材料的表面强化讲义
- 格式:ppt
- 大小:4.49 MB
- 文档页数:33
材料强化的主要方法材料强化是指通过改变材料的内部结构和外部形态,使其具有更好的性能和更广泛的应用范围的一种方法。
在材料科学领域,材料强化是一个非常重要的研究方向,通过不同的方法可以实现对材料性能的提升。
本文将介绍材料强化的主要方法,包括金属材料、陶瓷材料和高分子材料等方面。
首先,金属材料的强化方法主要包括固溶强化、析出强化和变形强化。
固溶强化是通过溶质原子溶解在基体中,形成固溶体,使晶格变得更加坚固,从而提高材料的强度和硬度。
析出强化是在固溶体中加入合金元素,通过固溶体中的析出相来增强材料的性能。
而变形强化则是通过冷加工、热加工等方式,使材料的晶粒细化,从而提高材料的强度和塑性。
其次,陶瓷材料的强化方法主要包括晶界强化、相界强化和颗粒强化。
晶界强化是通过控制晶界的结构和能量,来提高材料的韧性和强度。
相界强化是在陶瓷材料中加入第二相,通过第二相与基体之间的界面作用来增强材料的性能。
颗粒强化则是通过在陶瓷材料中加入颗粒,来阻碍裂纹扩展,提高材料的韧性和抗磨损性能。
最后,高分子材料的强化方法主要包括共混强化、填料强化和取向强化。
共混强化是将两种或多种高分子材料混合在一起,通过相互作用来提高材料的性能。
填料强化是在高分子材料中加入填料,如碳纤维、玻璃纤维等,来提高材料的强度和刚性。
取向强化则是通过拉伸、挤压等方式,使高分子链取向排列,从而提高材料的强度和韧性。
综上所述,材料强化的方法多种多样,不同的材料可以采用不同的强化方式来实现性能的提升。
在实际应用中,需要根据材料的特性和使用要求,选择合适的强化方法,从而使材料具有更好的性能和更广泛的应用前景。
希望本文所介绍的材料强化方法能对相关领域的研究和应用提供一定的参考和帮助。
初中作文讲义12:打磨记叙文,修改与润色的技巧分享很高兴能够和大家分享这篇关于记叙文写作的讲义。
在这个主题中,我们会探讨如何对文章进行修改与润色,让文章更加完美。
首先,我们需要明确一点,那就是写作是一个不断修改和润色的过程。
在你完成第一稿后,你需要花费一些时间去修改和润色,目的是让你的文章更加完美。
那么,如何进行修改与润色呢?第一步,固定修辞病句。
修辞病句是指在语言表达中,因为语法使用不准确而产生的不规范现象,,例如重复、歧义、冗长、生僻等。
在修改的过程中,我们需要找出这些问题,然后进行修正,使文章更加流畅和易懂。
例如:“我爱去旅行,因为可以看到很多的风景,以及结识很多的朋友。
”这句话的不恰当之处在于,它用了“以及”这个词,而没有对前后两个并列成分进行适当的连接词衔接。
在修改这样的句子时,我们应该将其改为:“我爱去旅行,因为可以看到很多的风景,还可以结识很多的朋友。
”第二步,调整语序。
调整语序是指在文章中,对语言的顺序和排列进行修改,以达到更好的表达效果。
语序是影响语言节奏和语言表达的重要因素,我们需要根据文章的需要进行适当的调整,使语言更加优美和流畅。
例如:“小明吃着苹果,坐在沙发上。
”这句话在表达过程中,把吃苹果和坐沙发的动作并列在一起,但是这样表达出来的句子不够流畅。
如果改为:“小明坐在沙发上,吃着苹果。
”那么就更符合语言的逻辑,也更加易读。
第三步,增强语言节奏。
语言节奏是指语言的韵律和节奏,是影响语言表达效果的重要因素之一,对于文章的表现力和感染力有很大的影响。
在修改的过程中,我们需要注意语言节奏的调整和增强,使文章更加具有音乐感和韵律感。
在修改文章时,我们需要重点关注语言的节奏感。
例如:“我走在路上,看到了一只可爱的小猫,她正在那里撒娇。
”这句话的语言节奏有些单调,可以尝试将其修改为:“我走在路上,突然发现一只可爱的小猫,她正在那里撒娇呢!”这样语言的节奏感就更加强烈了。
这些是修改与润色的基本步骤,但是我们需要注意的是,修改与润色需要具有审美和判断力。
1第三章 机械零件的强度一.静应力及其极限应力:1.静应力: 在使用期内恒定或变化次数很少(<103次)的应力。
2.极限应力σlim: 静应力作用下的σlim取决于材料性质。
