高中数学解题模型有哪些
- 格式:doc
- 大小:24.00 KB
- 文档页数:2
DO yAFBClx【模型解题法】高中数学抛物线焦点弦模型【模型思考】过抛物线焦点的直线,交抛物线于A B 、两点,则称线段AB 为抛物线的焦点弦。
过抛物线)0(22>=p px y 的焦点弦AB 的端点,A B 分别抛物线准线l 的垂线,交l 于D C 、,构成直角梯形ABCD (图1).这个图形是抛物线 问题中极为重要的一个模型,围绕它可以生出许 多重要的问题,抓住并用好这个模型,可以帮助 我们学好抛物线的基本知识与基本方法,同时, 它又体现了解析几何的重要思想方法。
在图1中, 有哪些重要的几何量可以算出来?又可以获得哪 些重要结论呢?【模型示例】设直线AB 的倾角为θ,当=90AB x θ⊥轴()时,称弦AB 为通径。
例1. 求通径长. 例2. 求焦点弦AB 长. 例3. 求AOB ∆的面积.例4. 连,(2)CF DF CF DF ⊥,求证图.例5. 设准线l 与x 轴交于点E ,求证:FE 是CE 与DE 的比例中项,即 2FE CE DE =⋅.例6. 如图3,直线AO 交准线于C ,求证:直线 x BC //轴. (多种课本中的题目) 例7.设抛物线)0(22>=p px y 的焦点为F ,经过点F 的直线交抛物线于B A ,两点.点C在抛物线的准线上,且x BC //轴. 证明直线AC 经过原点. 例8. 证明:梯形中位线MN 长为2sin pθ. 例9. 连,AN BN AN BN ⊥、图(5),证明:. 例10. 求证:以线段AB 为直径的圆与准线相切. 例11. 连NF ,证明:NF ⊥AB ,且2NFAF BF =⋅.例12. 已知抛物线y x 42=的焦点为F ,AB 是抛物线的焦点弦,过A 、B 两点分别作抛物线的切线,设其交点为M.(I )证明:点M 在抛物线的准线上; (Ⅱ)求证:FM →·AB →为定值; FBAy图1【模型解析】设直线AB 的倾角为θ,当=90AB x θ⊥轴()时,称弦AB 为通径。
高考中高频的108个模型总结高考中的数学题型有很多种,按照题目的性质和解题方法可以分为不同的模型。
经过总结,我们可以将高考中的数学题型归纳为108个模型,这些模型涵盖了从初中到高中数学的各个知识点,并且在高考中出现的频率较高。
这些模型不仅可以帮助我们系统地复习数学知识,还可以帮助我们有效地解决高考中的数学题目。
首先,我们来看一些常见的基础模型。
例如,解形如ax+b=cx+d的一元一次方程,解形如a/x+b/y=c的一元一次方程组,以及解形如ax^2+bx+c=0的一元二次方程等等。
这些基础模型在高考中出现的频率很高,掌握好这些基础模型可以为我们解决其他更加复杂的问题打下基础。
其次,高考中还经常出现几何模型。
比如,通过已知条件求证两条直线平行或垂直,通过已知条件求证三角形全等或相似,通过平移、旋转、翻折等方法求解几何题目等等。
几何模型不仅需要我们熟练掌握基本的几何知识,还需要我们发挥想象力和逻辑推理能力来解决问题。
另外,在高考中还经常出现函数模型。
比如,通过函数的定义域、值域、奇偶性等性质求解函数的图像,通过函数的导数或积分求解函数的极值、拐点等问题,通过函数的周期性、对称性等性质求解函数的周期、对称轴等问题等等。
函数模型是高等数学的重要内容,也是高考中的一个重点。
此外,高考中还可能出现概率与统计模型。
比如,通过条件概率、全概率公式、贝叶斯公式等方法求解概率问题,通过频率分布、均值、方差等统计量求解统计问题,通过正态分布、卡方分布等概率分布求解相关问题等等。
概率与统计模型需要我们灵活运用各种概率统计方法来解决实际问题。
总的来说,高考中的数学题型有很多种,但是它们都可以归纳为一些基础的模型。
通过系统地掌握这些模型,我们可以更加高效地解决高考中的数学问题。
在复习阶段,我们可以按照模型分类进行复习,先复习基础模型,再复习几何模型、函数模型、概率与统计模型等,以此来提高解题效率。
希望我们每一个高考数学的考生都能够顺利地应对高考挑战,取得优异的成绩。
二轮复习关于三角函数解题中常用数学模型构造构造数学模型是一种比较重要、灵活的思维方式,它没有固定的模式。
在解题中要想用好它,需要有敏锐的观察、丰富的联想、灵活的构思、创造性的思维等能力。
应用好构造思想解题的关键有二:一是要有明确的方向,即为什么目的而构造;二是弄清条件的本质特点和背景,以便重新进行逻辑组合。
常用的有构造命题、构造表达式、构造几何体等,本文拟就通过介绍几种解三角函数的具体问题,对构造的各种思维方式作一些探讨。
1 构造直角三角形例1 设x ∈[4π,2π],求证:cscx -ctgx ≥2-1 思路分析:由2、1联想等腰直角三角形,不仿构造一个等腰直角三角形来研究。
作Rt ⊿ABC ,令∠C=900,AC=1,在AC上取一点D ,记∠CDB=x ,则BD=cscx ,CD=ctgx ,AD=1-ctgx ,利用AD+DB≥AB=2,可得cscx -ctgx ≥2-1,等号仅在x =4π时成立。
