高中数学选修2-3全册综合能力测试题含解析人教版
- 格式:docx
- 大小:23.49 KB
- 文档页数:14
⾼中数学选修2-3全册综合能⼒测试题含解析⼈教版⾼中数学选修2-3全册综合能⼒测试题(含解析⼈教版)⾼中数学选修2-3全册综合能⼒测试题(含解析⼈教版)时间120分钟,满分150分。
⼀、选择题(本⼤题共12个⼩题,每⼩题5分,共60分,在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.)1.将标号为1,2,3,4,5,6的6张卡⽚放⼊3个不同的信封中,若每个信封放2张,其中标号为1,2的卡⽚放⼊同⼀信封,则不同的放法共有()A.12种B.18种C.36种D.54种[答案]B[解析]由题意,不同的放法共有C13C24=18种.2.(2014四川理,2)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.10[答案]C[解析]x3的系数就是(1+x)6中的第三项的系数,即C26=15.3.某展览会⼀周(七天)内要接待三所学校学⽣参观,每天只安排⼀所学校,其中甲学校要连续参观两天,其余学校均参观⼀天,则不同的安排⽅法的种数是() A.210B.50C.60D.120[答案]D[解析]⾸先安排甲学校,有6种参观⽅案,其余两所学校有A25种参观⽅案,根据分步计数原理,安排⽅法共6A25=120(种).故选D.4.若随机变量ξ~N(-2,4),则ξ在区间(-4,-2]上取值的概率等于ξ在下列哪个区间上取值的概率() A.(2,4]B.(0,2] C.[-2,0)D.(-4,4][答案]C[解析]此正态曲线关于直线x=-2对称,∴ξ在区间(-4,-2]上取值的概率等于ξ在[-2,0)上取值的概率.5.变量X与Y相对应的⼀组数据为(10,1)、(11.3,2)、(11.8,3)、(12.5,4)、(13,5);变量U与V相对应的⼀组数据为(10,5)、(11.3,4)、(11.8,3)、(12.5,2)、(13,1).r1表⽰变量Y与X之间的线性相关系数,r2表⽰变量V与U之间的线性相关系数,则()A.r2r10B.0r2r1C.r20r1D.r2=r1[答案]C[解析]画散点图,由散点图可知X与Y是正相关,则相关系数r10,U与V是负相关,相关系数r20,故选C. 6.现安排甲、⼄、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每⼈从事翻译、导游、礼仪、司机四项⼯作之⼀,每项⼯作⾄少有⼀⼈参加.甲、⼄不会开车但能从事其他三项⼯作,丙、丁、戊都能胜任四项⼯作,则不同安排⽅案的种数是()A.152B.126C.90D.54[答案]B[解析]先安排司机:若有⼀⼈为司机,则共有C13C24A33=108种⽅法,若司机有两⼈,此时共有C23A33=18种⽅法,故共有126种不同的安排⽅案.7.设a=0π(sinx+cosx)dx,则⼆项式(ax-1x)6展开式中含x2项的系数是()A.192B.-192C.96D.-96[答案]B[解析]由题意知a=2∴Tr+1=Cr6(2x)6-r(-1x)r=Cr626-r(-1)rx3-r ∴展开式中含x2项的系数是C1625(-1)=-192.故选B. 8.给出下列实际问题:①⼀种药物对某种病的治愈率;②两种药物冶疗同⼀种病是否有区别;③吸烟者得肺病的概率;④吸烟⼈群是否与性别有关系;⑤⽹吧与青少年的犯罪是否有关系.其中,⽤独⽴性检验可以解决的问题有()A.①②③B.②④⑤C.②③④⑤D.①②③④⑤[答案]B[解析]独⽴性检验主要是对事件A、B是否有关系进⾏检验,主要涉及两种变量对同⼀种事物的影响,或者是两种变量在同⼀问题上体现的区别等.9.在⼀次独⽴性检验中,得出列联表如下:AA合计B2008001000B180a180+a合计380800+a1180+a且最后发现,两个分类变量A和B没有任何关系,则a 的可能值是()A.200B.720C.100D.180[答案]B[解析]A和B没有任何关系,也就是说,对应的⽐例aa +b和cc+d基本相等,根据列联表可得2001000和180180+a基本相等,检验可知,B满⾜条件.故选B. 10.从装有3个⿊球和3个⽩球(⼤⼩、形状相同)的盒⼦中随机摸出3个球,⽤ξ表⽰摸出的⿊球个数,则P(ξ≥2)的值为()A.110B.15C.12D.25[答案]C[解析]根据条件,摸出2个⿊球的概率为C23C13C36,摸出3个⿊球的概率为C33C36,故P(ξ≥2)=C23C13C36+C33C36=12.故选C.11.甲、⼄、丙三位学⽣⽤计算机联⽹学习数学,每天上课后独⽴完成6道⾃我检测题,甲及格的概率为45,⼄及格的概率为35,丙极格的概率为710,三⼈各答⼀次,则三⼈中只有⼀⼈及格的概率为()A.320B.42135C.47250D.以上都不对[答案]C[解析]利⽤相互独⽴事件同时发⽣及互斥事件有⼀个发⽣的概率公式可得所求概率为:45×1-35×1-710+1-45×35×1-710+1-45×1-35×710=47250.故选 C. 12.(1-x)6(1+x)4的展开式中x的系数是()A.-4B.-3C.3D.4[答案]B[解析]解法1:(1-x)6(1+x)4的展开式中x的⼀次项为:C06C24(x)2+C26(-x)2C04+C16(-x)C14(x)=6x+15x -24x=-3x,所以(1-x)6(1+x)4的展开式中x的系数是-3.解法2:由于(1-x)6(1+x)4=(1-x)4(1-x)2的展开式中x的⼀次项为:C14(-x)C02+C04C22(-x)2=-4x+x=-3x,所以(1-x)6(1+x)4的展开式中x的系数是-3.⼆、填空题(本⼤题共4个⼩题,每⼩题4分,共16分,将正确答案填在题中横线上)13.设(x-1)21=a0+a1x+a2x2+…+a21x21,则a10+a11=________.[答案]0[解析]本题主要考查⼆项展开式.a10=C1021(-1)11=-C1021,a11=C1121(-1)10=C1021,所以a10+a11=C1121-C1021=C1021-C1021=0.14.已知ξ的分布列为:ξ1234P14131614则D(ξ)等于____________.[答案]179144[解析]由已知可得E(ξ)=1×14+2×13+3×16+4×14=2912,代⼊⽅差公式可得D(ξ)=179144. 15.对于回归⽅程y=4.75x+2.57,当x=28时,y的估计值是____________.[答案]135.57[解析]只需把x=28代⼊⽅程即可,y=4.75×28+2.57=135.57.16.某艺校在⼀天的6节课中随机安排语⽂、数学、外语三门⽂化课和其它三门艺术课各1节,则在课表上的相邻两节⽂化课之间最多间隔1节艺术课的概率为________(⽤数字作答).[答案]35[解析]本题考查了排列组合知识与概率的求解.6节课共有A66种排法,按要求共有三类排法,⼀类是⽂化课与艺术课相间排列,有A33A34种排法;第⼆类,艺术课、⽂化课三节连排,有2A33A33种排法;第三类,2节艺术课排在第⼀、⼆节或最后两节,有C23C12A22C13A33种排法,则满⾜条件的概率为A33A34+2A33A33+C23C12A22C13A33A66=35.三、解答题(本⼤题共6个⼩题,共74分,解答应写出⽂字说明、证明过程或演算步骤)17.(本题满分12分)已知x+2xn的展开式中第五项的系数与第三项的系数⽐是101,求展开式中含x的项.[解析]T5=C4n(x)n -42x4=C4n24xn-122,T3=C2n(x)n-22x2=C2n22xn-62,所以C4n24C2n22=101,即C4n22=10C2n,化简得n2-5n-24=0,所以n=8或n=-3(舍去),所以Tr+1=Cr8(x)8-r2xr=Cr82rx8-3r2,由题意:令8-3r2=1,得r=2.所以展开式中含x的项为第3项,T3=C2822x=112x.18.(本题满分12分)某电脑公司有6名产品推销员,其中5名的⼯作年限与年推销⾦额数据如下表:推销员编号12345⼯作年限x/年35679推销⾦额Y/万元23345(1)求年推销⾦额Y关于⼯作年限x的线性回归⽅程;(2)若第6名推销员的⼯作年限为11年,试估计他的年推销⾦额.[解析](1)设所求的线性回归⽅程为y^=b^x+a^,则b^=i=15 xi-x yi-y i=15 xi-x 2=1020=0.5,a^=y-b^x=0.4.所以年推销⾦额Y关于⼯作年限x的线性回归⽅程为y^=0.5x+0.4.(2)当x=11时,y^=0.5x+0.4=0.5×11+0.4=5.9(万元).所以可以估计第6名推销员的年推销⾦额为5.9万元.19.(本题满分12分)在对⼈们的休闲⽅式的⼀次调查中,共调查了124⼈,其中⼥性70⼈,男性54⼈.⼥性中有43⼈主要的休闲⽅式是看电视,另外27⼈主要的休闲⽅式是运动;男性中有21⼈主要的休闲⽅式是看电视,另外33⼈主要的休闲⽅式是运动.(1)根据以上数据建⽴⼀个2×2的列联表;(2)试问休闲⽅式是否与性别有关?[解析](1)2×2列联表为性别看电视运动合计⼥432770男213354总计6460124(2)由χ2计算公式得其观测值χ2=124× 43×33-27×21 270×54×64×60≈6.201.因为6.201>3.841,所以有95%的把握认为休闲⽅式与性别有关.20.(本题满分12分)某研究机构举⾏⼀次数学新课程研讨会,共邀请50名⼀线教师参加,使⽤不同版本教材的教师⼈数如表所⽰:版本⼈教A版⼈教B版苏教版北师⼤版⼈数2015510(1)从这50名教师中随机选出2名,求2⼈所使⽤版本相同的概率;(2)若随机选出2名使⽤⼈教版的教师发⾔,设使⽤⼈教A版的教师⼈数为ξ,求随机变量ξ的分布列.[解析](1)从50名教师中随机选出2名的⽅法数为C250=1225.选出2⼈使⽤版本相同的⽅法数为C220+C215+C25+C210=350.故2⼈使⽤版本相同的概率为:P=3501225=27. (2)∵P(ξ=0)=C215C235=317,P(ξ=1)=C120C115C235=60119,P(ξ=2)=C220C235=38119,∴ξ的分布列为ξ012P317601193811921.(本题满分12分)(2014陕西理,19)在⼀块耕地上种植⼀种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:作物产量(kg)300500概率0.50.5作物市场价格(元/kg)610概率0.40.6(1)设X表⽰在这块地上种植1季此作物的利润,求X的分布列;(2)若在这块地上连续3季种植此作物,求这3季中⾄少有2季的利润不少于2000元的概率.[解析](1)设A表⽰事件“作物产量为300kg”,B表⽰事件“作物市场价格为6元/kg”,由题设知P(A)=0.5,P(B)=0.4,∵利润=产量×市场价格-成本,∴X所有可能的取值为500×10-1000=4000,500×6-1000=2000,300×10-1000=2000,300×6-1000=800,P(X=4000)=P(A-)P(B-)=(1-0.5)×(1-0.4)=0.3,P(X=2000)=P(A-)P(B)+P(A)P(B-)=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,所以X的分布列为X40002000800P0.30.50.2(2)设Ci表⽰事件“第i季利润不少于2000元”(i=1,2,3),由题意知C1,C2,C3相互独⽴,由(1)知,P(Ci)=P(X=4000)+P(X=2000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季利润不少于2000元的概率为P(C-1C2C3)+P(C1C-2C3)+P(C1C2C-3)=3×0.82×0.2=0.384,所以,这3季中⾄少有2季的利润不少于2000元的概率为0.512+0.384=0.896.22.(本题满分14分)学校校园活动有这样⼀个游戏项⽬:甲箱⼦⾥装有3个⽩球、2个⿊球,⼄箱⼦⾥装有1个⽩球、2个⿊球,这些球除颜⾊外完全相同,每次游戏从这两个箱⼦⾥各随机摸出2个球,若摸出的⽩球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(1)求在1次游戏中,①摸出3个⽩球的概率;②获奖的概率.(2)求在2次游戏中获奖次数X的分布列及数学期望E(X).[解析](1)①设“在1次游戏中摸出i个⽩球”为事件Ai(i=0,1,2,3),则P(A3)=C23C25C12C23=15.②设“在1次游戏中获奖”为事件B,则B=A2∪A3.⼜P(A2)=C23C25C22C23+C13C12C25C12C23=12,且A2,A3互斥,所以P(B)=P(A2)+P(A3)=12+15=710.(2)由题意可知X的所有可能取值为0,1,2.P(X=0)=1-7102=9100,P(X=1)=C127101-710=2150,P(X=2)=7102=49100.所以X的分布列是X012P9100215049100X的数学期望E(X)=0×9100+1×2150+2×49100=75.。