1)塑性材料: σlim =σs (屈服极限)2)脆性材料: σlim=σB (强度极限)3.静强度准则: σ≤σlim/S (S —静强度安全系数)-10max§3-1 材料的疲劳特性:1.材料的疲劳特性:可用最大应力σmax、应力循环次数N和应力比r表示。
2.材料疲劳特性的确定:用实验测定,实验方法是:1)在材料标准试件上加上一定应力比的等幅变应力,应力比通常为:r=-1或r=02)记录不同最大应力σmax下试件破坏前经历的循环次数N,并绘出疲劳曲线。
3.材料的疲劳特性曲线:有二种1)σ—N疲劳曲线:即一定应力比r下最大应力σmax与应力循环次数N的关系曲线2)等寿命曲线:即一定应力循环次数N下应力幅σa 与平均应力σm的关系曲线2)C点对应的N约为:NC≈1043)这一阶段的疲劳称为应变疲劳或低周疲劳4、CD段:有限寿命疲劳阶段。
试件经历一定的循环次数N后会疲劳破坏实验表明,有限疲劳寿命σrN与相应的循环次数N之间有如下关系:23σm rN ·N = C ( N ≤N D ) (3-1)5、D 点以后: 无限寿命疲劳阶段。
1)无论经历多少次应力循环都不会疲劳破坏。
2)D 点对应的循环次数N 约为:N D =106~25×107 3)D 点对应的应力记为:σr ∞—— 叫持久疲劳极限。
σrN =σr∞( N >N D ) (3-2)4)循环基数N O 和疲劳极限σrN D 很大,疲劳试验很费时,为方便起见,常用人为规定一个循环次数N O (称 为循环基数)和与之对应的疲劳极限σrNo(简记为σr )近似代替N D 和σr ∞6、有限寿命疲劳极限σrN : 按式(3-1)应有: σm rN·N = σm r ·N O = C (3-1a )于是:K N ──寿命系数m, N O ──1)钢材(材料): m = 6~20 , N O =(1~10)×106 2)中等尺寸零件: m = 9 , N O = 5×106 3)大尺寸零件: m = 9 , N O = 107 注: 高周疲劳——曲线CD 及D 点以后的疲劳称作高周疲劳二、等寿命疲劳曲线 图3-2等寿命疲劳曲线——一定循环次数下的疲劳极限的特性。
第六章损伤累积理论及常规疲劳理论应用为什么需要损伤假设(理论)?*理论上讲,用构件的疲劳实验数据作为疲劳损伤描述是最接近实际的,但是许多情况下,进行疲劳实验是困难的,甚至是不可能的。
*疲劳是一个十分复杂的破坏现象,存在许多影响寿命的因素,通过实验也难以对每一个现象捕捉得准确。
*构件在设计阶段,零件还没有被制造出来,当然不能进行试验。
为此,人们努力寻求疲劳问题的解析分析方法,提出的方法或假设不下十多种,每种假设在一定的侧重面上对构件的疲劳规律有所反映,但又有其局限性。
一、线性疲劳损伤累积理论1原始曼纳法则(Original Miner Rule)疲劳过程可以看成是一个损伤趋于临界值的累积过程,也可以看成是材料固有寿命的消耗过程。
因此,从载荷开始作用起,疲劳过程就可以想象为:每一个重复交变载荷都对构件产生影响,都对构件的损伤作出“贡献”,而且这种“贡献”不断的累积起来,最终造成构件的破坏。
如果认为每一个交变载荷对构件的损伤量只与它的大小有关,也就是说,无论是在裂纹形成还是在裂纹扩展阶段,这个损伤量都能线性叠加。
这就是著名的Palmgren —Miner 损伤累积假设。
设材料在经过N 次加载后产生破坏时吸收的全部功为W ,而经过n 次循环后材料所吸收的功为w ,w 是W 的一部分,由于损伤是线性的,则在某一应力水平iσ时,可以得到以下平衡式:ii i i N n W w = 或i iii W N n w =设材料在破坏前,共经过了j 次循环,每次循环的应力等级为j σσσ.....,21,将各次循环的局部功相加起来:Ww w w j =+∙∙∙++21将上式代入,得W W N n W N nW N n jj =+∙∙∙⋅++2211 化为11=∑=ji iiN n 这就是曼纳法则,它假设构件发生破坏(或裂纹形成)时,1=∑iiN n。
当11<∑=ji iiN n 时,我们可以根据∑=j i i iN n 1与1的比例来推算构件的剩余寿命,也就是∑=ji ii N n 1在整个寿命中所占的份额,即:∑∑=ii i l Nn n N 曼纳法则,首先于1924年由Palmgren 提出,后于1945年由Miner 重申和完善。