2 构造单位圆例 2若0<β<α<2π,求证:α-β<tg α-tg β 思路分析:构造单位圆,借助三角函数线与三角函数式的关系,把数的比较转化为几何图形面积的比较。
作单位圆O ,AP 1=β,AP 2=α,∴ P 1P 2=α-β,AT 1=tg β,AT 2=tg α,S ⊿AT O =21tg α,S ⊿AP O =21tg β,由于S 扇形OAP=21α,S 扇形OAP =21β。
∴S 扇形OP P =21(α-β),S ⊿OT T=21tg α-21tg β。
则S ⊿OT T>S 扇形OP P即 21(α-β)<21(tg α-tg β) 所以 α-β<tg α-tg β3 构造函数表达式例3已知x 、y ∈[-4π,4π],a ∈R ,且⎩⎨⎧=++=-+0cos sin 402sin 33a y y y a x x ,求cos (x+2y )思路分析:由x 3+sinx 与2(4y 3+sinycosy ),这两部分形式完全类似,由此可构造函数形式。
高中数学解题大模型随着高中数学的不断发展,解题技巧也在不断的深入探索。
高中数学的解题是一门系统性的研究,解题模型也是一个重要的组成部分。
解题模型是指用某种格式或形式,把问题解决的方法表达出来,且表达形式应当比较完整,从而使问题得到解决。
在解题模型的研究中,有一系列常用的、核心的解题模型,这些模型在高中数学解题中都有其重要的作用。
下面将介绍几种最常用的解题模型。
1、概率解题模型。
概率解题模型用来解决概率的计算问题,其基本形式为:某事件的概率=此事件的发生的次数/可能发生的所有事件的次数。
概率解题模型在高中数学中有着广泛的应用。
2、数列解题模型。
数列解题模型是高中数学解题中最重要的一种模型,用来解决数列的求和、求平均数等问题。
这种模型一般采用数列通项公式的形式,通过构造数列公式,对一定规律的数列求出其求和、求平均数等关键数据。
3、二次函数解题模型。
二次函数解题模型是高中数学中常见的一种解题模型,指的是将二次函数的图像、周长、最大值、最小值、极值点、凹凸性等问题,用二次函数的函数表达式或变量关系来解决。
4、排列组合计算模型。
排列组合计算模型是指从所有可能的排列组合中选出满足某一要求的排列组合的个数,此类问题通常采用“排列组合数公式”的形式进行求解。
5、几何解题模型。
几何解题模型是指用直线、圆、三角形、椭圆等图形的性质来解决几何问题的模型,其中最重要的两个性质是“相似性”和“平行性”。
通过这两个性质,一些复杂的几何问题可以被轻松解决。
6、比例解题模型。
比例解题模型是指用比例关系解决问题的模型,它是高中数学中最常用的解题模型之一,它可以用来解决比例关系问题,如比例结合题、比例平分题、比例比较题等。
7、函数解题模型。
函数解题模型是指用函数的单调性和凹凸性来解决函数的一类问题,它是高中数学解题中常用的一种模型,有着广泛的应用。
以上就是高中数学解题模型大全,在高中数学解题中,这些模型都有重要的作用,对于学生们,要掌握这些模型,把它们正确的应用到解题中,以便解决问题。
函数模型及其应用一、基础知识1.常见的8种函数模型(1)正比例函数模型:f(x)=kx(k为常数,k≠0);(2)反比例函数模型:f(x)=kx(k为常数,k≠0);(3)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);(4)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0);(5)指数函数模型:f(x)=ab x+c(a,b,c为常数,a≠0,b>0,b≠1);(6)对数函数模型:f(x)=m log a x+n(m,n,a为常数,m≠0,a>0,a≠1);(7)幂函数模型:f(x)=ax n+b(a,b,n为常数,a≠0,n≠1);(8)“对勾”函数模型:y=x+ax(a>0).(1)形如f(x)=x+ax(a>0)的函数模型称为“对勾”函数模型,“对勾”函数的性质:①该函数在(-∞,-a]和[a,+∞)上单调递增,在[-a,0)和(0,a]上单调递减.②当x>0时,x=a时取最小值2a,当x<0时,x=-a时取最大值-2a.(2)函数f(x)=xa+bx(a>0,b>0,x>0)在区间(0,ab]内单调递减,在区间[ab,+∞)内单调递增.2.三种函数模型的性质函数性质y=a x(a>1)y=log a x(a>1)y=x n(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大,逐渐表现为与y轴平行随x的增大,逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有log a x<x n<a x幂函数模型y=x n(n>0)可以描述增长幅度不同的变化,当n,值较小(n≤1)时,增长较慢;当n值较大(n>1)时,增长较快.