高中数学选修2-3第一章综合能力测试(带解析人教版)高中数学选修2-3第一章综合能力测试(带解析人教版)(计数原理)时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种选出3种分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有()A.24种B.18种C.12种D.6种[答案]B[解析]因为黄瓜必须种植,在余下的3种蔬菜品种中再选出两种,进行排列共有C23A33=18种.故选B.2.已知C7n+1-C7n=C8n(n∈N*),则n等于()A.14B.12C.13D.15[答案]A[解析]因为C8n+C7n=C8n+1,所以C7n+1=C8n+1.∴7+8=n+1,∴n=14,故选A.3.某铁路所有车站共发行132种普通客票,则这段铁路共有车站数是()A.8B.12C.16D.24[答案]B[解析]∵A2n=n(n-1)=132.∴n=12.故选B.4.(1+x)7的展开式中x2的系数是()A.42B.35C.28D.21[答案]D[解析]展开式中第r+1项为Tr+1=Cr7xr,T3=C27x2,∴x2的系数为C27=21.5.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为()A.3×3!B.3×(3!)3C.(3!)4D.9![答案]C[解析]本题考查捆绑法排列问题.由于一家人坐在一起,可以将一家三口人看作一个整体,一家人坐法有3!种,三个家庭即(3!)3种,三个家庭又可全排列,因此共(3!)4种.注意排列中在一起可用捆绑法,即相邻问题.6.(1-x)10展开式中x3项的系数为()A.-720B.720C.120D.-120[答案]D[解析]本题考查了二项式展开定理,要认清项的系数与二项式系数的区别C310(-x)3=-C310x3,故选D. 7.若多项式x2+x10=a0+a1(x+1)+…+a9(x+1)9+a10(x+1)10,则a9=()A.9B.10C.-9D.-10[答案]D[解析]x10的系数为a10,∴a10=1,x9的系数为a9+C910a10,∴a9+10=0,∴a9=-10. 故应选D.8.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种[答案]A[解析]本题考查了组合及分步计数原理的运用.分两步进行:第一步,先派一名教师到甲地,另一名教师去乙地,共有C12种选法;第二步,选派两名学生到甲地,另两名学生到乙地,有C24种选法,由分步乘法计数原理知,共有不同选派方案C12C24=12种.9.在x+13x24的展开式中,x的幂的指数是整数的项共有()A.3项B.4项C.5项D.6项[答案]C[解析]∵Tr+1=Cr24(x)24-rx-r3=Cr24x12-56r,r∈{0,1,2,3,…,24},∴r∈{0,6,12,18,24}时,x的幂的指数是整数,共有5项.故应选C.10.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A.12种B.18种C.36种D.54种[答案]B[解析]由题意不同的放法共有C13C24=18种.11.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()A.70种B.80种C.100种D.140种[答案]A[解析]考查排列组合有关知识.解:可分两类,男医生2名,女医生1名或男医生1名,女医生2名,∴共有C25C14+C15C24=70.故选A.12.(2014安徽理,8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有()A.24对B.30对C.48对D.60对[答案]C[解析]解法1:先找出正方体一个面上的对角线与其余面对角线成60°角的对数,然后根据正方体六个面的特征计算总对数.如图,在正方体ABCD-A1B1C1D1中,与面对角线AC成60°角的面对角线有B1C、BC1、C1D、CD1、A1D、AD1、A1B、AB1共8条,同理与BD成60°角的面对角线也有8条,因此一个面上的对角线与其相邻4个面的对角线,共组成16对,又正方体共有6个面,所有共有16×6=96对.因为每对都被计算了两次(例如计算与AC成60°角时,有AD1,计算与AD1成60°角时有AC,故AD1与AC这一对被计算了2次),因此共有12×96=48对.解法2:间接法.正方体的面对角线共有12条,从中任取2条有C212种取法,其中相互平行的有6对,相互垂直的有12对,∴共有C212-6-12=48对.二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上)13.将4名新来的同学分配到A、B、C三个班级中,每个班级至少安排1名学生,其中甲同学不能分配到A班,那么不同的分配方案有________.[答案]24种[解析]将4名新来的同学分配到A、B、C三个班级中,每个班级至少安排一名学生有C24A33种分配方案,其中甲同学分配到A班共有C23A22+C13A22种方案.因此满足条件的不同方案共有C24A33-C23A22-C13A22=24(种).14.2-13x6的展开式中的第四项是________.[答案]-160x[解析]展开式中第四项为C3623-13x3=-160x.15.有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人,则不同的安排方式共有________种(用数字作答).[答案]264[解析]由条件上午不测“握力”,则4名同学测四个项目,有A44;下午不测“台阶”但不能与上午所测项目重复,如甲乙丙丁上午台阶身高立定肺活量下午下午甲测“握力”乙、丙、丁所测不与上午重复有2种,甲测“身高”、“立定”、“肺活量”中一种有3×3=9,故A44(2+9)=264种.16.已知1+kx26k∈N+的展开式中x8的系数小于120,则k=____________.[答案]1[解析]x8的系数为C46k4=15k4,由已知得,15k4<120,∴k4<8,又k∈N+,∴k=1.三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)用1、2、3、4、5、6这六个数字可组成多少个无重复数字且不能被5整除的五位数?[解析]解法1:不能被5整除,末位只能从1、2、3、4、6五个数字中选1个,有A15种方法;再从余下的5个数字中选4个放在其他数位,有A45种方法.由分步乘法计数原理,所求五位数有A15A45=600(个).解法2:不含有数字5的五位数有A55个;含有数字5的五位数,末位不选5有A14种方法,其余数位有A45种选法,含有5的五位数有A14A45个.因此可组成不能被5整除的无重复数字的五位数有A55+A14A45=600(个).解法3:由1~6组成的无重复数字的五位数有A56个,其中能被5整除的有A45个.因此,所求的五位数共有A56-A45=720-120=600(个).18.(本题满分12分)从-1、0、1、2、3这5个数中选3个不同的数组成二次函数y=ax2+bx+c(a≠0)的系数.(1)开口向上的抛物线有多少条?(2)开口向上且不过原点的抛物线有多少条?[解析](1)要使抛物线的开口向上,必须a>0,∴C13A24=36(条).(2)开口向上且不过原点的抛物线,必须a>0,c≠0,∴C13C13C13=27(条).19.(本题满分12分)求(x-3x)9的展开式中的有理项.[解析]∵Tr+1=Cr9(x12)9-r(-x13)r=(-1)rCr9x27-r6,令27-r6∈Z,即4+3-r6∈Z,且r∈{0,1,2,…,9}.∴r=3或r=9.当r=3时,27-r6=4,T4=(-1)3C39x4=-84x4;当r=9时,27-r6=3,T10=(-1)9C99x3=-x3.∴(x-3x)9的展开式中的有理项是:第4项,-84x4和第10项,-x3.20.(本题满分12分)某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的有3人.(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1人去献血,有多少种不同的选法?[解析]从O型血的人中选1人有28种不同的选法.从A型血的人中选1人有7种不同的选法,从B型血的人中选1人有9种不同的选法,从AB型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选择哪种血型的哪一个人,这件“任选1人去献血”的事情都能完成,所以由分类加法计数原理,共有28+7+9+3=47种不同的选法.(2)要从四种血型的人中各选1人,即要在每种血型的人中依次选出1人后,这件“各选1人去献血”的事情才完成,所以用分步乘法计数原理,共有28×7×9×3=5292种不同的选法.21.(本题满分12分)已知(3x2+3x2)n展开式中各项系数和比它的二项式系数和大992.(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.[解析]令x=1得展开式各项系数和为(1+3)n=4n,又展开式二项式系数和为C0n+C1n+…+Cnn=2n,由题意有4n-2n=992.即(2n)2-2n-992=0,(2n-32)(2n+31)=0,所以n=5.(1)因为n=5,所以展开式共6项,其中二项式系数最大项为第三、四两项,它们是T3=C25(3x2)3(3x2)2=90x6.T4=C35(3x2)2(3x2)3=270x223.(2)设展开式中第k+1项的系数最大.又Tk+1=Ck5(3x2)5-k(3x2)k=Ck53kx10+4k2,得Ck53k≥Ck-153k-1Ck53k≥Ck+153k+1⇒3k≥16-k15-k≥3k+1⇒72≤k≤92.又因为k∈Z,所以k=4,所以展开式中第5项系数最大.T5=C4534x263=405x263.22.(本题满分14分)已知(1+2x)n展开式中,某一项的系数恰好是它的前一项系数的2倍,且等于它后一项系数的56,试求该展开式中二项式系数最大的项.[解析]Tr+1=Crn(2x)r=2rCrnxx2,它的前一项的系数为2r-1Cr-1n,它的后一项的系数为2r+1Cr+1n,根据题意有2rCrn=22r-1Cr-1n,2rCrn=562r+1Cr +1n,2r-1=n,8r+3=5n,∴n=7,r=4.∴展开式中二项式系数最大的项为第4项和第5项.T4=C37(2x)3=280x32,T5=C47(2x)4=560x2.。
