >>C .c b a >>D .c a b >>8.已知函数()2ln 2xx f x ex a x=-+-(其中e 为自然对数的底数)有两个零点,则实数a 的取值范围是( ) A .21,e e⎛⎤-∞+ ⎥⎝⎦B .21,e e ⎛⎫-∞+⎪⎝⎭ C .21,e e⎡⎫-+∞⎪⎢⎣⎭D .21,e e⎛⎫-+∞ ⎪⎝⎭9.已知向量a ,b 夹角为30,()1,2a =,2b = ,则2a b -=( )A .2B .4C .D .10.若复数52z i=-(i 为虚数单位),则z =( ) A .2i +B .2i -C .12i +D .12i -11.ABC ∆ 的内角,,A B C 的对边分别为,,a b c ,已知22cos a c b A +=,则角B 的大小为( ) A .23π B .3π C .6π D .56π 12.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有( ) A .72种B .144种C .288种D .360种二、填空题:本题共4小题,每小题5分,共20分。
高三语文第一次月考试题一、(每题3分,共18分)1.1.下列词语中相同的字读音全不同...的一组是:A.疟.子疟.疾牲畜.畜.生B.殷.切殷.红伺.机伺.候C.监.督监.生供给.给.予D.逮.捕逮.住勒.令勒.马2.下列词语中没有错误字的一组A.虫豸诚惶诚恐赦然茕茕孓立B.幽壑伶牙利齿心扉横槊赋诗C.口呐无涯之戚嗥叫周公吐哺D.口啤杯盘狼藉蛊惑沧海一粟3、下列句中划横线的标点符号,使用正确的一项是A.人中国每人平均每年总要吃四、五百斤粮食,还要有种子、饲料和工业用粮。
B.据克鲁普斯卡娅说,列宁“从不凭记忆‘大致不差地’来叙述事实,他叙述事实是极确切的。
”C.其余四分之一的人口在发达国家,包括苏联,东欧(东欧不能算很发达),西欧,北美,日本,大洋洲的澳大利亚、新西兰,共十一二亿人口。
D.概括地说就是“尊重知识,尊重人才”八个字,事情成败的关键就是能不能发现人才,能不能使用人才?4、依次填入下列各句横线处的词语,最恰当的一组是:①人们——————要对质量、花色进行挑选,——————要追求品牌和时尚,体现个性修养,服装业也由此演变成了一个色彩斑斓的时尚产业。
②王相看着满桌的酒菜,虽然饥肠辘辘,但是因为刚做完手术,所以无福————————。
③——————职业教育能将科学技术与现实生产力结合,使科技成果迅速转化为生产力,——————备受重视。
A、不但/还消受由于/因而B、不但/还享受因为/从而C、不单/也消受由于/因而D、不单/也享受因为/从而5、下列熟语使用不正确的是()A、目前,全球各主要军事强国对隐形军舰的研发,乐此不疲。
B、古语有云:“得道者多助,失道者寡助”,“台独”危害绝中华民族的利益,决不会有出路。
C、个间因由在于美国因其强大、日本则因其狭隘,从来不愿意实践“己欲达而达人、己欲立而立人”之类的箴言对待中国的完全统一。
D、随着《党内监督条例》的出台,反腐力度的制度化,少数腐败官员借机出国外逃,真可谓是与时俱进。
2011—2012学年度第一学期10月份月考高三年级化学试卷班级______ 姓名____________ 学号_______ 成绩_______可能用到的相对原子质量:H-1 C-12 N-14 O-16 Na-23 Al-27Si-28 Cl-35.5 Fe-56 Cu-64I卷(选择题,40分)一、选择题(每题2分,共40分。
每题只有一个正确答案)1.下列有关环境问题的说法中,不正确的是A.煤的燃烧、机动车的运行都会排出CO、NO、NO2等大气污染物B.污水处理的化学方法主要有混凝法、中和法、沉淀法和氧化还原法C.装饰材料中的甲醛、芳香烃及氡等会造成居室污染D.垃圾的焚烧填埋是垃圾处理的发展方向2.下列说法中,正确的是A.合金的熔点一般比组成合金的各成分金属高B.氮化硅、光导纤维、氧化铝陶瓷等属于新型无机非金属材料C.红宝石、蓝宝石和金刚石都是由碳元素组成的宝石D.光导纤维的主要成分是硅,可广泛用于通信和医疗领域3.下列叙述中,正确的是A.在船舶的外壳装上铜块可防止其发生电化学腐蚀B.MnO2、FeCl3和CuSO4都可加快H2O2的分解速率C.FeCl3溶液和Fe2(SO4)3溶液加热蒸干、灼烧都得到Fe2O3D.用惰性电极分别电解CuCl2溶液和MgCl2溶液分别得到单质Cu和Mg4.下列有关实验的叙述中,正确的是A.红热的铁与水蒸气反应可生成氧化铁和氢气B.将二氧化硫通入到紫色石蕊试液中,试液先变红后褪色C.称量氢氧化钠固体时,应将氢氧化钠固体放在称量纸上称量D.加热时,可将试管、蒸发皿、坩埚直接在酒精灯焰上加热5.大胆科学的假设与猜想是科学探究的先导和价值所在。