考点一二次函数、分段函数模型[典例]国庆期间,某旅行社组团去风景区旅游,若每团人数在30或30以下,飞机票每张收费900元;若每团人数多于30,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75为止.每团乘飞机,旅行社需付给航空公司包机费15000元.(1)写出飞机票的价格关于人数的函数;(2)每团人数为多少时,旅行社可获得最大利润?[解](1)设每团人数为x,由题意得0<x≤75(x∈N*),飞机票价格为y元,则y ,0<x≤30,-10(x-30),30<x≤75,即y,0<x≤30,200-10x,30<x≤75.(2)设旅行社获利S元,则Sx-15000,0<x≤30,200x-10x2-15000,30<x≤75,即Sx-15000,0<x≤30,10(x-60)2+21000,30<x≤75.因为S=900x-15000在区间(0,30]上为增函数,故当x=30时,S取最大值12000.又S=-10(x-60)2+21000,x∈(30,75],所以当x=60时,S取得最大值21000.故当x=60时,旅行社可获得最大利润.[解题技法]二次函数、分段函数模型解决实际问题的策略(1)在建立二次函数模型解决实际问题中的最值问题时,一定要注意自变量的取值范围,需根据函数图象的对称轴与函数定义域在坐标系中对应区间之间的位置关系讨论求解.(2)对于分段函数模型的最值问题,应该先求出每一段上的最值,然后比较大小.(3)在利用基本不等式求解最值时,一定要检验等号成立的条件,也可以利用函数单调性求解最值.[题组训练]1.某市家庭煤气的使用量x(m3)和煤气费f(x)(元)满足关系f(x),0<x≤A,+B(x-A),x>A.已知某家庭2018年前三个月的煤气费如表:月份用气量煤气费一月份4m34元二月份25m314元三月份35m 319元若四月份该家庭使用了20m 3的煤气,则其煤气费为()A .11.5元B .11元C .10.5元D .10元解析:选A根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x ),0<x ≤5,+12(x -5),x >5,所以f (20)=4+12×(20-5)=11.5.2.A ,B 两城相距100km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使月供电总费用y 最少?解:(1)由题意知x 的取值范围为[10,90].(2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25000+500003,所以当x =1003y min =500003.故核电站建在距A 城1003km 处,能使月供电总费用y 最少.考点二指数函数、对数函数模型[典例]某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.[解](1)由题图,设y 0≤t ≤1,a,t >1,当t =1时,由y =4,得k =4,由-a =4,得a =3.所以y 0≤t ≤1,-3,t >1.(2)由y ≥0.25≤t ≤1,t ≥0.253≥0.25,解得116≤t ≤5.故服药一次后治疗疾病有效的时间是5-116=7916(小时).[解题技法]1.掌握2种函数模型的应用技巧(1)与指数函数、对数函数模型有关的实际问题,在求解时,要先学会合理选择模型,在三类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题,必要时可借助导数.2.建立函数模型解应用问题的4步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型.(2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型.(3)求模:求解数学模型,得出数学结论.(4)还原:将利用数学知识和方法得出的结论,还原到实际问题中.[题组训练]1.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为()A.略有盈利B.略有亏损C.没有盈利也没有亏损D.无法判断盈亏情况解析:选B设该股民购进这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a×1.1n元,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这支股票略有亏损.2.声强级Y(单位:分贝)由公式Y=10lg I为声强(单位:W/m2).(1)平常人交谈时的声强约为10-6W/m2,求其声强级.(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少?