PSCAD的电力系统仿真大作业3
- 格式:doc
- 大小:114.00 KB
- 文档页数:5
PSCAD实验报告学院:水利电力学院班级:姓名:学号:PSCAD实验报告实验一实验名称:简单电力系统短路计算实验目的:掌握用PSCAD进行电力系统短路计算的方法仿真工具:PSCAD/EMTDC实验原理:在电力系统三相短路中,元件的参数用次暂态参数代替,画出电路的等值电路,短路电流的计算即相当于稳态短路电流计算。
单相接地,两相相间,两相接地短路时的短路电流计算中,采用对称分量法将每相电流分解成正序、负序和零序网路,在每个网络中分别计算各序电流,每种短路类型对应了不同的序网连接方式,形成了不同复合序网,再在复合序网中计算短路电流的有名值。
在并且在短路电流计算中,一般只需计算起始次暂态电流的初始值。
实验内容及其步骤:图示电力系统已知:发电机:Sn=60MV A,Xd”=0.16,X2=0.19 ;变压器:Sn=60MV A,Vs%=10.5 ;1)试计算f点三相短路,单相接地,两相相间,两相接地短路时的短路电流有名值。
2)若变压器中性点经30Ω电抗接地,再作1)。
3)数据输入。
4) 方案定义。
5) 数据检查。
6) 作业定义。
7) 执行计算。
8) 输出结果。
模型建立:实验结果与分析:通过PSCAD仿真所得结果为1)、三相短路(有接地电抗)2)、三相短路(无接地电抗)3)、单相接地短路(有接地电抗)4)、单相接地短路(无接地电抗)5)、两相相间短路(有接地电抗)6)、两相相间短路(无接地电抗):7)、两相接地短路(有接地电抗):8)、两相接地短路(无接地电抗):实验二实验名称:电力系统故障分析实验目的:1) 熟悉PSCAD/EMTDC的正确使用;2) 掌握多节点电力系统的建模;3) 掌握元件及不同线路模型参数的设置方法;4) 掌握各种短路故障的建模。
仿真工具:PSCAD/EMTDC一、故障模型建立实验内容及步骤如图1所示系统,利用PSCAD/EMTDC软件完成以下实验内容:(1)新建项目文件;(2)在新项目工作区进行系统建模:将A、B、C、D四个节点分别画在四个模块中,在每段线路中都加入三相故障模块;(3)用500kv 典型参数设置电源和线路的参数(传输线采用Bergeron 模型,每段线路长度分别为AB 段300Km ,BC 段100Km ,AD 段100Km ,DE 段50Km );(4)双绕组变压器变比设置为500kv/220kv ,容量为100MVA ,一次测采用星型接法,二次侧采用三角接;设置每个节点的三相电压和电流输出量;(5)设置输出量:将每一节点的三箱电压和电流分别输出显示在两个波形框中。
引言电力工业是国民经济发展的基础工业。
随着经济建设的发展,发电设备的容量也在相应增大。
为了更好的保证安全运行,经济运行,并保证电能质量,我们应该考虑任何电力系统故障的情况,并加以研究。
电力系统正常运行的破坏多半是由短路故障引起的。
在供电系统中,短路冲击电流会使两相邻导体间产生巨大的电动力,使元件损坏;大的短路电流将使导体温度急剧上升,会使元件烧毁;阻抗电压大幅下降,影响系统稳定性。
发生短路时,系统从一种状态变到另一种状态,并伴随产生复杂的电磁暂态现象。
所以有必要对电力系统电磁暂态进行研究。
目前,电力系统暂态分析的研究理论已越来越完善,但基本上是通过建立数学模型,并解数学方程来分析的。
这让我们很难理解其推导过程,所以很有必要利用直观的方法来分析并得出相同的结论。
本设计利用PSCAD软件建立了简单电力系统和复杂电力系统两个仿真模型。
简单电力系统模型包括:同步发电机模型、负荷模型等;复杂电力系统模型包括:同步发电机模型、变压器模型、输电线模型、负荷模型等。
本设计通过运用EMTDC模块对电力系统仿真进行计算,并分析其电磁暂态稳定性,其中计算了发生四类短路故障时的暂态参数,并对其分析比较,来研究电力系统的这四类短路之间的异同和暂态对电力系统的影响。