在下列假设(猜想)引导下的探究肯定没有意义的是A.探究SO2与Na2O2反应可能有Na2SO4生成B.探究Na与水的反应可能生成NaOH和H2O2C.探究浓H2SO4与铜在一定条件下反应产生的黑色物质中可能有CuSD.探究向滴有酚酞试液的NaOH溶液中通以Cl2,酚酞红色褪去的现象是溶液的酸碱性变化所致,还是HClO的漂白性6.右图是制备和收集气体的实验装置,该装置可用于A.浓硝酸与铜反应制取二氧化氮B.碳化钙与食盐水反应制取乙炔C.浓氨水和生石灰反应制取氨气D.浓盐酸和二氧化锰反应制取氯气7.下列离子方程式正确的是A.NH4HCO3溶液中加入少量NaOH稀溶液:NH4+ + OH-== NH3·H2OB.Ca(ClO)2溶液中通入过量的二氧化硫气体:ClO- + SO2 + H2O == HClO + HSO3-C.酸性高锰酸钾溶液中滴入少量过氧化氢:2MnO4- +7H2O2+6H+ == 2Mn2+ + 6O2↑ + 10H2OD.向碳酸氢钙溶液中加入过量的氢氧化钠溶液:Ca2+ + 2OH- + 2HCO3- == CaCO3↓ + 2H2O + CO32-8.对下列实验的实验现象描述和所得结论均正确的是9.为监测空气中汞蒸气是否超标,通过悬挂涂有CuI (白色)的滤纸,根据滤纸是否变色(亮黄色至暗红色)及变色所需时间来判断空气中的汞含量。
发生的化学反应为:4CuI +Hg = Cu 2HgI 4+2Cu 。
下列说法不正确的是A .上述反应属于置换反应B .该反应中的氧化剂与还原剂的物质的量之比为2:1C .Cu 2HgI 4既是氧化产物又是还原产物D .当有1 mol CuI 参与反应时,转移电子的物质的量为0.5 mol10.右图用交叉分类法表示了一些物质或概念之间的从属或包含关系,其中不正确的是11.能大量共存于同一溶液中,且当加入另一种强电解质使水电离出的c (H +) = 1×10-13 mol/L 时又一定能发生反应的离子组是①Na + 、Ba 2+ 、Cl - 、HCO 3- ②K + 、NH 4+ 、CH 3COO - 、SO 42-2ANaBr 淀粉KI B2S AgClC Na 2CO 3 23 D③Ca 2+ 、Cu 2+ 、 NO 3- 、SO 32- ④Fe 3+ 、Na + 、SCN - 、Cl -⑤Al 3+ 、Na + 、HCO 3- 、NO 3- ⑥Fe 2+ 、Na + 、NO 3-、I -⑦Ag + 、NH 4+ 、OH - 、NO 3- ⑧Na + 、K + 、CH 3COO - 、NO 3-A .①②⑥B .②③⑥C ①④⑧ D. ③⑤⑦12.著名化学家徐光宪获得2008年度“国家最高科学技术奖”,以表彰他在稀土串级萃取理论方面作出的贡献。
稀土元素铈(Ce )主要存在于独居石中,金属铈在空气中易氧化变暗,受热时燃烧,遇水很快反应。
已知:铈常见的化合价为+3和+4,氧化性:Ce 4+>Fe 3+>I 2。
下列说法正确的是A. 铈溶于氢碘酸的化学方程式可表示为:Ce + 4HI △CeI 4 + 2H 2↑B. 在一定条件下,电解熔融状态的CeO 2制Ce ,在阴极获得铈C. 用Ce(SO 4)2溶液滴定硫酸亚铁溶液,其离子方程式为:Ce 4+ + 2Fe 2+ == Ce 3+ + 2Fe 3+D. 铈有四种稳定的核素13658Ce 、138 58Ce 、140 58Ce 、142 58Ce ,它们互称为同系物 13.某无色溶液中只含有① Na + 、② Ba 2 +、 ③ Cl 一、 ④ Br 一、⑤ SO 32一、⑥ SO 42一 离子中的若干种,依次进行下列实验,且每步所加试剂均过量,观察到的现象如下。