数学·选修2-3(人教A版)模块综合检测卷(测试时间:120分钟评价分值:150分)一、选择题(本大题共8小题,每小题5分,共40分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.变量x,y的散点图如图所示,那么x,y之间的样本相关系数最接近的值是()A.1B.-0.5C.0D.0.5解析:因为r的绝对值越接近于1,表明两个变量的线性相关性越大;r的绝对值越接近于0,表明两个变量的线性相关性越小.由图知x、y之间没有相关关系,所以r的绝对值最接近于0.故选C.答案:C2.从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种子不能放入第1号瓶内,那么不同的放法种数为()49 8 9 8 5191 5 E (ξ)=15,D (ξ)= 45,则 n 与 p 的值为(A .60,B .60,C .50,D .50, 解析:由 ξ~B (n ,p ),有E (ξ)=np =15,D (ξ)=np (1-p )= ,所以 p = ,n =60.故选 B.⎧⎛x -1⎫⎪6,x <0,⎩- x ,x ≥0,则当 x >0 时,解析:当 x >0 时,f [f (x )]= - x + - x ⎪6的展开式中,x ⎭ ⎝ xA .C 210A 8B .C 1A5 9C .C 1A 5D .C 1A 8解析:先排第 1 号瓶,从甲、乙以外的 8 种不同作物种子中选出1 种有 C 8种方法,再排其余各瓶,有 A 5种方法,故不同的放法共 C 8A 9有种.故选 C.答案:C3.(2013· 大庆模拟)设 ξ 是服从二项分布 B (n ,p )的随机变量,又4)3 13 14 44 445414答案:B4.(2013· 陕西卷)设函数f (x )=⎨⎝ x ⎭f [f (x )]表达式的展开式中常数项为()A .-20B .20C .-15D .15⎛ 1 ⎫ ⎛ 1 ⎫ ⎪6= ⎝ ⎭C 63 ⎝ x ⎭率都是 ,那么,4 个题中答对 2 个题的概率是 ()625 625 625 625常数项为 ⎛ 1 ⎫ ⎪3(- x )3=-20.故选 A.答案:A5.关于 x 的二项式(ax -2)n 的展开式中,二项式系数的和为 128,所有项系数的和为 1,则 a =()A .1B .-1C .3D .1 或 3解析:展开式的二项式系数为 2n =128,所以 n =7,设(ax -2)7=a 0+a 1x +a 2x 2+…+a 7x 7,令 x =1,得展开式的所有项系数为 a 0+a 1+a 2+…+a 7=(a -2)7=1,所以 a =3.故选 C.答案:C6.一份数学单元试卷中有 4 个填空题,某同学答对每个题的概45A. 16 96 192 256B.C.D.答案:B7.某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据见下表:秃发不秃心脏病205无心脏病30045077- 根据表中数据得到 k =≈15.968,因为平考试中,取得 A 等级的概率分别为 、 、 ,且三门课程的成绩是A. B. C. D .1发[来源:]225×750×320×455K 2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为()A .0.1B .0.05C .0.01D .0.001答案:D8.(2013· 佛山一模 )某学生在参加政、史、地三门课程的学业水4 3 25 5 5否取得 A 等级相互独立.记 ξ 为该生取得 A 等级的课程数,其分布列如下表所示,则数学期望 E (ξ)的值为()ξP6 1251a 2b324 12539 5 9125 9 5答案:C二、填空题(本大题共 6 小题,每小题 5 分,共 30 分;把答案填在题中横线上)9.已知随机变量 ξ 的分布列如下:ξ 1 2 3 4 5P0.1 0.2 0.4 0.2 0.1⎪⎩r =3, 所以⎪ r 5 3 则至少取一白球的概率为 1- × = .5 3则 P (2≤ξ<4)____________.解析:P (2≤ξ<4)=P (ξ=2)+P (ξ=3)=0.2+0.4=0.6.答案:0.610. (2013· 四川卷)二项式(x +y )3 的展开式中,含 x 2y 3 的项的系数是________(用数字作答).[来源:]⎧5-r =2, 解析:T r +1=C 5x 5-r y r (r =0,1,2,3,4,5),由题意知⎨5×4×3含 x 2y3的系数为C 5=3×2×1=10.答案:1011.一袋中有 3 个红球,2 个白球,另一袋中有 2 个红球,1 个白球,从每袋中任取一球,则至少取一白球的概率为________________.解析:至少取一白球的对立事件为从每袋中都取得红球,从第一3 2袋中取一球为红球的概率为 ,从另一袋中取一球为红球的概率为 ,3 2 35 3 53答案:12. 已知随机变量 X 服从正态分布 N (0,σ2)且 P (-2≤X ≤0)=0.4,则 P (X >2)=____________.r r 32 =2×n -3 2答案:0.113. (2013· 江门二模 )(1+2x )n 的展开式中 x 3 的系数等于 x 2 的系数的 4 倍,则 n =____________.解析:设(1+2x )n 的展开式的通项公式为 T r +1,则 T r +1=C n (2x )r=2r ·C n · x r ,令 r =3,得展开式中 x 3 的系数为:8C n ,令 r =2 得展开 式中 x 2 的系数为 4C n .依题意, 8C n =4×4C n ,即n n - n -3×2×1n 2,解得 n =8.答案:814.将红、黄、蓝、白、黑 5 个小球分别放入红、黄、蓝、白、黑 5 个盒子里,每个盒子里放且只放 1 个小球,则红球不在红盒内且黄球不在黄盒内的概率是________.三、解答题(本大题共 6 小题,共 80 分;解答应写出文字说明、证明过程或演算步骤)答案:0.6515. (本小题满分 12 分)5 名男生、2 名女生站成一排照相:(1)两名女生都不站在两端,有多少不同的站法?(2)两名女生要相邻,有多少种不同的站法?(3)两名女生不相邻,有多少种不同的站法?(4)女生甲不在左端,女生乙不在右端,有多少种不同的站法?(1)若 y 与 x 之间具有线性相关关系,求线性回归方程.n^ ni解析:(1)中间的五个位置任选两个排女生,其余五个位置任意排男生:A25·A55=2 400(种);(2)把两名女生当作一个元素,于是对六个元素任意排,然后解决两个女生的任意排列:A66·A22=1 400(种);(3)把男生任意全排列,然后在六个空中 (包括两端)有顺序地插入两名女生:A55·A26=3 600(种);(4)采用排除法,在七个人的全排列中,去掉女生甲在左端的 A66个,再去掉女生乙在右端的 A66 个,但女生甲在左端同时女生乙在右 端的 A55 种排除了两次,要找回来一次.A77-2A66+A55=3 720(种).16.(本小题满分 12 分)为了对新产品进行合理定价,对该产品进行了试销试验,以观察需求量 y (单位:千件)对于价格 x (单位:千元)的反应,得数据如下:x 50 70 8040 30 90 95 97y100 80 60120 135 555048[来源:](2)若成本 x =y +500,试求:①在盈亏平衡条件下(利润为零)的价格;②在利润为最大的条件下的定价.∑x i y i -n x y解析:(1)b=i =1∑x2-n x 2i =1≈-1.286 6,解析:(1)记甲、乙两人同时到 A 社区为事件 E A ,那么 P (E A )= 2 3184^a = y -^b x ≈169.772,∴线性回归方程为^y =-1.286 6x +169.772 4.(2)①在盈亏平衡条件下,^y x =^y +500,即-1.286 6x 2+169.772 4x =-1.286 6x +169.772 4+500,1.286 6x 2-171.059x +669.772 4=0,解得 x 1=128.916 2,x 2=4.038 1(舍去) , ∴此时新产品的价格为 128.916 2 千元.②在利润最大的条件下,Q =^y x -x=-1.286 6x 2+169.772 4x +1.286 6x -169.772 4-500=-1.286 6x 2+171.059x -669.772 4.要使 Q 取得最大值,x =66.477 1,即此时新产品应定价为 66.4771 千元.17.(本小题满分 14 分)甲、乙、丙、丁 4 名同学被随机地分到 A ,B ,C 三个社区参加社会实践,要求每个社区至少有一名同学.(1)求甲、乙两人都被分到 A 社区的概率;(2)求甲、乙两人不在同一个社区的概率;(3)设随机变量 ξ 为四名同学中到 A 社区的人数,求 ξ 的分布列和E (ξ)的值.A 22 C 4A 31= ,即甲、乙两人同时到 A 社区的概率是 .A 33 C 4A 3 6所以,甲、乙两人不在同一社区的概率是 P ( E )=1-P (E )= .C 24A 22 1 2C 4A 3 3 3E (ξ)=1× +2× = . x x1181(2) 记甲、乙两人在同一社区为事件 E ,那么 P (E )= 2 3= .56(3)随机变量 ξ 可能取的值为 1,2.事件“ξ=i (i =1,2)”是指有 i 个同学到 A 社区,则 P (ξ=2)= 2 3= ,所以 P (ξ=1)=1-P (ξ=2)= .ξ 的分布列是:ξP[来源:]12 3 21 32 1 43 3 318.(本小题满分 14 分)为备战 2016 年奥运会,甲、乙两位射击选手进行了强化训练.现分别从他们的强化训练期间的若干次平均成绩中随机抽取 8 次,记录如下:甲:.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3乙:.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5(1)现要从中选派一人参加奥运会封闭集训,从统计学角度,你认为派哪位选手参加合理?简单说明理由;(2)若将频率视为概率,对选手乙在今后的三次比赛成绩进行预测,记这三次成绩中不低于 8.5 分的次数为 ξ,求 ξ 的分布列及均值E (ξ).解析:(1)因为- =- =8.5,又 s 2 =0.27,s 2 =0.405,得 s 2 <s 2 ,甲乙甲乙甲乙(2)依题意得,乙不低于 8.5 分的频率为 ,ξ 的可能取值为 0,1,2,3, 则 ξ~B 3,2⎪. 