不锈钢材料基本知识讲义不锈钢专业名词通俗地说,不锈钢就是不容易生锈的钢,实际上一部分不锈钢,既有不锈性,又有耐酸性(耐蚀性)。
不锈钢的不锈性和耐蚀性是由于其表面上富铬氧化膜(钝化膜)的形成,这种不锈性和耐蚀性是相对的。
试验表明,钢在大气、水等弱介质中和硝酸等氧化性介质中,其耐蚀性随钢中铬含水量的增加而提高,当铬含量达到一定的百分比时,钢的耐蚀性发生突变,即从易生锈到不易生锈,从不耐蚀到耐腐蚀。
不锈钢的分类方法很多,按室温下的组织结构分类,有马氏体型、奥氏体型、铁素体和双相不锈钢;按主要化学成分分类,基本上可分为铬不锈钢和铬镍不锈钢两大系统;按用途分则有耐硝酸不锈钢、耐硫酸不锈钢、耐海水不锈钢等等,按耐蚀类型分可分为耐点蚀不锈钢、耐应力腐蚀不锈钢、耐晶间腐蚀不锈钢等;按功能特点分类又可分为无磁不锈钢、易切削不锈钢、低温不锈钢、高强度不锈钢等等。
由于不锈钢材具有优异的耐蚀性、成型性、相容性以及在很宽温度范围内的强韧性等系列特点,所以在重工业、轻工业、生活用品行业以及建筑装饰等行业中获取得广泛的应用。
奥氏体不锈钢:在常温下具有奥氏体组织的不锈钢。
钢中含Cr 约18%、Ni 8%~10%、C约0.1%时,具有稳定的奥氏体组织。
奥氏体铬镍不锈钢包括著名的18Cr-8Ni 钢和在此基础上增加Cr、Ni 含量并加入Mo、Cu、Si、Nb、Ti 等元素发展起辀的高Cr-Ni 系列钢。
奥氏体不锈钢无磁性而且具有高韧性和塑性,但强度较低,不可能通过相变使之强化,仅能通过冷加工进行强化。
如加入S、Ca、Se、Te 等元素,则具有良好的易切削性。
此类钢除耐氧化性酸介质腐蚀外,如果含有Mo、Cu 等元素还能耐硫酸、磷酸以及甲酸、醋酸、尿素等的腐蚀。
此类钢中的含碳量若低于0.03%或含Ti、Ni,就可显著提高其耐晶间腐蚀性能。
高硅的奥氏体不锈钢浓硝酸肯有良好的耐蚀性。
由于奥氏体不锈钢具有全面的和良好的综合性能,在各行各业中获得了广泛的应用。
§1 金属材料的拉伸实验一、实验目的1.测定低碳钢(Q235 钢)的强度性能指标:上屈服强度sU σ,下屈服强度sL σ和抗拉 强度b σ。
2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率δ和断面收缩率ψ。
3.测定铸铁的强度性能指标:抗拉强度b σ。
4.观察、比较低碳钢(Q235 钢)和铸铁两种材料的力学性能、拉伸过程及破坏现象。
5. 学习试验机的使用方法。
二、设备和仪器1.材料试验机(见附1-2)。
2.电子引伸计(见附1-2)。
3.游标卡尺。
三、试样为使实验结果可以相互比较,必须对试样、试验机及实验方法做出明确具体的规定。
国标GB/T228-2002 “金属材料室温拉伸试验方法”中规定对金属拉伸试样通常采用圆形和板状两种试样,如图1-1所示。
它们均由夹持、过渡和平行三部分组成。
夹持部分应适合于试验机夹头的夹持。
过渡部分的圆孤应与平行部分光滑地联接,以保证试样破坏时断口在平行部分。
平行部分中测量伸长用的长度称为标距。
受力前的标距称为原始标距,记作L 0,通常在l 0l b h (a)(b)图1-1 试样其两端划细线标志。
按试样原始标距L 0和原始横截面面积A 0之间的关系分,试样可分为比例试样和定标距试样两种。
比例试样的0L =系数K 通常取为5.65或11.3,前者称为短比例试样(简称短试样),后者称为长比例试样(简称长试样)。
对圆形试样来说,原始标距分别等于5d 0和10d 0。
一般应采用短比例试样。
定标距试样L 0与A 0无上述比例关系。
国标GB/T228-2002中,对试样形状、尺寸、公差和表面粗糙度均有明确规定。
本次实验采用d 0=10mm 的圆形截面短比例试样。
四、实验原理低碳钢(Q235 钢)的拉伸实验(图解方法)将试样安装在试验机的上下夹头中,引伸计装卡在试样上,启动试验机对试样加载,试验机将自动绘制出载荷位移曲线(F -ΔL 曲线),如图1-2。
观察试样的受力、变形直至破坏的全过程,可以看到低碳钢拉伸过程中的四个阶段(弹性阶段、屈服阶段、强化阶段和局部变形阶段)。