解:(1)当声强为10-6W/m2时,由公式Y=得Y=10lg106=60(分贝).(2)当Y=0时,由公式Y=得0.∴I10-12=1,即I=10-12W/m2,则最低声强为10-12W/m2.[课时跟踪检测]1.(2018·福州期末)某商场销售A型商品.已知该商品的进价是每件3元,且销售单价与日均销售量的关系如下表所示:销售单价/元45678910日均销售量/件400360320280240200160请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的定价(单位:元/件)应为()A.4B.5.5C.8.5D.10解析:选C由数据分析可知,当单价为4元时销售量为400件,单价每增加1元,销售量就减少40件.设定价为x 元/件时,日均销售利润为y 元,则y =(x -3)·[400-(x -4)·40]=-+1210,故当x =172=8.5时,该商品的日均销售利润最大,故选C.2.(2019·绵阳诊断)某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月的水费为55元,则该职工这个月实际用水为()A .13立方米B .14立方米C .15立方米D .16立方米解析:选C 设该职工某月的实际用水为x 立方米时,水费为y 元,由题意得y =x ,0≤x ≤10,+5(x -10),x >10,即y x ,0≤x ≤10,x -20,x >10.易知该职工这个月的实际用水量超过10立方米,所以5x -20=55,解得x =15.3.利民工厂某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4000,则每吨的成本最低时的年产量为()A .240吨B .200吨C .180吨D .160吨解析:选B 依题意,得每吨的成本为y x =x 10+4000x -30,则yx≥2x 10·4000x-30=10,当且仅当x 10=4000x,即x =200时取等号,因此,当每吨成本最低时,年产量为200吨.4.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P (单位:毫克/升)与过滤时间t (单位:时)之间的函数关系为P =P 0e -kt (k ,P 0均为正常数).如果在前5个小时的过滤过程中污染物被排除了90%,那么排放前至少还需要过滤的时间是()A.12小时 B.59小时C .5小时D .10小时解析:选C 由题意,前5个小时消除了90%的污染物.∵P =P 0e -kt ,∴(1-90%)P 0=P 0e -5k,∴0.1=e-5k,即-5k =ln 0.1,∴k =-15ln 0.1.由1%P 0=P 0e -kt ,即0.01=e -kt ,得-kt =ln 0.01,=ln 0.01,∴t =10.∴排放前至少还需要过滤的时间为t -5=5(时).5.(2019·蚌埠模拟)某种动物的繁殖数量y (单位:只)与时间x (单位:年)的关系式为y =a log 2(x +1),若这种动物第1年有100只,则到第7年它们发展到________只.解析:由题意,得100=a log 2(1+1),解得a =100,所以y =100log 2(x +1),当x =7时,y =100log 2(7+1)=300,故到第7年它们发展到300只.答案:3006.某人根据经验绘制了从12月21日至1月8日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图象如图所示,则此人在12月26日大约卖出了西红柿________千克.解析:前10天满足一次函数关系,设为y =kx +b ,将点(1,10)和点(10,30)代入函数解析=k +b ,=10k +b ,解得k =209,b =709,所以y =209x +709,则当x =6时,y =1909.答案:19097.候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为:v =a +b log 3Q10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s ,求其耗氧量至少要多少个单位?解:(1)由题意可知,当这种鸟类静止时,它的速度为0m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0.当耗氧量为90个单位时,速度为1m/s ,故a +b log 39010=1,整理得a +2b =1.+b =0,+2b =1,=-1,=1.(2)由(1)知,v =a +b log 3Q 10=-1+log 3Q10.所以要使飞行速度不低于2m/s ,则有v ≥2,所以-1+log 3Q10≥2,即log 3Q 10≥3,解得Q10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2m/s ,则其耗氧量至少要270个单位.8.