所以,P (ξ=k )=C k 32⎪3-k 1-2⎪k =C k 3 2⎪3,k =0,1,2,3. 所以 E (ξ)=0× +1× +2× +3× = .相对来讲,甲的成绩更加稳定,所以选派甲合适.12⎛ 1⎫⎝⎭⎛1⎫ ⎛ 1⎫ ⎛1⎫ ⎝ ⎭⎝ ⎭ ⎝ ⎭所以 ξ 的分布列为ξP1 8 13 8 23 8 31 81 3 3 1 38 8 8 8 219.(本小题满分 14 分)某项选拔共有四轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为 0.6,0.4,0.5,0.2 . 已知各轮问题能否正确回答互不影响.(1)求该选手被淘汰的概率;[来源:](2)求该选手在选拔中至少回答了 2 个问题被淘汰的概率.解析: (1) 记 “该选手能正确回答第i 轮的问题 ”为事件 A i (i =1,2,3,4),则 P (A 1)=0.6,P (A 2)=0.4,P (A 3)=0.5,P (A 4)=0.2.法一 该选手被淘汰的概率:P =P ( A 1 +A 1 A 2 +A 1 A 2A 3 +A 1 A 2 A 3A 4 )= P ( A 1 ) + P (A 1)P ( A 2 ) + P (A 1)P (A 2)P (A 3) +P (A 1)P (A 2)P (A 3)P (A 4 )=0.4+0.6×0.6+0.6×0.4×0.5+0.6×0.4×0.5×0.8=0.976.法二 P =1-P (A 1 A 2 A 3A 4 ) =1-P (A 1)P (A 2) P (A 3)P (A 4 )=1-0.6×0.4×0.5×0.2=1-0.024=0.976.(2)法一 P =P (A 1 A 2 +A 1 A 2A 3 +A 1 A 2 A 3A 4 )=P (A 1)P ( A 2 )+P (A 1)P (A 2)P (A 3 ) +P (A 1)· P (A 2)P (A 3)P (A 4 )=0.6×0.6+0.6×0.4×0.5+0.6×0.4×0.5×0.8=0.576.法二P = 1 - P ( A 1 ) - P (A 1 A 2 A 3A 4 ) = 1 - (1 - 0.6) -0.6×0.4×0.5×0.2=0.576.20.(2013· 陕西卷)(本小题满分 14 分)在一场娱乐晚会上, 有 5位民间歌手(1 至 5 号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选 3 名歌手,其中观众甲是1 号歌手的歌迷, 他必选 1 号, 不选2 号, 另在3 至 5 号中随机选2 名. 观众乙和丙对 5 位歌手的演唱没有偏爱, 因此在 1 至 5 号中随机选 3 名歌手.(1)求观众甲选中 3 号歌手且观众乙未选中 3 号歌手的概率;(2)X 表示 3 号歌手得到观众甲、乙、丙的票数之和, 求 X 的分布列和数学期望.号歌手. 观众甲选中 3 号歌手的概率为 ,观众乙未选中 3 号歌手的概率为 1- .所以 P (A )= × 1-5⎪= 因此,观众甲选中 3 号歌手且观众乙未选中 3 号歌手的概率为 .观众甲选中 3 号歌手的概率为 ,观众乙选中 3 号歌手的概率为 .⎛ 2⎫ ⎛ 3⎫ 43⎭ ⎝ 5⎭ 75 2 ⎛ 3⎫ ⎛ 2⎫ 3 ⎛ 3⎫ ⎛ 2⎫ ⎛ 3⎫ 3 8+6+6 205⎭ ⎝ 3⎭ 5 ⎝ 5⎭ ⎝ 3⎭ ⎝ 5⎭ 5 3 ⎝ 75 75=2)= × × 1-5⎪+ 1-3⎪× × + × 1-5⎪× =2 3 ⎛ 3⎫ ⎛ 2⎫ 3 3 2 ⎛ 3⎫ 3 12+9+12 33 3 5 ⎝ ⎭ ⎝ ⎭ 5 5 3 ⎝ ⎭ 5= . 当观众甲、乙、丙均选中 3 号歌手时,这时 X =3,P (X =3)= ×5⎪2= .解析:(1)设事件 A 表示:观众甲选中 3 号歌手且观众乙未选中 3233 2 ⎛ 3⎫45 3 ⎝ ⎭ 15.415(2)X 表示 3 号歌手得到观众甲、乙、丙的票数之和,则 X 可取0,1,2,3.2 33 5当观众甲、乙、丙均未选中 3 号歌手时,这时 X =0,P (X =0)=1- ⎪× 1- ⎪2= ⎝.当观众甲、乙、丙中只有 1 人选中 3 号歌手时,这时 X =1,P (X=1)= × 1- ⎪2+ 1- ⎪× × 1- ⎪+ 1- ⎪× 1- ⎪× = = .当观众甲、乙、丙中只有 2 人选中 3 号歌手时,这时 X =2,P (X75 752 ⎛3⎫3 ⎝ ⎭18 75X 的分布列如下表:XP4 75120 75233 75318 75所以数学期望 E (X )=0× +1× +2× +3× = =4 20 33 18 20+66+5475 75 75 75 752815.。
高中新课标数学选修(2-3)综合测试题(1)一、选择题1.已知{}{}{},,,,,,,,,则方程222∈-∈∈123013412a b Rx a y b R-++=所表示()()地不同地圆地个数有()A.3×4×2=24 B.3×4+2=14C.(3+4)×2=14 D.3+4+2=9答案:A2.神六航天员由翟志刚、聂海胜等六人组成,每两人为一组,若指定翟志刚、聂海胜两人一定同在一个小组,则这六人地不同分组方法有()A.48种B.36种C.6种D.3种答案:D3.41nx ⎛⎫ ⎪⎝⎭地展开式中,第3项地二项式系数比第2项地二项式系数大44,则展开式中地常数项是( )A.第3项 B.第4项 C.第7项 D.第8项 答案:B4.从标有1,2,3,…,9地9张纸片中任取2张,数字之积为偶数地概率为( )A.12 B.718 C.1318 D.1118 答案:C5.在10个球中有6个红球和4个白球(各不相同),不放回地依次摸出2个球,在第一次摸出红球地条件下,第2次也摸到红球地概率为( )A.35 B.25 C.110 D.59 答案:D6.正态总体地概率密度函数为2()8()x x f x -∈=R ,则总体地平均数和标准差分别为( )A.0,8 B .0,4 C.0,2 D.0,2 答案:D7.在一次试验中,测得()x y ,地四组值分别是(12)(23)(34)(45)A B C D ,,,,,,,,则y 与x 之间地回归直线方程为( )A.$1y x =+ B.$2y x =+ C.$21y x =+ D.$1y x =- 答案:A8.用0,1,2,3,4这五个数字组成无重复数字地五位数,其中恰有一个偶数数字夹在两个奇数数字之间地五位数地个数是()A.48 B.36 C.28 D.20答案:C9.若随机变量η地分布列如下:则当()0.8η<=时,实数地取值范围是()P xA.x≤2 B.1≤x≤2 C.1<x≤2 D.1<x<2答案:C10.春节期间,国人发短信拜年已成为一种时尚,若小李地40名同事中,给其发短信拜年地概率为1,0.8,0.5,0地人数分别为8,15,14,3(人),则通常情况下,小李应收到同事地拜年短信数为( )A.27 B.37 C.38 D.8 答案:A11.在4次独立重复试验中事件A 出现地概率相同,若事件A 至少发生1次地概率为6581,则事件A 在1次试验中出现地概率为( )A.13B.25 C.56 D.23 答案:A12.已知随机变量1~95B ξ⎛⎫ ⎪⎝⎭,则使()P k ξ=取得最大值地k 值为( )A.2 B.3 C.4 D.5答案:A二、填空题13.某仪表显示屏上一排有7个小孔,每个小孔可显示出0或1,若每次显示其中三个孔,但相邻地两孔不能同时显示,则这显示屏可以显示地不同信号地种数有种.答案:8014.已知平面上有20个不同地点,除去七个点在一条直线上以外,没有三个点共线,过这20个点中地每两个点可以连条直线.答案:17015.某射手射击1次,击中目标地概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标地概率是0.9;②他恰好击中目标3次地概率是0.93×0.1;③他至少击中目标1次地概率是4.1(0.1)其中正确结论地序号是(写出所有正确结论地序号).答案:①③16.口袋内装有10个相同地球,其中5个球标有数字0,5个球标有数字1,若从袋中摸出5个球,那么摸出地5个球所标数字之和小于2或大于3地概率是(以数值作答).答案:1363三、解答题17.有4个不同地球,四个不同地盒子,把球全部放入盒内.(1)共有多少种放法?(2)恰有一个盒子不放球,有多少种放法?(3)恰有一个盒内放2个球,有多少种放法?(4)恰有两个盒不放球,有多少种放法?解:(1)一个球一个球地放到盒子里去,每只球都可有4种独立地放法,由分步乘法计数原理,放法共有:44256种.(2)为保证“恰有一个盒子不放球”,先从四个盒子中任意拿出去1个,即将4个球分成2,1,1地三组,有2C种分法;然后再从三个盒子中选一个放两4个球,其余两个球,两个盒子,全排列即可.由分步乘法计数原理,共有放法:12124432144C C C A=···种.(3)“恰有一个盒内放2个球”,即另外三个盒子中恰有一个空盒.因此,“恰有一个盒内放2球”与“恰有一个盒子不放球”是一回事.故也有144种放法. (4)先从四个盒子中任意拿走两个有24C 种,问题转化为:“4个球,两个盒子,每盒必放球,有几种放法?”从放球数目看,可分为(3,1),(2,2)两类.第一类:可从4个球中先选3个,然后放入指定地一个盒子中即可,有3142C C ·种放法;第二类:有24C 种放法.因此共有31342414C C C+=·种.由分步乘法计数原理得“恰有两个盒子不放球”地放法有:241484C =·种. 18.求25(1)(1)x x +-地展开式中3x 地系数.解:解法一:先变形,再部分展开,确定系数.252232423(1)(1)(1)(1)(12)(133)x x x x x x x x x +-=--=-+-+-.所以3x 是由第一个括号内地1与第二括号内地3x -地相乘和第一个括号内地22x -与第二个括号内地3x -相乘后再相加而得到,故3x 地系数为1(1)(2)(3)5⨯-+-⨯-=.解法二:利用通项公式,因2(1)x +地通项公式为12r rr TC x +=·,5(1)x -地通项公式为15(1)k k kk TC x +=-·,其中{}{}012012345r k ∈∈,,,,,,,,,令3k r +=, 则12k r =⎧⎨=⎩,,或21k r =⎧⎨=⎩,,或30k r =⎧⎨=⎩,. 故3x 地系数为112352555C C CC -+-=·.19.为了调查胃病是否与生活规律有关,某地540名40岁以上地人地调查结果如下:根据以上数据比较这两种情况,40岁以上地人患胃病与生活规律有关吗? 解:由公式得2540(6020026020)32022080460k ⨯⨯-⨯=⨯⨯⨯2540(120005200)24969609.6382590720000259072⨯-==≈.9.6387.879>∵,∴我们有99.5%地把握认为40岁以上地人患胃病与生活是否有规律有关,即生活不规律地人易患胃病. 20.一个医生已知某种病患者地痊愈率为25%,为实验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有4个被治好,则认为这种药有效;反之,则认为无效,试求:(1)虽新药有效,且把痊愈率提高到35%,但通过实验被否认地概率;(2)新药完全无效,但通过实验被认为有效地概率. 解:记一个病人服用该药痊愈率为事件A ,且其概率为p ,那么10个病人服用该药相当于10次独立重复实验.