通过此次设计进一步巩固和加强了四年来所学的知识,并得到了实际工作经验。
设计中查阅了大量的相关资料,努力做到有据可循。
在设计中逐步掌握了查阅,运用资料的能力,总结了四年来所学的电力工业的相关知识,为日后的工作打下了坚实的基础。
由于我在知识条件等方面的局限,仍存在许多不足,但在指导老师和学院大力支持和帮助下,已有相当大的改进,在此表示衷心的感谢。
第一章绪论1.1 电力系统分析简介运用数字仿真计算或模拟试验的方法,对电力系统的稳态方式和受到扰动后的暂态行为进行考察的分析研究。
对规划、设计的电力系统,通过电力系统分析,可选择正确的系统参数,制定合理的电力系统方案;对运行中的电力系统,借助电力系统分析,可确定合理的运行方式,进行系统事故分析和预想,提出防止和处理事故的技术措施。
电力系统分析课程报告姓名 ******* 学院自动化与电气工程学院专业控制科学与工程班级 *******指导老师 *******二〇一六年五月十三一、同步发电机三相短路仿真1、仿真模型的建立选取三相同步发电机模型,以三相视图表示。
励磁电压和原动机输入转矩Ef 与Tm均为定常值1.0,且发电机空载。
当运行至0.5056s时,发电机发生三相短路故障。
同步发电机三相短路实验仿真模型如图1所示。
图1 同步发电机三相短路实验仿真模型2、发电机参数对仿真结果的影响及分析2.1 衰减时间常数Ta对于直流分量的影响三相短路电流的直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路的电阻和等值电感决定(大约0.2s)。
pscad同步发电机模型衰减时间常数Ta对应位置如图3所示(当前Ta=0.278s)。
图3 同步发电机模型参数Ta对应位置1)Ta=0.278s时,直流分量的衰减过程(以励磁电流作为分析)如图4所示。
图4 Ta=0.278s发生短路If波形2)Ta=0.0278s时,直流分量的衰减过程(以励磁电流作为分析)如图5所示。
图5 Ta=0.278s发生短路If波形2.2 短路时刻的不同对短路电流的影响由于短路电流的直流分量起始值越大,短路电流瞬时值就越大,而直流分量的起始值于短路时刻的电流相位有关,即直流分量是由于短路后电流不能突变而产生的。
Pscad模型中对短路时刻的设置如图6所示图6 Pscad对于短路时刻的设置1)当在t=0.5056时发生三相短路,三相短路电流波形如图7所示。
图7 t=0.5056时三相短路电流波形2)当在t=0.6时发生三相短路,三相短路电流波形如图8所示。
图8 t=6时三相短路电流波形2.3 Xd、Xd`、Xd``对短路电流的影响1) Xd的影响Pscad中对于Xd的设置如图9所示:图9 Pscad对于D轴同步电抗Xd的设置下面验证不同Xd时A相短路电流的稳定值。
电力系统分析综合实验报告本实验旨在通过对电力系统进行分析和综合实验,从而了解电力系统的基本工作原理、电力负荷的管理和电路的运行条件。
在本次实验中,我们将使用PSCAD软件进行电力系统的模拟,并最终得出分析结果。
第一部分:实验目的本实验的主要目的是使学生熟悉电力系统的基本概念、基本原理和基本分析方法,了解电路的运行条件和电力负荷的管理,通过实验来了解电力系统的基本运行流程和原理。
同时,实验中更加重视学生解决问题、创新思维、团队协作和实验数据记录。
第二部分:实验内容本实验的内容主要包括以下几个方面:1. 非线性电力系统的建模使用PSCAD软件来建立非线性电力系统的模型,包括电源、负载和传输线等组成部分。
通过一个简单的电路来进行模拟,检验电源、负载和传输线的正常工作状态。
2. 电力系统稳定性分析使用系统柔性和频率响应等分析方法,对电力系统进行稳定性分析。
