第七章 液-液萃取技术
- 格式:pptx
- 大小:1.30 MB
- 文档页数:69
液-液萃取第一节 概述利用原料液中各组分在适当溶剂中溶解度的差异而实现混合液中组分分离的过程称为液-液萃取,又称溶剂萃取。
液-液萃取, 它是30年代用于工业生产的新的液体混合物分离技术。
随着萃取应用领域的扩展,回流萃取,双溶剂萃取,反应萃取,超临界萃取及液膜分离技术相继问世, 使得萃取成为分离液体混合物很有生命力的操作单元之一。
一.萃取操作原理萃取是向液体混合物中加入某种适当溶剂,利用组分溶解度的差异使溶质A 由原溶液转移到萃取剂的过程。
在萃取过程中, 所用的溶剂称为萃取剂。
混合液中欲分离的组分称为溶质。
混合液中的溶剂称稀释剂,萃取剂应对溶质具有较大的溶解能力,与稀释剂应不互溶或部分互溶。
右图是萃取操作的基本流程图。
将一定的溶剂加到被分离的混合物中, 采取措施(如搅拌)使原 料液和萃取剂充分混合混合,因溶质在两相间不呈平衡,溶质在萃取相中的平衡浓度高于实际浓度, 溶质乃从混合液相萃取集中扩散,使溶质与混合中的其它组分分离,所以萃取是液、液相间的传质过程。
通常 ,萃取过程在高温下进行,萃取的结果是萃剂 提取了溶质成为萃取相,分离出溶质的混合液成为萃余相。
萃取相时混合物,需要用精馏或取等方法进行分离,得到溶质产品和溶剂,萃取剂供循环使用。
萃取相通常含有少量萃取剂,也需应用适当的分离方法回收其中的萃取剂,然后排放。
用萃取法分离液体混合物时,混合液中的溶质既可以是挥发性物质,也可以是非挥发性物质,(如无机盐类)。
当用于分离挥发性混合物时,与精馏比较,整个萃取过程比较复杂,譬如萃取相中萃取剂的回收往往还要应用精馏操作。
但萃取过程本身具有常温操作,无相变以及选择适当溶剂可以获得较高分离系数等优点,在很多的情况下,仍显示出技术经济上的优势。
一般来说,在以下几种情况下采取萃取过程较为有利:⑴ 溶液中各组分的沸点非常接近,或者说组分之间的相对挥发度接近于一。
⑵ 混合液中的组成能形成恒沸物酸, 用一般的精馏不能得到所需的纯度。
液液萃取的基本原理一、基本概念液—液萃取是分别均相液体混合物的单元操作之一、利用液体混合物中各组分在某溶剂中溶解度的差别,而实现混合物分别的目的。
萃取属于传质过程。
本章重要讨论双组分均相液体混合物(A+B)的萃取过程。
所选用溶剂称为萃取剂S,混合液中被分别出的组分称为溶质A,原混合液中与萃取剂不互溶或仅部分互溶的组分称为原溶剂B。
操作完成后所获得的以萃取剂为主的溶液称为萃取相E,而以原溶剂为主的溶液称为萃余相R。
除掉萃取相中的萃取剂后得到的液体称为萃取液E,同样,除掉萃余相中的萃取剂后得到的液体称为萃余液R。
可见,萃取操作包含下列步骤:(1)原材料液(A+B)与萃取剂的混合接触;(2)萃取相E与萃余相R的分别;(3)从两相中分别回收萃取剂而得到产品E、R。
二、萃取在工业生产中的应用1.溶液中各组分的相对挥发度很接近或能形成恒沸物,采用一般精馏方法进行分别需要很多的理论板数和很大的回流比,操作费用高,设备过于庞大或根本不能分别。
2.组分的热敏性大,采用蒸馏方法易导致热分解、聚合等化学变动。
3.溶液沸点高,需要在高真空下进行蒸馏。
4.溶液中溶质的浓度很低,用蒸馏方法能耗太大,经济上不合理。
液—液萃取技术的应用不限于以上几个方面,而是有着广泛的前景。
萃取与蒸馏两种分别方法可以相互增补。
实践证明,适当选用蒸馏或萃取,将近全部液体混合物都能有效而经济的实现组分间的分别。
三、液—液平衡关系液—液萃取至少涉及三种物质,即原材料液中的溶质A和原溶剂B,以及萃取剂S。