(1) 因新药有效且p =0.35,故由n 次独立重复试验中事件A 发生k 次地概率公式知,实验被否定(即新药无效)地概率为:0010119223371010101010101010(0)(1)(2)(3)(1)(1)(1)(1)0.514x P P P P C p p C p p C p p C p p +++=-+-+-+-≈.(2)因新药无效,故p =0.25,实验被认为有效地概率为:10101010101010(4)(5)(10)1((0)(1)(2)(3))0.224P P P P P P P +++=-+++≈L .即新药有效,但被否定地概率约为0.514; 新药无效,但被认为有效地概率约为0.224. 21.A B ,两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是123A A A ,,,B 队队员是123B B B ,,,按以往多次比赛地统计,对阵队员之间地胜负概率如下:现按表中对阵方式出场,每场胜队得1分,负队得0分,设A队,B队最后所得总分分别为ξη,.(1)求ξη,地概率分布列;(2)求Eξ,Eη.解:(1)ξη,地可能取值分别为3,2,1,0.2228(3)35575P ξ==⨯⨯=;22312223228(2)35535535575P ξ==⨯⨯+⨯⨯+⨯⨯=; 2331231322(1)3553553555P ξ==⨯⨯+⨯⨯+⨯⨯=;1333(0)35525P ξ==⨯⨯=.由题意知3ξη+=,所以8(0)(3)75P P ηξ====;28(1)(2)75P P ηξ====;2(2)(1)5P P ηξ====; 3(3)(0)25P P ηξ====.ξ地分布列为η地分布列为(2)82823223210757552515E ξ=⨯+⨯+⨯+⨯=, 因为3ξη+=,所以23315E E ηξ=-=.22.某工业部门进行一项研究,分析该部门地产量与生产费用之间地关系,从这个工业部门内随机抽选了10个企业作样本,有如下资料:产量(千件) x生产费用 (千元)y 79162 88 185 100 165 120 190 140 185完成下列要求:(1)计算x 与y 地相关系数;(2)对这两个变量之间是否线性相关进行相关性检验;千元)y40150 42140 48160 551765150(3)设回归直线方程为$$$y bx a=+,求系数$a,$b.解:利用回归分析检验地步骤,先求相关系数,再确定0.05r.(1)制表i i x i y2i x2i y i ix y141501600225006000242140176419600588034816023042560076804 513028935 70 25 900 5056515042252250097506791626241262441279878818577443422516280810016510000272251650091201901440036100228001111934250.808r=≈.即x与Y地相关关系0.808r≈.(2)因为0.75r>.所以x与Y之间具有很强地线性相关关系.(3)1329381077.7165.70.398709031077.7b-⨯⨯=≈-⨯,165.70.39877.7134.9a=-⨯=.高中新课标数学选修(2-3)综合测试题(2)一、选择题1.假定有一排蜂房,形状如图所示,一只蜜蜂在左下角地蜂房中,由于受了点伤,只能爬,不能飞,而且只能永远向右方(包括右上,右下)爬行,从一间蜂房爬到与之相邻地右方蜂房中去,若从最初位置爬到4号蜂房中,则不同地爬法有( ) A.4种 B.6种 C.8种 D.10种 答案:C2.乒乓球运动员10人,其中男女运动员各5人,从这10名运动员中选出4人进行男女混合双打比赛,选法种数为( )A.225()A B.225()C C.22254()C A · D.22252()C A ·答案:D3.已知集合{}123456M =,,,,,,{}6789N =,,,,从M 中选3个元素,N 中选2个元素,组成一个含有5个元素地集合T ,则这样地集合T 共有( )A.126个 B.120个 C.90个 D.26个 答案:C 4.342(1)(1)(1)n x x x +++++++L 地展开式中2x 地系数是( )A.33n C + B.32n C + C.321n C+- D.331n C+-答案:D 5.200620052008+被2006除,所得余数是( )A.2009 B.3 C.2 D.1 答案:B6.市场上供应地灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品地合格率是95%,乙厂产品地合格率是80%,则从市场上买到一个是甲厂生产地合格灯泡地概率是()A.0.665 B.0.56 C.0.24 D.0.285 答案:A7.抛掷甲、乙两颗骰子,若事件A:“甲骰子地点数大于4”;事件B:“甲、乙两骰子地点数之和等于7”,则(|)P B A地值等于()A.13B.118C.16D.19答案:C8.在一次智力竞赛地“风险选答”环节中,一共为选手准备了A,B,C三类不同地题目,选手每答对一个A类、B类、C类地题目,将分别得到300分、200分、100分,但如果答错,则要扣去300分、200分、100分,而选手答对一个A类、B类、C类题目地概率分别为0.6,0.7,0.8,则就每一次答题而言,选手选择( )题目得分地期望值更大一些( ) A.A 类 B.B 类 C.C 类 D.都一样 答案:B9.已知ξ地分布列如下:并且23ηξ=+,则方差D η=( )A.17936 B.14336 C.29972 D.22772答案:A10.若2~(16)N ξ-,且(31)P ξ--≤≤0.4=,则(1)P ξ≥等于( ) A.0.1 B.0.2 C.0.3 D.0.4答案:A11.已知x ,y 之间地一组数据:则y 与x 地回归方程必经过( )A.(2,2) B.(1,3) C.(1.5,4) D.(2,5) 答案:C12.对于2()P K k ≥,当 2.706k 时,就约有地把握认为“x与y 有关系”( )A.99% B.99.5% C.95% D.90% 答案:D 二、填空题13.92x x ⎛- ⎪⎝⎭地展开式中,常数项为 (用数字作答). 答案:67214.某国际科研合作项目成员由11个美国人,4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家地概率为 (结果用分数表示). 答案:11919015.两名狙击手在一次射击比赛中,狙击手甲得1分、2分、3分地概率分别为0.4,0.1,0.5;狙击手乙得1分、2分、3分地概率分别为0.1,0.6,0.3,那么两名狙击手获胜希望大地是 . 答案:乙16.空间有6个点,其中任何三点不共线,任何四点不共面,以其中地四点为顶点共可作出个四面体,经过其中每两点地直线中,有对异面直线.答案:15,45三、解答题17.某人手中有5张扑克牌,其中2张为不同花色地2,3张为不同花色地A,他有5次出牌机会,每次只能出一种点数地牌,但张数不限,则有多少种不同地出牌方法?解:由于张数不限,2张2,3张A可以一起出,亦可分几次出,故考虑按此分类.出牌地方法可分为以下几类:(1)5张牌全部分开出,有5A种方法;5(2)2张2一起出,3张A 一起出,有25A 种方法;(3)2张2一起出,3张A 分开出,有45A 种方法;(4)2张2一起出,3张A 分两次出,有2335C A 种方法;(5)2张2分开出,3张A 一起出,有35A 种方法;(6)2张2分开出,3张A 分两次出,有2435C A 种方法;因此共有不同地出牌方法5242332455535535860A A A C A A C A+++++=种. 18.已知数列{}na 地通项na 是二项式(1)nx +与2(1)nx +地展开式中所有x 地次数相同地各项地系数之和,求数列地通项及前n 项和nS .解:按(1)nx +及2(1)nx +两个展开式地升幂表示形式,写出地各整数次幂,可知只有当2(1)nx x 地偶数次幂时,才能与(1)nx +地x 地次数相比较. 由0122(1)nn n n n n n x C C x C x C x+=++++L ,132120242213212222222222(1()()n nn nn n n nnnnnC C x C x C x C x C x Cx--=++++++++L L可得00122422222()()()()n nnn n n n n n n n aC C C C C C C C =++++++++L01202422222()()n nn n n n n n n n C C C C C C C C =+++++++++L L2122n n -=+, 2122n n n a -=+∵,∴222462112(222)(22222(21)(41)223nn nn n S =++++++++=-+⨯-L L122112122(21)(2328)33n n n n +++=-+-=+-·,2111(2328)3n n n S ++=-∴·.19.某休闲场馆举行圣诞酬宾活动,每位会员交会员费50元,可享受20元地消费,并参加一次抽奖活动,从一个装有标号分别为1,2,3,4,5,6地6只均匀小球地抽奖箱中,有放回地抽两次球,抽得地两球标号之和为12,则获一等奖价值a 元地礼品,标号之和为11或10,获二等奖价值100元地礼品,标号之和小于10不得奖. (1)求各会员获奖地概率;(2)设场馆收益为ξ元,求ξ地分布列;假如场馆打算不赔钱,a 最多可设为多少元?解:(1)抽两次得标号之和为12地概率为11116636P =+=; 抽两次得标号之和为11或10地概率为2536P =,故各会员获奖地概率为1215136366P P P =+=+=. (2)ξ30a-30100- 30 P1365363036由1530(30)(70)300363636E a ξ=-⨯+-⨯+⨯≥,得580a≤元.所以a最多可设为580元.20.在研究某种新药对猪白痢地防治效果时到如下数据:存活数死亡数合计未用新药10138139用新药12920149合2358 2试分析新药对防治猪白痢是否有效? 解:由公式计算得2288(1012038129)8.658139********k ⨯⨯-⨯=≈⨯⨯⨯,由于8.658 6.635>,故可以有99%地把握认为新药对防治猪白痢是有效地.21.甲有一个箱子,里面放有x 个红球,y 个白球(x ,y ≥0,且x +y =4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子里任取2个球,乙从箱子里任取1个球.若取出地3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色球地个数,才能使自己获胜地概率最大?(2)在(1)地条件下,求取出地3个球中红球个数地期望.解:(1)要想使取出地3个球颜色全不相同,则乙必须取出黄球,甲取出地两个球为一个红球一个白球,乙取出黄球地概率是14,甲取出地两个球为一个红球一个白球地概率是11246x yC C xy C =·,所以取出地3个球颜色全不相同地概率是14624xy xyP ==·,即甲获胜地概率为24xyP =,由0x y ,≥,且4x y +=,所以12424xy P =≤2126x y +⎛⎫=⎪⎝⎭·,当2x y ==时取等号,即甲应在箱子里放2个红球2个白球才能使自己获胜地概率最大.