据气象中心观察和预测:发生于沿海M 地的台风一直向正南方向移动,其移动速度v (单位:km/h)与时间t (单位:h)的函数图象如图所示,过线段OC 上一点T (t,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积为时间t 内台风所经过的路程s (单位:km).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650km ,试判断这场台风是否会侵袭到N 城,如果会,在台风发生后多长时间它将侵袭到N 城?如果不会,请说明理由.解:(1)由图象可知,直线OA 的方程是v =3t (0≤t ≤10),直线BC 的方程是v =-2t +70(20<t ≤35).当t =4时,v =12,所以s =12×4×12=24.(2)当0≤t ≤10时,s =12×t ×3t =32t 2;当10<t ≤20时,s =12×10×30+(t -10)×30=30t -150;当20<t ≤35时,s =150+300+12×(t -20)×(-2t +70+30)=-t 2+70t -550.综上可知,s 随t 变化的规律是s2,t ∈[0,10],t -150,t ∈(10,20],t 2+70t -550,t ∈(20,35].(3)当t ∈[0,10]时,s max =32×102=150<650,当t ∈(10,20]时,s max =30×20-150=450<650,当t ∈(20,35]时,令-t 2+70t -550=650,解得t =30或t =40(舍去),即在台风发生30小时后将侵袭到N 城.。
143个高中高频数学解题模型一、一元一次方程与一元一次方程组1. 一元一次方程的定义一元一次方程指的是只含有一个变量,并且最高次数为一的方程,通常表示为ax+b=0。
解一元一次方程的方法主要有求解法和图解法。
2. 一元一次方程组的概念一元一次方程组指的是由若干个一元一次方程组成的方程组,通常表示为a1x+b1y=c1a2x+b2y=c2解一元一次方程组的方法主要有代入法、加减法和等系数消去法。
二、一元二次方程与一元二次不等式1. 一元二次方程的特点一元二次方程指的是最高次数为二的方程,通常表示为ax^2+bx+c=0。
解一元二次方程的方法主要有配方法和求根公式。
2. 一元二次不等式的解法一元二次不等式指的是最高次数为二的不等式,通常表示为ax^2+bx+c>0或ax^2+bx+c<0。
解一元二次不等式的方法主要有因式分解法和图像法。
三、二元二次方程与二元二次不等式1. 二元二次方程的定义二元二次方程指的是含有两个变量且最高次数为二的方程,通常表示为ax^2+by^2+cxy+dx+ey+f=0。
解二元二次方程的方法主要有配方法和消元法。
2. 二元二次不等式的概念二元二次不等式指的是含有两个变量且最高次数为二的不等式。
解二元二次不等式的方法主要有图解法和代数法。
四、指数与对数1. 指数的基本性质指数是幂运算的一种表示方式,有基本性质包括乘法法则、除法法则和零指数法则。
2. 对数的基本概念对数是幂运算的逆运算,有基本性质包括对数的乘除法则和对数的换底公式。
五、三角函数与解三角形1. 三角函数的基本性质三角函数包括正弦函数、余弦函数和正切函数,有基本性质包括奇偶性、周期性和对称性。
2. 解三角形的基本方法解三角形主要包括利用三角函数和利用三角恒等式两种方法,主要应用于解直角三角形和不定角三角形。
六、平面向量的运算1. 平面向量的基本定义平面向量是具有大小和方向的量,有基本运算包括数乘、加法和减法。
高中数学解题指导八个无敌模型全搞定空间几何的外接球和内切球问题八个有趣模型——搞定空间几何体的外接球与内切球类型一、墙角模型墙角模型是指三条线段两两垂直的几何体,通过公式(2R) = a + b + c,即2R = a^2 + b^2 + c^2,可以求出其外接球半径R。
例1:1)已知顶点都在同一球面上的正四棱柱的高为4,体积为16,求该球的表面积。
解:由V = ah = 16,得a = 2,4R = a + a + h = 4 + 4 + 16 = 24,S = 24π,答案为C。
2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,求其外接球的表面积。
解:由2R = a + b + c = 3 + 3 + 3 = 9,得R = 9/4,S =4πR^2 = 9π。
3)在正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且AM⊥MN,若侧棱SA = 23,求正三棱锥S-ABC外接球的表面积。
解:由墙角模型的特点可知,正三棱锥的对棱互垂直。
连接AB、BC的中点D、E,连接AE、CD,交于H,则H是底面正三角形ABC的中心。