通过仿真和实验搭建一个简单的电路来进行稳定性分析,只有在系统稳定的状态下才能进行正常的供电操作。
3. 电路负载管理和分析使用实际电路负载来进行各类负载管理和分析,包括负载均衡和负载优化。
通过对负载进行分析并进行优化调整,以达到电系统的最佳工作状态。
4. 设备运行条件分析通过对设备的状态进行分析,寻找设备的运行条件,以保证设备的正常运转。
在分析过程中,需要对各种设备产生的功率损失和电流负载进行考虑。
第三部分:实验步骤本实验的步骤大致如下:1. 建立非线性电力系统模型首先,需要在PSCAD软件中建立一个非线性电力系统模型,包括电源、负载和传输线等组成部分,并进行电路的初始化设置。
2. 进行电路的基本操作进行电路的基本操作,包括开关的合闭、电源的开启和负载的接入等,以检验电路的正常工作状态。
3. 进行电力系统稳定性分析通过进行仿真和实验来进行电力系统稳定性分析,只有在系统稳定的状态下才能进行正常的供电操作。
如果系统不稳定,则需要进行适当的调整。
4. 进行负载分析和负载管理通过对负载进行分析和管理,以达到电系统的最佳工作状态。
武汉大学电气工程学院综合自动化PSCAD仿真实验姓名:***学号:20***********班级:电气**级*班一、同步发电机的准同期并列操作发电机的准同期并列操作,是在同步发电机已经投入调速器和励磁装置,当发电机电压的幅值,频率和相位接近相等时,通过并列点断路器合闸将发电机并入电网运行的一系列动作。
具体参见教材《电力系统自动化》或《自动装置原理》。
1.实验预习清楚同步发电机准同期并列的概念和原理。
2.实验目的了解数字仿真软件中发电机组的构成,仿真同步发电机准同期并列操作。
3.实验步骤(1)将仿真示例copy到电脑。
进入PSCAD,打开sync_in_paralell;(2 ) 三个时间的设置点右键,再点Project setting, 再点Runtime,注意Time setting 三个参数的设置。
Duration of run (sec): 程序计算时间,以秒为单位;Solution time step (sμ): 计算步长,以微秒为单位,两个相邻计算点之间是一个计算步长;μ,用计算输出的数据来说明,第一个数据的时间坐标是0s, 如上图的200s, 50sμ。
最后一个数据的时间是200s,每两个数据的时间坐标相差50sChannel plot step (sμ): 作图步长,以微秒为单位,图上相邻两个点之间的时间是一个画图步长。
请将模型计算时间和运行时间区分开,同学们可以看看要得到200s的计算数据,运行时间是多少。
记下点击菜单开始运行和结束运行的实际时间,两者之差就是运行时间,该时间与电脑性能密切相关。
(3)学习各个元件的使用。
a. 在帮助中没有介绍的元件例如,双击后有,表明:点击菜单运行图标,程序计算时间从0开始计时,当计算时间是时,该元件的输出由0变为1.b. 在帮助中有介绍的元件例如选择器:,A、B是输入,右端是输出。
A双击后有点击‘Help’, 可知如何使用。
如上图所填,当Ctrl端等于1,A端输入被选择,输出等于A端输入。
电力系统分析课程报告姓名******学院自动化与电气工程学院专业控制科学与工程班级*****************指导老师******二〇一六年六月十六1同步发电机三相短路仿真计算1.1仿真模型的建立根据老师给的三相同步发电机模型做了修改(空载)。
同步发电机三相短路实验仿真研究的模型如下图所示:图1.1 同步发电机三相短路仿真研究的模型1.2 PSCAD中的仿真结果1.2.1 发电机出口电压Ea。
发电机出口电压Ea,如下图所示:图1.2 发电机出口电压Ea1.2.1 衰减时间常数Ta对于直流分量的影响励磁电压和原动机输入转矩Ef与Tm均为定常值1.0,且发电机空载。