(2)设取出地3个球中红球地个数为ξ,则ξ地取值为0,1,2,3.212221441(0)12C C P C C ξ===·,1112122222212144445(1)12C C C C C P C C C C ξ==+=··, 2111122222212144445(2)12C C C C C P C C C C ξ==+=··,212221441(3)12C C P C C ξ===·,所以取出地3个球中红球个数地期望:15510123 1.512121212E ξ=⨯+⨯+⨯+⨯=.22.规定(1)(1)mxAx x x m =--+L ,其中x ∈R ,m 为正整数,且01xA =,这是排列数mnA (n ,m 是正整数,且m ≤n )地一种推广.(1)求315A -地值;(2)排列数地两个性质:①11m m n n AnA --=,②11m m mn n n AmA A -++= (其中m ,n 是正整数).是否都能推广到mxA (x ∈R ,m 是正整数)地情形?若能推广,写出推广地形式并给予证明;若不能,则说明理由; (3)确定函数3xA 地单调区间.解:(1)315(15)(16)(17)4080A-=-⨯-⨯-=-;(2)性质①、②均可推广,推广地形式分别是 ①11m m xx AxA --=,②11()m m m x x x AmA A x m -*++=∈∈R N ,.事实上,在①中,当1m =时,左边1xA x ==, 右边01x xAx-==,等式成立;在②中,当1m =时,左边10111xxx A Ax A +=+=+==右边,等式成立;当2m ≥时,左边(1)(2)(1)(1)(2)(2)x x x x m mx x x x m =---++---+L L=(1)(2)(2)[(1)]x x x x m x m m ---+-++L 1(1)(1)(2)[(1)1]mx x x x x x m A +=+--+-+==L 右边, 因此②11()mm m x x x AmA A x m -*++=∈∈R N ,成立.(3)先求导数,得32()362xA xx '=-+.令23620xx -+>,解得x 或x >因此,当x ⎛∈- ⎝⎭∞时,函数为增函数, 当x ⎫∈+⎪⎪⎝⎭∞时,函数也为增函数,令23620xx -+≤x ,因此,当x ∈⎣⎦时,函数为减函数,∴函数3xA 地增区间为⎛- ⎝⎭∞,⎫+⎪⎪⎝⎭∞;减区间为⎣⎦.。
选修2-3综合检测卷(满分150分, 考试时间120分钟)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题意要求的。
1.C910+C810等于()A.45B.55 C.65 D.以上都不对2.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种B.20种C.25种D.32种3.在(x2+3x+2)5的展开式中x的系数为()A.140 B.240 C.360 D.8004.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有()A.16种B.36种C.42种 D.60种5.5人站成一排,甲乙之间恰有一个人的站法有()A.18种B.24种C.36种D.48种6.关于(a-b)10的说法,错误的是()A.展开式中的二项式系数之和为1 024B.展开式中第6项的二项式系数最大C.展开式中第5项和第7项的二项式系数最大D.展开式中第6项的系数最小7.图1如图1,用五种不同的颜色给图中的A,B,C,D,E,F六个不同的点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,则不同的涂色方法共() A.1 240种B.360种C.1 920种D.264种8.某计算机商店有6台不同的品牌机和5台不同的兼容机,从中选购5台,且至少有品牌机和兼容机各2台,则不同的选购方法有()A.1 050种B.700种C.350种D.200种9.设(1-3x)9=a0+a1x+a2x2+…+a9x9,则|a0|+|a1|+|a2|+…+|a9|的值为()A.29B.49C.39D.5910.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”,在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60 B.48 C.36 D.2411.某同学忘记了自己的QQ号的后六位,但记得QQ号后六位是由一个1,一个2,两个5和两个8组成的,于是用这六个数随意排成一个六位数,输入电脑尝试,那么他找到自己的QQ号最多尝试次数为()A.96 B.180 C.360 D.72012.设(1+x)n=a0+a1x+…+a n x n,若a1+a2+…+a n=63,则展开式中系数最大项是()A.15x3B.20x3 C.21x3D.35x3二、填空题:本大题共4小题,每小题5分,共20分。
1.在100件产品中,有3件是次品,现从中任意抽取5件,其中至少有2件次品的取法种数为 ( )A.B.C.D.[来源:学。
科。
网] 2.等于()A.990 B.165 C.120 D.553.二项式的展开式的常数项为第()项A.17 B.18 C.19 D.204.设,则的值为()A.B.C.1 D.25.从6名学生中,选出4人分别从事A、B、C、D四项不同的工作,若其中,甲、乙两人不能从事工作A,则不同的选派方案共有()A.96种B.180种C.240种D.280种6.设随机变量服从B(6,),则P(=3)的值是()A.B.C.D.7.在某一试验中事件A出现的概率为,则在次试验中出现次的概率为()A.1-B. C.1-D.8.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是()A.B.C.D.9.随机变量服从二项分布~,且则等于()A. B. C. 1 D. 010.某考察团对全国10大城市进行职工人均平均工资与居民人均消费进行统计调查, 与具有相关关系,回归方程(单位:千元),若某城市居民消费水平为7.675,估计该城市消费额占人均工资收入的百分比为()A. 66%B. 72.3%C. 67.3%D. 83%11.设随机变量X~N(2,4),则D (X)的值等于( )A.1B.2C.D.412.设回归直线方程为,则变量增加一个单位时,()A .平均增加1.5个单位 B.平均增加2个单位C .平均减少1.5个单位 D.平均减少2个单位13.已知,则.14. A、B、C、D、E五人并排站成一排,若A,B必须相邻,且B在A的左边,那么不同的排法共有种15.已知二项分布满足,则P(2),.16.有4台设备,每台正常工作的概率均为0.9,则4台中至少有3台能正常工作的概率为.(用小数作答)17.若p为非负实数,随机变量ξ的分布为ξ012P -pp则Eξ的最大值为,Dξ的最大值为.18.从1,2,3,…,9九个数字中选出三个不同的数字a,b,c,且a<b<c,作抛物线y=2++c,则不同的抛物线共有条(用数字作答).19 .(本小题满分14分)已知,且(1-2x)n=a 0+a1x+a2x2+a3x3+……+.(Ⅰ)求n的值;(Ⅱ)求a1+a2+a3+……+的值.20.(本小题满分14分)已知的展开式中,第5项的系数与第3项的系数之比是56:3,求展开式中的常数项。
选修-综合素质测试本测试仅供教师备用,学生书中没有。
时间分钟,满分分。
一、选择题(本大题共个小题,每小题分,共分,在每小题给出的四个选项中,只有一项是符合题目要求的.).六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ).种.种.种.种答案]解析]分两类:最左端排甲有=种不同的排法,最左端排乙,由于甲不能排在最右端,所以有=种不同的排法,由加法原理可得满足条件的排法共有种..(·新课标Ⅱ理,)根据下面给出的年至年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( ).逐年比较,年减少二氧化硫排放量的效果最显著.年我国治理二氧化硫排放显现成效.年以来我国二氧化硫年排放量呈减少趋势.年以来我国二氧化硫年排放量与年份正相关答案]解析]考查正、负相关及对柱形图的理解.由柱形图得,从年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关,故选..(--)(∈)展开式中的常数项是( ).-.-..答案]解析]本小题考查二项展开式的指定项的求法.+=()-·(--)=(-)(-),令-=,∴=,∴==..设随机变量服从二项分布~(,),则等于( ).(-)..以上都不对.-答案]解析]因为~(,),(())=(-)],(())=(),所以==(-).故选..某地区空气质量监测资料表明,一天的空气质量为优良的概率是,连续两天为优良的概率是,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )....答案]解析]本题考查条件概率的求法.设=“某一天的空气质量为优良”,=“随后一天的空气质量为优良”,则()===,故选..(·广东理,)袋中共有个除了颜色外完全相同的球,其中有个白球,个红球.从袋中任取个球,所取的个球中恰有个白球,个红球的概率为( )....答案]解析]从袋中任取个球共有=种,其中恰好个白球个红球共有=种,所以恰好个白球个红球的概率为=,故选..某校高三年级举行一次演讲比赛共有位同学参赛,其中一班有位,二班有位,其他班有位,若采用抽签方式确定他们的演讲顺序,则一班位同学恰好被排在一起,而二班位同学没有被排在一起的概率为( )....答案]解析]基本事件总数为,而事件包括的基本事件可按“捆绑法”与“插空法”求解.个人的演讲顺序有种可能,即基本事件总数为,一班同学被排在一起,二班的同学没有被排在一起这样来考虑:先将一班的位同学当作一个元素与其他班的位同学一起排列有种,二班的位同学插入到上述个元素所留个空当中,有种方法.依分步计数原理得不同的排法有··种.∴所求概率为=.故选..为了评价某个电视栏目的改革效果,在改革前后分别从居民点随机抽取了位居民进行调查,经过计算χ的观测值χ=,根据这一数据分析,下列说法正确的是( ).有的人认为该栏目优秀.有的人认为栏目是否优秀与改革有关.有的把握认为电视栏目是否优秀与改革有关系。