由AM⊥MN,SB//MN,可得AM⊥SB,AC⊥SB,故SB⊥平面SAC,SB⊥SA,SB⊥SC,即SB⊥SA,BC⊥SA,故SA⊥平面SBC,SA⊥SC。
因此,三棱锥S-ABC的三棱条侧棱两两互相垂直,由2R^2 = 23^2 + 23^2 + 23^2 = 36,得R^2 = 9,S = 36π。
类型二、棱台模型棱台模型是指上底面和下底面都是正多边形,且两底面中心连线与侧棱垂直的几何体。
通过勾股定理和相似三角形,可以求出其外接球半径R和内切球半径r。
例2:1)已知棱台的上底面和下底面都是正三角形,上底边长为3,下底边长为6,侧棱长为5,求其外接球半径R和内切球半径r。
解:由勾股定理可得棱台的高为4√3.设外接球半径为R,内切球半径为r,则有R/r = (a + b + c)/(a + b - c) = (3 + 6 +5)/(3 + 6 - 5) = 7,解得R = 7r。
模型十五角模型(一)单角模型我们在解决三角函数问题的时候经常遇到这样一类题目:题目只涉及一个未知角或者已知非特殊角,通过二倍或者与已知特殊角的组合,加上各种三角函数的综合使用,使得题目形式变化多各类,丰富多彩,那么在相关的题目中是如何体现这种角的组合,以及三角函数的综合使用的呢?例1 化简y=).A.−sin2−cos2B.sin2+cos2C.sin2−cos2D.−sin2+cos2例2 已知1+tanα1−tanα=3+22,求:(1)sinα+2cosα2sinα−cosα;(2)3cos2π−α+sin(π+α)⋅cosπ−α+2sin2(α−π)的值.例3(1)设cos(−x)=cos x,则x的取值范围是____;(2)设cos(−x)=cos x,则x的取值范围是____;(3)设sin(−x)=sin x,则x的取值范围是____;(4)设sin(−x)=sin x,则x的取值范围是____.例4已知sinθ+cosθ=15,θ∈0,π,则tanθ=____.例5已知关于x的方程2x2−3+1 x+m=0的两根为sinθ和cosθ,θ∈(0,2π),求:(1)sin2θsinθ−cosθ+cosθ1−tanθ的值;(2)m的值;(3)方程的两根及θ的值.模型归纳有关三角函数的运算,当只出现一个未知角,但伴随与特殊角的组合或多种三角函数综合使用使三角运算丰富多样,要解决这些问题,我们需要掌握一个基本原则,那就是“化简”,使用的公式包括同角三角函数基本关系式和诱导公式.同角三角函数基本关系式有两个:sin2α+cos2α=1,tanα=sinαcosα.在使用同角三角函数基本关系式的时候需要注意:(1)多种函数同时出现时,要正切化弦;(2)正余弦互求时,通过角的范围确定正负.诱导公式比较多,总的口诀是:“奇变偶不变,符号看象限”,其中“奇偶”是指在未知角上附加的角是π2的多少倍,如果是奇数倍,名称需要改变,如果是偶数倍,名称不改变;“符号看象限”是指借助当未知角为锐角时,组合角所在象限所决定的三角函数的正负,来确定是否添加负号.例如sin(π2+α)中,未知角α上附加的角符号看象限是π2的一倍(奇数倍),因此名称改变,另外当α为锐角时,π2+α为第二象限角,sin(π2+α)>0,因此sin(π2+α)=cos α.这类题目的解题模型是:用诱导公式将角统一,排除特殊附加角的干扰→使用同角三角基本关系式,尽量做到:函数种类、项数减少,次数降低,分式化为整式,无理式化为有理式→保留结果:数字或者最简的三角函数式模型演练1.已知cos(π+α)=−35,α为第四象限角,则sin(−2π+α)=( ).A.35B.−45C.±45 D .35 2.已知tan x =13,求(1)2sin x−cos x sin x +cos x ;(2)2sin 2x +sin x cos x .(二)多角模型我们解决完一个角的三角函数问题之后,开始研究多个角的和或差的三角函数,这种问题不仅在题设和问题构造上变化多样,而且综合使用正弦、余弦和正切函数的和角或差角公式,使问题难度加大,能够发现和研究多个角之间的关系,以及研究不同角三角函数值之间的关系是解决多角问题的关键,那么在具体的题目当中,是如何构建多角问题,以及如何考查和、差角公式呢?例1 求cos 10°sin 50° tan 10°− 3 的值.例2 已知tan α+β =7,tan α⋅tan β=35, 求sin α的值.例3 若α∈ 0,π ,cos α+π6 =35,求sin α的值.例4 已知π2<β<α<3π4,cos α−β =1213,sin(α+β)=−35,求sin α的值. 例5 已知sin(x +y )=13,sin x −y =15, 求tan x tan y 的值.例6 已知sin α=55,sin β= 1010, 且α,β都是锐角,求α+β的值.例7 已知tan(α−β)=12,tan β=−17, 且α,β∈ 0,π , 求2α−β的值.