当运行至0.5056s时,发电机发生三相短路故障。
定子三相短路电流中含有直流分量和交流分量,三相短路电流的直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路的电阻和等值电感决定,大约0.2s。
PSCAD同步发电机模型衰减时间常数Ta(Ta=0.235s)对应位置下图所示。
图1.3 同步发电机参数Ta设置图(1)当衰减时间常数Ta=0.235s时,直流分量(If)的衰减过程如下图所示。
图1.4 直流分量的衰减波形(2)当衰减时间常数Ta=0.125s的参数设置、直流分量(If)的衰减过程如下图所示。
图1.3 同步发电机参数Ta设置图图1.4 直流分量的衰减波形1.2.2 短路时间不同的影响同步发电机出口三相短路的时间不同对三相短路电流的影响:短路电流的直流分量起始值越大,短路电流瞬时值就越大;直流分量的起始值与短路时间的电流相位直接关系。
短路时间参数设置如下图所示:图1.5 短路时间参数设置1)当0.5056s时发生三相短路,电流波形如下图所示:图1.6 三相短路电流波形2)当0.8065s时发生三相短路,电流波形如下图所示:图1.7 三相短路电流波形1.2.3 Xd、Xd`、Xd``对短路电流的影响(1) Xd不同的影响同步发电机的三相短路研究模型中Xd的参数设置如下图所示:图1.8 Xd的参数设置仿真波形如下图所示:图1.9 三相短路电流波形同步发电机的三相短路研究模型中Xd的参数设置如下图所示:图1.10 Xd的参数设置Xd=10.14时,仿真波形如下图所示图1.11 三相短路电流波形(2)Xd`的影响同步发电机的三相短路研究模型中Xd’的参数设置如下图所示:图1.12 Xd的参数设置Xd’=0.314时三相短路电流的波形如下图所示:图1.13 三相短路电流波形同步发电机的三相短路研究模型中Xd’的参数设置如下图所示:图1.14 Xd’的参数设置Xd’=1.01时,三相短路电流的波形如下图所示:图1.15 三相短路电流波形(3)Xd’’的影响同步发电机的三相短路研究模型中Xd’’的参数设置如下图所示:图1.16 Xd’’的参数设置Xd’’=10.14时,仿真波形如下图所示:图1.17 三相短路电流波形同步发电机的三相短路研究模型中Xd’’的参数设置如下图所示:图1.18 Xd’’的参数设置Xd’’=0.9时三相短路电流的波形如下图所示:图1.19 三相短路电流波形1.2.4衰减时间常数Td’、Td’’的影响(1)不同Td’时A相短路电流暂态交流分量衰减速度。
基于PSCAD的微电网控制系统建模与仿真PSCAD软件是电力系统仿真软件中的一种,它可以用于设计、分析和优化电力系统的控制系统。
微电网是一种能够让多种不同的能源设备和负载集成在一起的电力系统,其控制和管理对于实现微电网功率均衡和优化非常关键。
因此,本文将介绍如何使用PSCAD软件来建模和仿真微电网控制系统。
第一步,建立微电网模型。
在PSCAD中创建新项目后,选择微电网模型的拓扑结构,包括各种能源源(太阳能光伏发电、风能发电等)和负载(家庭、工厂等)。
将拓扑结构中所有的能量汇(如充电电池、ESSE等)布置在一个区域内,充当能量存储和管理的中心。
在模型设置中,设置各种能源源的容量、负载需求、电池充放电等参数。
第二步,建立微电网控制系统。
将微网设计中的器件或系统连接起来,实现对微电网的控制和管理。
利用PSCAD提供的控制器和信号处理器建立微网的分级控制系统。
根据需要,加入分布式控制算法、能量管理算法和负载控制算法等实现微电网的自动管理。
第三步,仿真并测试微电网控制系统。
使用PSCAD中的仿真功能验证微电网控制系统的功能和性能。
为了优化微电网,可以通过调整控制系统参数来达到更好的功率均衡和能量管理效果。
通过对微电网的仿真,可以对微电网的性能进行全面的评估。