下列结论正确的是A .肯定含有的离子是①④⑤B .肯定没有的离子是②⑥C .不能确定的离子是①D .不能确定的离子是③⑤14.下列说法中,正确的有① 标准状况下,22.4 L 己烯所含有的分子数约为6.02×1023② 标准状况下,a L 的氧气和氮气的混合物含有的分子数约为 4.22a ×6.02×1023 ③ 7.1 g 氯气与足量的氢氧化钠溶液反应转移的电子数约为0.2×6.02×1023④ 10 g 重水中含有中子数约为4×6.02×1023⑤ 1 mol 乙醇中含有的共价键数约为7×6.02×1023⑥ 500 mL 1 mol/L 的硫酸铝溶液中含有的硫酸根离子数约为9.03×1023A .①④ B.②⑤ C.③⑤ D.②⑥15.水热法制备直径为1~100 nm 的颗粒Y (化合物),反应原理为:3Fe 2+ + 2S 2O 32- + O 2 + a OH -== Y+ S 4O 62- + 2H 2O ,下列说法中不正确的是A .a =4B .将Y 均匀分散到水中形成的体系具有丁达尔效应C .每有3 mol Fe 2+参加反应,反应中转移的电子总数为5 molD .S 2O 32-是还原剂16.25℃时,20.00 mL 硫酸和硝酸的混合溶液,加入足量氯化钡溶液,充分反应后过滤、洗涤、烘干,可得0.466 g 沉淀。
滤液跟2 mol/L NaOH 溶液反应,共用去10.00 mL 碱液时恰好中和。
下列说法中正确的是A .原混合液中c (SO 42-)=0.2 mol/LB .原混合液中c (NO 3-)=0.9 mol/LC .原混合液中pH =0D .原混合液中由水电离出的c (H +)=0.1mol/L17.下列叙述正确的是A .因为NH 3·H 2O 是弱碱,所以不能用氨水与FeCl 3溶液反应制取Fe(OH)3B .向FeI 2溶液中通入少量Cl 2 ,再滴加少量CCl 4,振荡、静置,下层液体为紫色C .向一定体积的热浓硫酸中加入过量的铁粉,生成的气体能被烧碱溶液完全吸收D .将SO 2气体通入溴水,欲检验溶液中是否有SO 42-生成,可向溶液中滴加Ba(NO 3) 2溶液 18.下列各项操作中,不发生...“先沉淀后溶解”现象的是( )① 向BaCl 2溶液中通入过量的SO 2② 向次氯酸钙溶液中通入过量的CO 2③ 向饱和NaOH 溶液中通入过量的CO 2④ 向AgNO 3溶液中逐滴加入氨水至过量A .①④B .①③C .①②D .②③19.将11.2g 的Mg —Cu 混合物完全溶解于足量的硝酸中,收集反应产生的x 气体。
再向所得溶液中加入适量的NaOH 溶液,产生21.4g 沉淀。
根据题意推断气体x 的成分可能是A .0.3 mol NO 2 和0.3 mol NOB .0.2 mol NO 2和0.1 mol N 2O 4C.0.1 mol NO、0.2 mol NO2和0.05 mol N2O4D.0.6 mol NO20.足量铜与一定量浓硝酸反应得到硝酸铜溶液和NO2、N2O4、NO 的混合气体,这些气体与2.24 L O2(标准状况)混合后通入水中,气体恰好完全被水吸收生成硝酸。
若向所得硝酸铜溶液中加入100 mL NaOH溶液,此时Cu2+恰好沉淀完全,所用NaOH溶液的浓度是 A.1 mol·L-1 B.2 mol·L-1C.3 mol·L-1 D.4 mol·L-12011—2012学年度第一学期10月份月考高三年级化学试卷第Ⅱ卷(非选择题,共60分)二、填空题(60分)21.(7分)下图所示反应I、反应II和反应III均是工业生产中常见的反应。
其中A、B 为化合物,C是温室气体之一,D和K均可用做干燥剂,H常温下为液态化合物,J是一种具有漂白作用的盐,反应III和E与G反应的原理相同。
(1)C与J的水溶液反应后生成的含氧酸的电子式是。
(2)E与G反应的离子方程式是。
(3)J久置后,即便不接触水、空气,本身也逐渐分解生成K,并放出气体,该反应的化学方程式是。
(4)工业上测定反应III产品的有效成分J的含量,先将一定量的产品的溶液加入过量的KI溶液和稀硫酸中,使之反应生成I2,然后用Na2S2O3标准溶液滴定I2,计算出结果。
①用Na2S2O3标准溶液滴定I2时选用的指示剂是。
②生成I2的反应的离子方程式是。
(5)已知:2Fe2+ + Br2=2Fe3+ +2Br-。
若将0.1 mol E通入100 mL FeBr2溶液中,溶液中有三分之一的Br-被氧化成Br2,则此反应离子方程式是,原FeBr2溶液的物质的量浓度为。
22.(12分)某小组同学将一定浓度NaHCO3溶液加入到CuSO4溶液中发现生成了沉淀。
甲同学认为沉淀是CuCO3;乙同学认为沉淀是CuCO3和Cu(OH)2的混合物,他们设计实验测定沉淀中CuCO3的质量分数。
(1)按照甲同学的观点,发生反应的离子方程式为(2)乙同学认为有Cu(OH)2生成的理论依据是(用离子方程式表示)(3)两同学利用下图所示装置进行测定①在研究沉淀物组成前,须将沉淀从溶液中分离并净化。