模块综合检测(一)(时间分钟,满分分)一、选择题(共小题,每小题分,共分).方程=的解集为( ).{} .{} .{} .{}解析:选由=得=-或+-=,解得=或=.经检验知=或=符合题意..设是一个离散型随机变量,则下列不能成为的概率分布列的一组数据是( ).,,,..-(≤≤) ,,…,解析:选利用分布列的性质判断,任一离散型随机变量的分布列都具有下述两个性质:①≥,=,…,;②+++…+=.选如图,由正态曲线的对称性可得(≤<-)=-(<)=..已知随机变量~(,σ),若(<)=,则(≤<-)等于( )....解析:选如图,由正态曲线的对称性可得(≤<-)=-(<)=..已知,取值如下表:从所得的散点图分析可知:与线性相关,且=+,则等于( )....解析:选依题意得,=×(+++++)=,=×(+++++)=.又直线=+必过样本中心点(,),即点(,),于是有=×+,由此解得=..甲、乙两人独立地对同一目标各射击一次,其命中率分别为,现已知目标被击中,则它是被甲击中的概率是( )....解析:选目标被击中=-×=,∴==..从名男生和名女生中选出名志愿者,其中至少有名女生的选法有( ).种.种.种.种解析:选直接法:选出名志愿者中含有名女生和名男生或名女生和名男生,故共有+=×+=种选法;间接法:从名学生中选出名,减去全部是男生的情况,故共有-=-=种选法.的展开式中只有第项二项式系数最大,则展开式中的常数项是( )....解析:选由已知得,=,+=()-=·-,令-=,得=,==..(四川高考)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ).种.种.种.种解析:选当最左端排甲时,不同的排法共有种;当最左端排乙时,甲只能排在中间四个位置之一,则不同的排法共有种.故不同的排法共有+=×=种..箱子里有个黑球和个白球,每次随机取出一个球.若取出黑球,则放回箱中,重新取球,若取出白球,则停止取球.那么在第次取球之后停止的概率为( )×.××解析:选记“从箱子里取出一球是黑球”为事件,“从箱子里取出一个球是白球”为事件,则()=,()=,在第次取球后停止,说明前次取到的都是黑球,第次取到的是白球,又每次取球是相互独立的,由独立事件同时发生的概率公式,在第次取球后停止的概率为×××=×..下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程=-,变量增加一个单位时,平均增加个单位;③线性回归直线=+必过(,);④曲线上的点与该点的坐标之间具有相关关系;⑤在一个×列联表中,由计算得=.则其两个变量间有关系的可能性是.其中错误的个数是( )....解析:选由方差的定义知①正确,由线性回归直线的特点知③正确,②④⑤都错误..对两个变量和进行线性相关检验,已知是观察值组数,是相关系数,且已知:①=,=;②=,=;③=,=;④=,= .。
高中数学选修(2-3)综合测试题(3)一、选择题1.假定有一排蜂房,形状如图所示,一只蜜蜂在左下角的蜂房中,由于受了点伤,只能爬,不能飞,而且只能永远向右方(包括右上,右下)爬行,从一间蜂房爬到与之相邻的右方蜂房中去,若从最初位置爬到4号蜂房中,则不同的爬法有( ) A.4种 B.6种 C.8种 D.10种2.乒乓球运动员10人,其中男女运动员各5人,从这10名运动员中选出4人进行男女混合双打比赛,选法种数为( )A.225()A B.225()C C.22254()C A · D.22252()C A · 3.已知集合{}123456M =,,,,,,{}6789N =,,,,从M 中选3个元素,N 中选2个元素,组成一个含有5个元素的集合T ,则这样的集合T 共有( )A.126个 B.120个 C.90个 D.26个 4.342(1)(1)(1)n x x x +++++++L 的展开式中2x 的系数是( )A.33n C +B.32n C +C.321n C +- D.331n C +-5.200620052008+被2006除,所得余数是( )A.2009 B.3 C.2 D.16.市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是( ) A.0.665 B .0.56 C.0.24 D.0.285 7.抛掷甲、乙两颗骰子,若事件A :“甲骰子的点数大于4”;事件B :“甲、乙两骰子的点数之和等于7”,则(|)P B A 的值等于( )A.13 B.118 C.16 D.198.在一次智力竞赛的“风险选答”环节中,一共为选手准备了A ,B ,C 三类不同的题目,选手每答对一个A 类、B 类、C 类的题目,将分别得到300分、200分、100分,但如果答错,则要扣去300分、200分、100分,而选手答对一个A 类、B 类、C 类题目的概率分别为0.6,0.7,0.8,则就每一次答题而言,选手选择( )题目得分的期望值更大一些( ) A.A 类 B.B 类 C.C 类 D.都一样 9.已知ξ的分布列如下:ξ 1 2 3 4P1413 16 14并且23ηξ=+,则方差D η=( )A.17936 B.14336 C.29972 D.2277210.若2~(16)N ξ-,且(31)P ξ--≤≤0.4=,则(1)P ξ≥等于( ) A.0.1 B.0.2 C.0.3 D.0.4 11.已知x ,y 之间的一组数据:x 0 1 2 3 y1 3 5 7则y 与x 的回归方程必经过( ) A.(2,2) B.(1,3) C.(1.5,4) D.(2,5) 12.对于2()P K k ≥,当 2.706k >时,就约有的把握认为“x 与y 有关系”( ) A.99% B.99.5% C.95% D.90% 二、填空题13.912x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为 (用数字作答). 14.某国际科研合作项目成员由11个美国人,4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为 (结果用分数表示).15.两名狙击手在一次射击比赛中,狙击手甲得1分、2分、3分的概率分别为0.4,0.1,0.5;狙击手乙得1分、2分、3分的概率分别为0.1,0.6,0.3,那么两名狙击手获胜希望大的是 .16.空间有6个点,其中任何三点不共线,任何四点不共面,以其中的四点为顶点共可作出个四面体,经过其中每两点的直线中,有 对异面直线. 三、解答题17.某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A ,他有5次出牌机会,每次只能出一种点数的牌,但张数不限,则有多少种不同的出牌方法?18.已知数列{}n a 的通项n a 是二项式(1)n x +与2(1)n x +的展开式中所有x 的次数相同的各项的系数之和,求数列的通项及前n 项和n S .19.某休闲场馆举行圣诞酬宾活动,每位会员交会员费50元,可享受20元的消费,并参加一次抽奖活动,从一个装有标号分别为1,2,3,4,5,6的6只均匀小球的抽奖箱中,有放回的抽两次球,抽得的两球标号之和为12,则获一等奖价值a 元的礼品,标号之和为11或10,获二等奖价值100元的礼品,标号之和小于10不得奖. (1)求各会员获奖的概率;(2)设场馆收益为ξ元,求ξ的分布列;假如场馆打算不赔钱,a 最多可设为多少元? 20.在研究某种新药对猪白痢的防治效果时到如下数据:存活数 死亡数 合计 未用新药 101 38 139 用新药 129 20 149 合计23058288试分析新药对防治猪白痢是否有效?21.甲有一个箱子,里面放有x 个红球,y 个白球(x ,y ≥0,且x +y =4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子里任取2个球,乙从箱子里任取1个球.若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色球的个数,才能使自己获胜的概率最大? (2)在(1)的条件下,求取出的3个球中红球个数的期望.高中数学选修(2-3)综合测试题(3)CDCDB ACBAA CD 13.672 14.11919015.乙 16. 15,45 17.解:由于张数不限,2张2,3张A 可以一起出,亦可分几次出,故考虑按此分类.出牌的方法可分为以下几类:(1)5张牌全部分开出,有55A 种方法;(2)2张2一起出,3张A 一起出,有25A 种方法; (3)2张2一起出,3张A 分开出,有45A 种方法;(4)2张2一起出,3张A 分两次出,有2335C A 种方法; (5)2张2分开出,3张A 一起出,有35A 种方法;(6)2张2分开出,3张A 分两次出,有2435C A 种方法; 因此共有不同的出牌方法5242332455535535860A A A C A A C A +++++=种. 18.解:按(1)nx +及2(1)n x +两个展开式的升幂表示形式,写出的各整数次幂,可知只有当2(1)nx +中出现x 的偶数次幂时,才能与(1)n x +的x 的次数相比较.由0122(1)n n nnn n n x C C x C x C x +=++++L , 132120242213212222222222(1)()()n nn nn n n nnnnnx C C x C x C x C x C x Cx--+=++++++++L L可得0122422222()()()()nnn n n n n n n n n a C C C C C C C C =++++++++L01202422222()()n n n n n n n n n n C C C C C C C C =+++++++++L L 2122n n -=+, 2122nn n a -=+∵,∴222462112(222)(22222(21)(41)223nn nn n S =++++++++=-+⨯-L L122112122(21)(2328)33n n n n +++=-+-=+-·, 2111(2328)3n n n S ++=-∴·.19.解:(1)抽两次得标号之和为12的概率为11116636P =+=;抽两次得标号之和为11或10的概率为2536P =,故各会员获奖的概率为1215136366P P P =+=+=. (2)ξ 30a -30100-30P1365363036由1530(30)(70)300363636E a ξ=-⨯+-⨯+⨯≥, 得580a ≤元.所以a 最多可设为580元. 20.解:由公式计算得2288(1012038129)8.65813914923058k ⨯⨯-⨯=≈⨯⨯⨯,由于8.658 6.635>,故可以有99%的把握认为新药对防治猪白痢是有效的.21.解:(1)要想使取出的3个球颜色全不相同,则乙必须取出黄球,甲取出的两个球为一个红球一个白球,乙取出黄球的概率是14,甲取出的两个球为一个红球一个白球的概率是11246x y C C xy C =·,所以取出的3个球颜色全不相同的概率是14624xy xy P ==·,即甲获胜的概率为24xyP =,由0x y ,≥,且4x y +=,所以12424xy P =≤2126x y +⎛⎫= ⎪⎝⎭·,当2x y ==时取等号,即甲应在箱子里放2个红球2个白球才能使自己获胜的概率最大. (2)设取出的3个球中红球的个数为ξ,则ξ的取值为0,1,2,3.212221441(0)12C C P C C ξ===·,1112122222212144445(1)12C C C C C P C C C C ξ==+=··,2111122222212144445(2)12C C C C C P C C C C ξ==+=··,212221441(3)12C C P C C ξ===·,所以取出的3个球中红球个数的期望:15510123 1.512121212E ξ=⨯+⨯+⨯+⨯=。