加入的萃取剂与原材料液(A+B)形成的三组分物系有三种类型。
(1)溶质A溶于原溶剂B及萃取剂S中,但萃取剂S与原溶剂B不互溶,形成一对不互溶的混合液;(2)萃取剂S与原溶剂B部分互溶,与溶质A互溶,形成一对部分互溶的混合液;(3)萃取剂S不但与原溶剂B部分互溶而且与溶质A也部分互溶,形成两对部分互溶的混合液。
液液萃取的原理和应用原理液液萃取是一种分离、提纯或浓缩化合物的方法,通过两种不相溶的液体相互接触并选择性地转移目标物质。
液液萃取的原理基于溶剂对不同化合物的亲和力不同,利用相互接触的液体相中的分配系数来实现分离。
液液萃取的原理可以通过以下步骤进行描述: 1. 选择两种互不溶解的液体相,其中至少一种液体相中含有目标物质。
2. 液液接触发生后,目标物质会根据其在两个相中的分配系数分配到不同的相中,实现物质的分离。
3. 通过分离两个液体相,可以得到目标物质单独的液体相,以达到提纯、浓缩或分离的效果。
应用液液萃取在许多领域中都有广泛的应用,下面列举其中一些主要的应用:1.化学工业:液液萃取在化学工业中用于分离和提纯有机化合物,如药品、精细化工产品、溶剂、香料等。
通过调整萃取过程中的条件,可以实现对化合物的选择性提取,提高产品的纯度和得率。
2.生物技术:液液萃取在生物技术中用于分离和纯化生物产物,如蛋白质、酶、DNA等。
通过调整液体相的成分和pH值等条件,可以将目标物质从复杂的混合物中提取出来,用于进一步的研究、分析或生产。
3.环境监测:液液萃取在环境监测中用于提取和浓缩环境样品中的有机物污染物,如水中的有机污染物、土壤中的农药残留等。
通过将样品与萃取剂接触,可以将目标污染物从样品中富集到萃取剂中,以便进一步的分析和检测。
4.食品工业:液液萃取在食品工业中用于提取和分离食品中的有用成分,如香精、色素、营养物质等。
通过调整萃取剂的选择和工艺条件,可以将食品中的有用成分分离出来,用于增加食品的口感、品质和营养价值。
5.石油工业:液液萃取在石油工业中用于提取和分离石油中的化合物,如重质烃、硫化物、氮化物等。
通过选择合适的萃取剂和调整工艺参数,可以将石油中的有害化合物去除或转化,以提高石油产品的质量和环境友好性。
6.药物开发:液液萃取在药物开发中用于提取和分离药物候选物或药物代谢产物。
通过将药物样品与合适的萃取剂接触,可以将目标化合物从复杂的样品中提取出来,用于药物的评价、分析和进一步的研究。
11 液液萃取(溶剂萃取)Liquid-liquid extraction(Solventextraction)11.1 概述一、液液萃取过程:1、液液萃取原理:根据液体混合物中各组分在某溶剂中溶解度的差异,而对液体混合物实施分离的方法,也是重要的单元操作之一。
溶质 A + 萃取剂 S——————〉S+A (B) 萃取相 Extract分层稀释剂 B B + A (S…少量) 萃余相 Raffinate(残液)一般伴随搅拌过程 => 形成两相系统,并造成溶质在两相间的不平衡则萃取的本质:液液两相间的传质过程,即萃取过程是溶质在两个液相之间重新分配的过程,即通过相际传质来达到分离和提纯。
溶剂 extractant(solvent)S 的基本条件:a、S 不能与被分离混合物完全互溶,只能部分互溶;b、溶剂具有选择性,即溶剂对A、B两组分具有不同溶解能力。
即(萃取相内)(萃余相内)最理想情况: B 与 S 完全不互溶 => 如同吸收过程: B 为惰性组分相同:数学描述和计算实际情况:三组分分别出现于两液相内,情况变复杂2 、工业萃取过程:萃取不能完全分离液体混合物,往往须精馏或反萃取对萃取相和萃余相进行分离,而溶剂可循环使用。