模型归纳对于角之间的关系,我们应该辩证地来看,比如当把α+β看成α与β的和不方便解决问题时,也可以把α看成α+β与β的差,再如2α−β可以看成α乘以2再与β作差,也可以看成α与α−β的和,或者看成α−β的2倍与β的和等等.对于多角三角函数的关系问题,主要是对和差角公式的结构的研究,比如,sinα−β=sinαcosβ−cosαsinβ中共涉及到三个角α−β、α和β,五个三角函数sinα−β、sinα、cosβ和sinβ,没有涉及α−β的余弦,针对这一特点,我们将未知(待求)于等式左侧,两个已知(条件)于等式右侧.对于弦函数和切函数同时出现的时候,除非出现弦函数齐次式,一般都需要将切函数化为弦函数.对于给值求角的题目,通常是借助角的某一个三角函数来求,需要注意两点:(1)三角函数种类的选用,以不造成多解可能为宜,比如当角的范围为0,π时,尽量不选用正弦,因为正弦值求完之后如果不等于,确定它是锐角或钝角比较麻烦,可以考虑使用余弦;(3)三角函数值算完以后,尽量确定该角尽量小的一个范围,以确定该角的具体取值.对于同一个角的正弦和余弦的组合,我们通常是逆向使用和差角的正余弦公式,以达到化简的目的,比如sinα+3cosα=2sin α+π3等.这类题目的解题模型是:分析各个角之间的和或者差的关系,注意辩证使用→根据题目条件和特点,结合角之间的关系选用恰当的和差角公式→根据选用公式的结构特点,使用恰当的运算技巧,进行相关运算模型演练1.锐角α,β满足cosα=45,cos(α+β)=35,则sinβ=().A.1725B.35C.725D.152.已知cosα−cosβ=12,sinα−sinβ=−13, 则cosα−β=().A.5972B.5173C.1336D.12133.已知sinα+sinβ+sinγ=0, 则cos(β−γ)=().A.−1B.−12C.12D. 1(三)倍角模型二倍关系是两个角之间一种非常特殊的关系,二倍角公式是三角函数的一种重要变形,其表现形式多样,有时比较直接,有时不是特别明显,二倍角公式及其变形公式是解决三角函数问题的一种重要手段,也是考查的一个重要内容.那么二倍关系在题目当中如何体现,二倍角公式又是如何考查的呢?精选例题例1求值:cosπ5cos2π5.例2已知α为锐角,且tan12,求sin2αcosα−sinαsin2αcos2α的值.例3化简:1+cosθ−sinθ1−sinθ−cosθ+1−cosθ−sinθ1−sinθ+cosθ.例4 求函数sin2x+2sin x cos x+3cos2x的最大值,及相应x的值.例5 己知sin2θ=a,θ∈π2,3π4,那么sinθ+cosθ=____.模型归纳对于二倍角的余弦公式,我们需要记住几个重要变形:1+cos2α=2cos2α,1−cos2α=2sin2α,cos2α=1+cos2α2,sin2α=1−cos2α2等,另外我们需要了解二倍角公式及其变形公式的结构特点是:协调角的倍数和三角函数的次数的关系,如cos2α=2cos2α−1等号左边角2倍,三角发次数1次,等号右边角1倍,三角函数次数2次.了解这一特点,我们可以权据题目的要求,在倍数与次数之间进行转化,比如例4,减小次数,增大倍数.对于二倍角的正弦公式sin22α=2sinαcosα,我们关注角倍数与三角函数次数情报同时,我们还应关另一个细节,就是关于三角函数的名称,等号左侧只有一个正弦,等号右侧一个正弦,一个余弦,这就意味着:正向使用公式,派生出一个余弦;逆向使用公式,隐藏掉一个余弦.比如例1,题目所涉及两个角有2倍关系,可以考虑使用二倍角公式,另外以余弦形式出现,可以考虑逆向使用二倍角正弦公式,以求将余弦逐个隐藏.我们还应记住几个和1有关的二倍角公式变形:1+sin2α=sinα+cosα2,1−sin2α=sinα−cosα2这类题目的解题模型是:根据题目的结构特点,确定已知与待求之间角的关系:倍角关系选择适当的二倍角公式或变形公式先利用公式进行变形转化,再将复杂式子化简或求值模型演练1.若25π≤α<3π,则2+2cosα+1−sinα−sinα2+cosα2可化简为A.0B.2cosα2−sinα2C.−2cosα2−sinα2D.2cosα22.已知f x=1+x,当π≤θ<54π时,f sin2θ−f−sin2θ为A. 2sinθ B.−2sinθ C.−2cosθD. 2cosθ3.cos2π15cos4π15cos8π15cos16π15的值为____.(四)三角函数线模型模型思考三角函数线是借助有向线段来表示三角函数的方法,是三角函数的图形表示,但是我们在做题的时候,单纯使用三角函数线有时并不是十分快捷,为了快捷有效地解决问题,我们可以考虑将三角函数线进行改造,得到改良后的三角函数线即我们所说的“大风车”模型,那么什么是“大风车”,“大风车”又该如使使用以及解决什么问题呢?精选例题例1 求满足sinα>12的角α的取值范围.例2 若A是△ABC的内角,则sin A+cos A的取值范围是____.例3 由不等式组sinα−cosα<0cosα+sinα>0,所确定的角的α取值范围是____.