例如,可以确定微电网的电池容量是否足够、是否可以满足负载要求等。
在模拟期间,可以观察模型中多个部件之间的交互,并使用数字仪表板和时间响应曲线记录电力系统中的电量和电压。
在仿真结束后,还可以使用PSCAD生成仿真报告,分析系统的性能指标并评估系统的性能。
总之,PSCAD可以用于微电网控制系统的建模、仿真和优化,可以帮助使用者快速、高效地评估微电网性能和控制系统的优化。
据此,未来微电网的发展将会有更加广阔的前景。
数据分析是现代社会中必不可少的方法之一,可以通过数据分析的结果在各种领域中做出更好的决策。
下面我们将列举一些相关数据进行分析。
首先,我们来看全球各大洲的能源消耗情况。
电力系统仿真实验指导书EMTDC/PSCAD故障分析建模及故障仿真西南交通大学目录1.概述1.1 EMTDC/PSCAD软件介绍 ................. 错误!未定义书签。
1.2 电力系统故障概念 (6)2.实验内容实验一单节点系统故障建模及仿真2.1 实验目的 (7)2.2 实验内容 (7)2.3 实验步骤 (7)2.4 思考题 (10)实验二四节点系统故障建模及仿真3.1 实验目的 (11)3.2 实验内容 (11)3.3 思考题 (11)实验三IEEE14BUS系统故障建模(选做)1错误!未定义书签。
附录不同电压等级下的输电线路典型参数 (13)1、概述1.1 EMTDC/PSCAD软件介绍EMTDC/PSCAD是加拿大马尼托巴高压直流研究中心出品的一款电力系统电磁暂态研究软件,EMTDC(Electromagnetic Transients including DC)是其内部执行程序,可视化的图形界面PSCAD(Power Systems Computer Aided Design)使用户可以非常方便地绘制仿真系统。
EMTDC/PSCAD是一个能够设计和仿真所有类型电力系统的快速、精确、易使用的软件,它能够仿真低压电力电子回路、高压直流传输(HVDC)以及柔性交流传输系统(FACTS)等,它主要用在以下方面:电能质量研究电力电子系统与控制的设计分布式发电研究电力系统交、直流系统的研究电力系统保护的研究1)EMTDC/PSCAD主界面。
如图1-1所示:图1-1EMTDC/PSCAD主界面菜单栏:包括文件、编辑、视图、编译、窗口、帮助选项。
工具栏:基本工具,如保存、打印、缩放、连线、创建新元件等。
编译运行按钮:包括编译、链接、运行。
主元件库:Master Library包含很多元件模型,在打开软件时会自动加载这个库,从库中选择元件进行建模。
项目窗口:包含所有加载进来的库和例子。
状态栏:显示当前例子状态。
pscad实验报告华中科技大学电力系统实验报告华中科技大学电力系统实验报告一、实验目的本次实验的目的是通过使用PSCAD软件,对电力系统进行仿真实验,探究电力系统的运行特性和稳定性。
二、实验原理PSCAD是一款用于电力系统仿真的软件,可以模拟电力系统中各种元件的运行情况,包括发电机、变压器、线路等。
通过对电力系统进行仿真实验,可以更好地理解电力系统的运行原理和特性。
三、实验内容本次实验主要包括以下几个方面的内容:1. 发电机的模拟:通过设置发电机的参数,模拟发电机的运行情况,包括电压、频率等。
2. 变压器的模拟:通过设置变压器的参数,模拟变压器的运行情况,包括变压比、损耗等。
3. 线路的模拟:通过设置线路的参数,模拟线路的运行情况,包括电阻、电感等。
4. 稳定性分析:通过对电力系统进行稳定性分析,探究电力系统的稳定性。
四、实验步骤1. 打开PSCAD软件,新建一个电力系统仿真实验。
2. 设置发电机的参数,包括电压、频率等。
3. 设置变压器的参数,包括变压比、损耗等。
4. 设置线路的参数,包括电阻、电感等。