高中数学选修2-3全册综合能力测试题(含解析人教版)高中数学选修2-3全册综合能力测试题(含解析人教版)时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A.12种B.18种C.36种D.54种[答案]B[解析]由题意,不同的放法共有C13C24=18种.2.(2014四川理,2)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.10[答案]C[解析]x3的系数就是(1+x)6中的第三项的系数,即C26=15.3.某展览会一周(七天)内要接待三所学校学生参观,每天只安排一所学校,其中甲学校要连续参观两天,其余学校均参观一天,则不同的安排方法的种数是() A.210B.50C.60D.120[答案]D[解析]首先安排甲学校,有6种参观方案,其余两所学校有A25种参观方案,根据分步计数原理,安排方法共6A25=120(种).故选D.4.若随机变量ξ~N(-2,4),则ξ在区间(-4,-2]上取值的概率等于ξ在下列哪个区间上取值的概率() A.(2,4]B.(0,2]C.[-2,0)D.(-4,4][答案]C[解析]此正态曲线关于直线x=-2对称,∴ξ在区间(-4,-2]上取值的概率等于ξ在[-2,0)上取值的概率.5.变量X与Y相对应的一组数据为(10,1)、(11.3,2)、(11.8,3)、(12.5,4)、(13,5);变量U与V相对应的一组数据为(10,5)、(11.3,4)、(11.8,3)、(12.5,2)、(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则()A.r2r10B.0r2r1C.r20r1D.r2=r1[答案]C[解析]画散点图,由散点图可知X与Y是正相关,则相关系数r10,U与V是负相关,相关系数r20,故选C. 6.现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是()A.152B.126C.90D.54[答案]B[解析]先安排司机:若有一人为司机,则共有C13C24A33=108种方法,若司机有两人,此时共有C23A33=18种方法,故共有126种不同的安排方案.7.设a=0π(sinx+cosx)dx,则二项式(ax-1x)6展开式中含x2项的系数是()A.192B.-192C.96D.-96[答案]B[解析]由题意知a=2∴Tr+1=Cr6(2x)6-r(-1x)r=Cr626-r(-1)rx3-r ∴展开式中含x2项的系数是C1625(-1)=-192.故选B. 8.给出下列实际问题:①一种药物对某种病的治愈率;②两种药物冶疗同一种病是否有区别;③吸烟者得肺病的概率;④吸烟人群是否与性别有关系;⑤网吧与青少年的犯罪是否有关系.其中,用独立性检验可以解决的问题有()A.①②③B.②④⑤C.②③④⑤D.①②③④⑤[答案]B[解析]独立性检验主要是对事件A、B是否有关系进行检验,主要涉及两种变量对同一种事物的影响,或者是两种变量在同一问题上体现的区别等.9.在一次独立性检验中,得出列联表如下:AA合计B2008001000B180a180+a合计380800+a1180+a且最后发现,两个分类变量A和B没有任何关系,则a 的可能值是()A.200B.720C.100D.180[答案]B[解析]A和B没有任何关系,也就是说,对应的比例aa +b和cc+d基本相等,根据列联表可得2001000和180180+a基本相等,检验可知,B满足条件.故选B. 10.从装有3个黑球和3个白球(大小、形状相同)的盒子中随机摸出3个球,用ξ表示摸出的黑球个数,则P(ξ≥2)的值为()A.110B.15C.12D.25[答案]C[解析]根据条件,摸出2个黑球的概率为C23C13C36,摸出3个黑球的概率为C33C36,故P(ξ≥2)=C23C13C36+C33C36=12.故选C.11.甲、乙、丙三位学生用计算机联网学习数学,每天上课后独立完成6道自我检测题,甲及格的概率为45,乙及格的概率为35,丙极格的概率为710,三人各答一次,则三人中只有一人及格的概率为()A.320B.42135C.47250D.以上都不对[答案]C[解析]利用相互独立事件同时发生及互斥事件有一个发生的概率公式可得所求概率为:45×1-35×1-710+1-45×35×1-710+1-45×1-35×710=47250.故选 C. 12.(1-x)6(1+x)4的展开式中x的系数是()A.-4B.-3C.3D.4[答案]B[解析]解法1:(1-x)6(1+x)4的展开式中x的一次项为:C06C24(x)2+C26(-x)2C04+C16(-x)C14(x)=6x+15x -24x=-3x,所以(1-x)6(1+x)4的展开式中x的系数是-3.解法2:由于(1-x)6(1+x)4=(1-x)4(1-x)2的展开式中x的一次项为:C14(-x)C02+C04C22(-x)2=-4x+x=-3x,所以(1-x)6(1+x)4的展开式中x的系数是-3.二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上)13.设(x-1)21=a0+a1x+a2x2+…+a21x21,则a10+a11=________.[答案]0[解析]本题主要考查二项展开式.a10=C1021(-1)11=-C1021,a11=C1121(-1)10=C1021,所以a10+a11=C1121-C1021=C1021-C1021=0.14.已知ξ的分布列为:ξ1234P14131614则D(ξ)等于____________.[答案]179144[解析]由已知可得E(ξ)=1×14+2×13+3×16+4×14=2912,代入方差公式可得D(ξ)=179144. 15.对于回归方程y=4.75x+2.57,当x=28时,y的估计值是____________.[答案]135.57[解析]只需把x=28代入方程即可,y=4.75×28+2.57=135.57.16.某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其它三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为________(用数字作答).[答案]35[解析]本题考查了排列组合知识与概率的求解.6节课共有A66种排法,按要求共有三类排法,一类是文化课与艺术课相间排列,有A33A34种排法;第二类,艺术课、文化课三节连排,有2A33A33种排法;第三类,2节艺术课排在第一、二节或最后两节,有C23C12A22C13A33种排法,则满足条件的概率为A33A34+2A33A33+C23C12A22C13A33A66=35.三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)已知x+2xn的展开式中第五项的系数与第三项的系数比是101,求展开式中含x的项.[解析]T5=C4n(x)n-42x4=C4n24xn-122,T3=C2n(x)n-22x2=C2n22xn-62,所以C4n24C2n22=101,即C4n22=10C2n,化简得n2-5n-24=0,所以n=8或n=-3(舍去),所以Tr+1=Cr8(x)8-r2xr=Cr82rx8-3r2,由题意:令8-3r2=1,得r=2.所以展开式中含x的项为第3项,T3=C2822x=112x.18.(本题满分12分)某电脑公司有6名产品推销员,其中5名的工作年限与年推销金额数据如下表:推销员编号12345工作年限x/年35679推销金额Y/万元23345(1)求年推销金额Y关于工作年限x的线性回归方程;(2)若第6名推销员的工作年限为11年,试估计他的年推销金额.[解析](1)设所求的线性回归方程为y^=b^x+a^,则b^=i=15xi-xyi-yi=15xi-x2=1020=0.5,a^=y-b^x=0.4.所以年推销金额Y关于工作年限x的线性回归方程为y^=0.5x+0.4.(2)当x=11时,y^=0.5x+0.4=0.5×11+0.4=5.9(万元).所以可以估计第6名推销员的年推销金额为5.9万元.19.(本题满分12分)在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.(1)根据以上数据建立一个2×2的列联表;(2)试问休闲方式是否与性别有关?[解析](1)2×2列联表为性别看电视运动合计女432770男213354总计6460124(2)由χ2计算公式得其观测值χ2=124×43×33-27×21270×54×64×60≈6.201.因为6.201>3.841,所以有95%的把握认为休闲方式与性别有关.20.(本题满分12分)某研究机构举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如表所示:版本人教A版人教B版苏教版北师大版人数2015510(1)从这50名教师中随机选出2名,求2人所使用版本相同的概率;(2)若随机选出2名使用人教版的教师发言,设使用人教A版的教师人数为ξ,求随机变量ξ的分布列.[解析](1)从50名教师中随机选出2名的方法数为C250=1225.选出2人使用版本相同的方法数为C220+C215+C25+C210=350.故2人使用版本相同的概率为:P=3501225=27. (2)∵P(ξ=0)=C215C235=317,P(ξ=1)=C120C115C235=60119,P(ξ=2)=C220C235=38119,∴ξ的分布列为ξ012P317601193811921.(本题满分12分)(2014陕西理,19)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:作物产量(kg)300500概率0.50.5作物市场价格(元/kg)610概率0.40.6(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.[解析](1)设A表示事件“作物产量为300kg”,B表示事件“作物市场价格为6元/kg”,由题设知P(A)=0.5,P(B)=0.4,∵利润=产量×市场价格-成本,∴X所有可能的取值为500×10-1000=4000,500×6-1000=2000,300×10-1000=2000,300×6-1000=800,P(X=4000)=P(A-)P(B-)=(1-0.5)×(1-0.4)=0.3,P(X=2000)=P(A-)P(B)+P(A)P(B-)=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,所以X的分布列为X40002000800P0.30.50.2(2)设Ci表示事件“第i季利润不少于2000元”(i=1,2,3),由题意知C1,C2,C3相互独立,由(1)知,P(Ci)=P(X=4000)+P(X=2000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季利润不少于2000元的概率为P(C-1C2C3)+P(C1C-2C3)+P(C1C2C-3)=3×0.82×0.2=0.384,所以,这3季中至少有2季的利润不少于2000元的概率为0.512+0.384=0.896.22.(本题满分14分)学校校园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(1)求在1次游戏中,①摸出3个白球的概率;②获奖的概率.(2)求在2次游戏中获奖次数X的分布列及数学期望E(X).[解析](1)①设“在1次游戏中摸出i个白球”为事件Ai(i=0,1,2,3),则P(A3)=C23C25C12C23=15.②设“在1次游戏中获奖”为事件B,则B=A2∪A3.又P(A2)=C23C25C22C23+C13C12C25C12C23=12,且A2,A3互斥,所以P(B)=P(A2)+P(A3)=12+15=710.(2)由题意可知X的所有可能取值为0,1,2.P(X=0)=1-7102=9100,P(X=1)=C127101-710=2150,P(X=2)=7102=49100.所以X的分布列是X012P9100215049100X的数学期望E(X)=0×9100+1×2150+2×49100=75.。