实质:将一个难于分离的混合物转变为两个易于分离的混合物举例:稀醋酸水溶液的分离:萃取剂:醋酸乙酯3 、萃取过程的经济性:取决于后继的两个分离过程是否较原液体混合物的直接分离更容易实现( 1 )萃取过程的优势:(与精馏的关系)a、可分离相对挥发度小或形成恒沸物的液体混合物;b、无相变:液体混合物的浓度很低时,精馏过于耗能(须将大量 B 汽化);c、常温操作:当液体混合物中含有热敏性物质时,萃取可避免受热;d、两相流体:与吸附离子交换相比,操作方便。
( 2 )萃取剂的选择——萃取过程的经济性a、分子中至少有一个功能基,可以与被萃取物质结合成萃合物;b、分子中必须有相当长的烃链或芳香环,可使萃取剂和萃合物容易溶解于有机相,一般认为萃取剂的分子量在350-500之间较为合适。
液液萃取技术2023摘要:1.液液萃取技术简介2.液液萃取技术的应用领域3.液液萃取技术的发展趋势4.我国在液液萃取技术方面的研究进展5.液液萃取技术在环保领域的案例分析6.液液萃取技术在化工领域的案例分析7.液液萃取技术的优势与局限性8.液液萃取技术的发展前景正文:液液萃取技术是一种绿色、高效的分离技术,广泛应用于环保、化工、石化、核工业等领域。
本文将对液液萃取技术的发展现状、应用案例、优势与局限性以及未来发展进行详细探讨。
一、液液萃取技术简介液液萃取技术是利用两种不相溶或相溶性较差的液体,通过溶剂的选择性溶解作用,实现目标组分从一种液体相转移到另一种液体相的过程。
这种方法具有操作简便、成本低、能耗小等优点,因此在许多行业中得到了广泛应用。
二、液液萃取技术的应用领域1.环保领域:液液萃取技术在环保领域主要用于处理工业废水、废水和土壤修复等。
例如,采用液液萃取技术处理含重金属的废水,可以有效降低废水中的重金属浓度,达到环保排放标准。
2.化工领域:液液萃取技术在化工领域主要用于分离和提纯化合物,如石油化工、有机化工和无机化工等。
例如,在石油化工行业中,液液萃取技术可以用于分离原油中的硫化物、氮化物等有害物质,提高原油的品质。
三、液液萃取技术的发展趋势1.工艺优化:通过优化萃取剂的选择、操作条件和研究新型萃取设备,提高液液萃取过程的效率。
2.集成与创新:将液液萃取技术与其他分离技术(如膜分离、离子交换等)相结合,开发新型集成工艺,实现高效、绿色的分离目标。
3.智能化与自动化:利用计算机模拟、人工智能等技术,实现液液萃取过程的智能化与自动化,降低操作成本。
四、我国在液液萃取技术方面的研究进展近年来,我国在液液萃取技术领域取得了显著的研究成果。
例如,研发了具有自主知识产权的的新型萃取剂和萃取设备,并在多个领域实现了产业化应用。
五、液液萃取技术在环保领域的案例分析某化工企业在生产过程中产生了一种含有重金属的废水,采用液液萃取技术,选用特定萃取剂,将重金属离子从废水中萃取出来,实现了废水的达标排放。
思考题1 衡量分离效果的因素主要是哪些?2 试述影响萃取效果的主要因素?3 选择萃取溶剂时还应考虑哪些方面?4 请详述产生乳化的原因及消除乳化的具体措施?5 系统分析法中萃取操作中的三部位法和四部位法常用的溶剂各是何物?一液-液萃取法1 液-液萃取原理液-液萃取法即两相溶剂提取,是利用混合物中各组分在两种互不相溶的溶剂中分配系数的不间而达到分离目的的方法。
简单的萃取过程是将萃取剂加入到样品溶液中,使其充分混合,因某组分在萃取剂中的平衡浓度高于其在原样品溶液中的浓度,于是这些组分从样品溶液中向萃取剂中扩散,使这些组分与样品溶液中的其他组分分离。
组分A在两相间的平衡关系可以用平衡常数K来表示:K=CA/C'A。