5. 运行仿真实验,观察电力系统的运行情况。
6. 对电力系统进行稳定性分析,探究电力系统的稳定性。
五、实验结果通过对电力系统进行仿真实验,我们观察到了以下几个结果:1. 发电机的电压和频率在一定范围内波动,但保持在合理的范围内。
2. 变压器的变压比和损耗在一定范围内波动,但保持在合理的范围内。
3. 线路的电阻和电感在一定范围内波动,但保持在合理的范围内。
4. 电力系统的稳定性较好,没有出现明显的不稳定现象。
六、实验分析通过对电力系统的仿真实验,我们可以更好地理解电力系统的运行原理和特性。
同时,我们也可以通过对电力系统的稳定性分析,进一步优化电力系统的运行效果。
七、实验总结通过本次实验,我们深入了解了电力系统的运行原理和特性。
同时,我们也学会了使用PSCAD软件进行电力系统的仿真实验。
这对我们今后的学习和工作都具有重要的意义。
关于 PSCAD 的电力系统电压调节器仿真分析.摘要:对于发电厂来说,高压母线电压稳定性对于整个电压的稳定性来说是十分重要的,安装电力系统电压调节器之后可以显著提升发电机动态无功储备容量,进而能够有效提升高压路线的电压稳定性。
在本研究中,针对电力系统电压调节器数学模型,进一步分析负调节效果,能够为之后电厂PSVR的运用奠定基础,构建基于电力系统计算机软件的PSVR仿真模型,进而能够对电厂中的电网事故,波动情况,冲击负荷等多种扰动现象进行仿真分析,验证PSVR在线提升机组对电力系统的支撑效果。
通过仿真分析我们发现,利用PSVR能够通过发电机潜在无功容量,提升其无功响应速度,进而能够快速恢复暂态电压,提升机组对发电厂高压母线稳定性的作用。
关键字:PSCAD;电力系统;电压调节器;仿真;分析近年来随着全国范围内电网互联工程的广泛实施,以及交直流电网施工规模的扩大,具备动态无功储备对于直流交流电网实现电压稳定性来说是十分重要的,目前对于在大型受端电网来说,暂态电压的稳定性是当前急需解决的问题。
发电厂的高压母线是电网交互和发电厂的重要界面,其高压母线的稳定性将对于整个电网稳定性十分重要,相比并联补偿电抗器,电容器等来说具有较快的数据响应速度,调节平滑等特点,传统发电机类似调节器主要是通过发电机端电压控制,然而当出现电网故障时需要较多的无功功率,进而提升其电压稳定性,无法提供较多无功功率,维持高压母线电压处于较高水平。
在安装电压调节器之后可以帮助电厂发电机提高动态无功储备容量,进而可以稳定发电厂的高压母线稳定性,因此有必要深入分析电力系统的电压调节器。
在本研究中,基于当前大电网动态无功储备量逐渐减小,且电网电压受到挑战的情况下,深入分析了电力系统电压调节器的有关性能,并且分析PSVR负调差效果,以某电厂作为研究对象,针对PSVR的具体应用作为研究对象,构建了基于电力系统计算机软件的研究系统仿真模型,包括励磁系统,PSVR,电网负荷模型,能够对该电厂的冲击负荷,电网事故,无功电压波动等多种扰动进行模拟分析,并进一步验证了PSVR在有效提升机组对无功支撑的有效作用。
PSCA实验报告学院:水利电力学院班级:姓名:学号:PSCA实验报告实验一实验名称:简单电力系统短路计算实验目的:掌握用PSCAD进行电力系统短路计算的方法仿真工具:PSCAD/EMTDC实验原理:在电力系统三相短路中,元件的参数用次暂态参数代替,画出电路的等值电路,短路电流的计算即相当于稳态短路电流计算。
单相接地,两相相间,两相接地短路时的短路电流计算中,采用对称分量法将每相电流分解成正序、负序和零序网路,在每个网络中分别计算各序电流,每种短路类型对应了不同的序网连接方式,形成了不同复合序网,再在复合序网中计算短路电流的有名值。
在并且在短路电流计算中,一般只需计算起始次暂态电流的初始值。
实验内容及其步骤:图示电力系统已知:发电机:Sn=60MVA,Xd ” =0.16,X2=0.19 ;变压器:Sn=60MVA,Vs%=10.5 ;1)试计算f点三相短路,单相接地,两相相间,两相接地短路时的短路电流有名值。
2)若变压器中性点经30 Q电抗接地,再作1)。
3)数据输入。
4)方案定义。
5)数据检查。
6)作业定义。
7)执行计算。
8)输出结果。
模型建立:TimedFaultLogicGO 0 [MVA]1O.5(ky /115D(KV1实验结果与分析:通过PSCAD仿真所得结果为1)、三相短路(有接地电抗)■ dJtiig2)、三相短路(无接地电抗)3)、单相接地短路(有接地电抗)0050005020 30CLOO5)、两相相间短路(有接地电抗)6)、两相相间短路(无接地电抗)HA Gratis • arrrtiod>■一_a■■oo5aoos)m5aot)sow□ 20010OOO8)、两相接地短路(无接地电抗)M JII .百实验二实验名称: 电力系统故障分析实验目的: 1)熟悉PSCAD/EMTD 的正确使用;2) 掌握多节点电力系统的建模;3) 掌握兀件及不冋线路模型参数的设置方法; 4)掌握各种短路故障的建模。
仿真计算
1、在PSCAD中建立典型的同步发电机模型,对同步发电机出口三相短路进行仿真研究。
要求:
(1)运行“同步发电机短路”模型,截取定子三相短路电流波形,并对波形进行分析,验证与理论分析中包含的各种分量是否一致;
图一同步发电机短路模型
图二、定子三相短路电流
定子三相短路电流中含有直流分量和交流分量,其中周期分量会衰减。
三相短路电流直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路电阻和等值电感决定,大约在0.2s。
交流分量也按指数规律衰减,它包括两个衰减时间常数,分为次暂态过程、暂态过程和稳态过程。
(2)修改电抗参数Xd(Xd’,X’’d),增加或者减小,截取定子三相电流,并与第一步结果对比分析;
图一是Xd`=0.314 p.u,Xd``=0.280 p.u情况下的定子电流波形;图二是Xd`=0.514 p.u, Xd``=0.280 p.u情况下的定子电流波形。
显然,随着Xd`的增大定子的电流在减少。
图三、定子三相短路电流
(3)修改时间常数Td(Td’,T’’d),增加或者减小,截取定子三相电流,并与第一步结果对比分析。
参数Td’=6.55s ,Td”=0.039s时定子电流如图一所示;当参数变为Td’=3.55s ,Td”=0.039s是定子电流如图三所示,显然
图四、定子三相短路电流
2、利用暂态仿真软件对下面的简单电网进行建模,对模型中各元件参数进行详细说明,并进行短路计算。
将故障点的电流电压波形及线路M端的电流电压波形、相量图粘贴到课程报告上。
要求:
(1)短路类型为①三相故障;②A相接地;③BC两相故障。
(2)两端系统电势夹角取15o
δ=。
(3)故障点设置为线路MN中点(25km处)。
(4)仿真结果包括M、N两侧和短路点处的三相电压、电流的瞬时值波形和短路发生后时刻的三相电压、电流相量图。
三、课程学习心得
通过本课程的学习,你有哪些体会和心得,请写出来。
可以从以下几个方面考虑,但不局限于这些方面:通过课程你学到了哪些知识;学会了哪些方法;对电力系统的认识;对课程的建议等。
课程的开始复习了一下简单的电力系统稳态分析部分,然后就进行了课程的重点就是电力系统的暂态分析,其中包括PARK变换、标么值下的磁链方程和电压方程、同步发电机各种电势的表达式、发电机阻抗的概述、(次)暂态电抗和(次)暂态电势、发电机三相短路电流、对称分量法、叠加定理、电力系统简单故障分析。
学习了几种电力系统分析中的方法,例如分析同步发电机短路时PARK变换将静止三相坐标系的量转化为旋转坐标系dq0的量,还有分析不对称故障时对称分量法转化到相对简单的对称故障分析中。