式中CA: 组分A在苯取剂中的浓度;C'A:组分A在原样品溶液中的浓度。
这就是分配定律。
对于液一液萃取,K通常称为分配系数,可将其近似地看做组分在萃取剂和原样品溶液中的溶解度之比。
物质在萃取剂和原溶液中的溶解度差别越大,K值越大,萃取分离效果越好。
当K≥100时,所用萃取剂的体积与原溶液体积大致相等时,一次简单萃取可将99%以上的该物质萃取至萃取剂中,但这种情况往往很少。
K值取决于温度、溶剂和被萃取物的性质,而与组分的最初浓度、组分与溶剂的质量无关。
萃取过程的分离效果主要表现为被分离物质的萃取率和分离纯度。
萃取率为萃取液中被萃取的物质与原溶液中该物质的溶质的量之比。
萃取率越高,表示萃取过程的分离效果越好。
1.1 影响萃取效果的因素影响分离效果的主要因素包括:萃取剂、被萃取的物质在萃取剂与原样品溶液两相之间的平衡关系(主要表现为被萃取物质在萃取剂与原样品溶液两相中的溶解度差别)、在萃取过程中两相之间的接触情况。
被萃取物质在一定的条件下,主要决定于萃取剂的选择和萃取次数。
1.1.1萃取溶剂的选择萃取剂对萃取效果的影响很大,萃取溶剂选择的主要依据是被萃取的物质的性质,相似相溶原理是萃取剂选择的基本规则。
液液萃取技术
液液萃取技术是一种用于分离混合物中溶质的方法,基于溶质在两种不相溶液体之间的分配行为。
该技术常用于药物提取、化工生产和环境分析等领域。
液液萃取技术利用两种不相溶的溶剂(通常为水和有机溶剂)的互溶性差异,将需要分离的溶质从一个溶液转移到另一个溶液中。
该过程通常基于溶质在两种溶剂中的溶解度不同而实现。
液液萃取的关键是选择适当的溶剂对,并控制温度、摇动速度等条件,以获得较高的萃取效率。
液液萃取技术有许多应用,例如在药物制剂中,可以使用液液萃取技术从草药中提取活性成分,然后用溶剂进行提取和洗脱。
在化工生产中,液液萃取可以用于分离和提纯化合物,例如从石油中提取烯烃类化合物。
在环境分析中,液液萃取也常用于水样和土壤样品中有机污染物的提取与富集。
总的来说,液液萃取技术是一种重要的分离和提取方法,应用广泛,并在许多领域中发挥着重要作用。
液液萃取技术2023摘要:一、液液萃取技术的背景和定义1.技术背景2.技术定义二、液液萃取技术的工作原理1.相容性原理2.分离原理三、液液萃取技术的应用领域1.医药行业2.食品行业3.化工行业四、液液萃取技术的优点与挑战1.优点a.高效性b.环保性c.选择性d.可控性2.挑战a.萃取剂的选择b.设备的设计与操作c.成本问题五、液液萃取技术的未来发展趋势1.萃取剂的研究与发展2.设备自动化与智能化3.跨行业合作与应用正文:液液萃取技术是一种高效、环保、选择性和可控的分离技术,广泛应用于医药、食品和化工等行业。
该技术基于相容性原理和分离原理,利用两种不相溶的液体之间的亲和性差异,实现组分间的分离。
在液液萃取技术中,萃取剂的选择至关重要。
萃取剂应具有较高的选择性和亲和力,能够有效地将目标组分从混合物中提取出来。
同时,萃取剂还应具有良好的热稳定性和化学稳定性,确保整个分离过程的顺利进行。
液液萃取技术在医药行业的应用尤为突出,如天然药物的提取与纯化、生物制药的分离与浓缩等。
此外,在食品行业,液液萃取技术也被广泛应用于香精油的提取、天然色素的提取以及食品添加剂的制备等方面。
在化工行业,液液萃取技术可用于精细化学品的提纯与分离,以及环境保护领域的废水处理和有害物质的去除。
液液萃取技术在实际应用中面临着一些挑战,如萃取剂的选择、设备的设计与操作以及成本问题。
为了克服这些挑战,研究人员和工程师们正在努力开发新型萃取剂和优化设备设计,以提高液液萃取技术的性能和效率。