例4 如果α是第三象限角,且满足1+sinα=cosα2+sinα2,那么α2是A.第四象限角B.第三象限角C.第二象限角D.第一象限角例5 设0≤α<π2,比较sinα与cosα的大小关系.例6 设α,β是第二象限角,那么下列结论正确的是()A.tanα>tanβB.tanα<tanβC.cosα>sinαD.cosα<sinα例7 已知sinα>cosβ,那么下列结论成立的是()A.若α,β是第一象限角,cosα>cosβB.若α,β是第二象限角,tanα>tanβC.若α,β是第三象限角,cosα>cosβD.若α,β是第四象限角,tanα>tanβ例8 若α,β为锐角,且cosα>sinβ,则()A.α+β<π2B. α+β>π2C. α+β=π2D. α<β模型归纳通过分析,我们可以发现借助“大风车”图示,可以快捷有效地进行同角不同函数或不同角同一三角函数的大小比较或解决取值范围的问题.我们将各种“大风车”总结如下:(1)正弦特点是:左右对称,向上集中.(2)余弦特点是:上下对称,向右集中.(3)正切特点是:单向旋转,上下无穷(4)sinα+cosα特点是:左下最小,右上集中(5)sinα−cosα特点是:右下最小,左上集中这类题目的解题模型是:确定比较项:同角不同函数或同函数不同角通过选定的比较项,确定适归的“大风车”模型通过模型比较不同角或不同函数值的大小确定角或三角函数值的取值范围(五)和“1”有关的三角函数模型模型思考数字1作为数字的基本单位,在三角函数的运算中却有着广泛的应用,无论是特殊角三角函数值还是三角公式,无处不有1的影子,发现它,利用它,可以快速有效地解决在关三角函数的问题.那么,1是如何在题目中藏身,又是如何发挥它的作用的呢?精选例题例1 已知sin4α+cos4α=1,那么sinα+cosα=____.例2 已知sinα+cosβ=1,cosα+cosβ=1,则sinα+cosα=____.例3 已知sinθ+sin2θ=1,则cos2θ+cos4θ+cos6θ=____.例4 表达式1+sin2θ−cos2θ1+sin2θ+cos2θ可以化简为()A.tanθB.1tanθC.sinθD.2sinθ例5 化简:1+tan15°1−tan15°.例6 如果a sin x+cos x=1,b sin x−cos x=1,且x≠kπ (k为整数)那么ab等于A.−1B.0C.0.5D.1例7 已知sinαsinβ=1,则cosα+β=()A.−1B.0C.1D.±1例8 已知sinα+sinβ=2,求sin(α−β)的值.模型归纳对和“1”有关的公式与性质作一梳理:(1)特殊角sinπ2=1,cos0=1,tanπ4=1等等;(2)一般规律sin2α+cos2α=1,sinα≤1,cosα≤1等等;(3)公式变形1+sin2α=sinα+cosα2,1−sin2α=sinα−cosα2,1+cos2α=2cos2α,1−cos2α=2sin2α等等.这类题目的解题模型是分析题目:抓住特殊角或特殊值根据特殊角或特值的特点,选择适归的三角公式将特殊角或特殊值代入相关表达式计算模型演练=____.1.已知sin x+cos x=1,则sin x−cos x1+sin x cos x2.在△ABC中,若tan A⋅tan B>1,则此三角形一定是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定。
高中数学解答题8个答题模板与做大题的方法高中数学是很多同学高考道路上的拦路虎,很多同学一致回答:大题没思路。
其实掌握一些高中数学解答题的答题模板就好了,小编整理了相关资料,希望能帮助到您。
高中数学解答题8个答题模板一. 三角变换与三角函数的性质问题1.解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2.构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
二. 解三角形问题1.解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2.构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
三. 数列的通项、求和问题1.解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2.构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
高中数学解题模型有哪些?
1.数量关系模型:单价X数量=总价速度X时间=路程
2.方程——等量关系模型包括正反比例
3.运算定律:运算定律成为简便运算的模型
模型1:元素与集合模型
模型2:函数性质模型
模型3:分式函数模型
模型4:抽象函数模型
模型5:函数应用模型
模型6:等面积变换模型
模型7:等体积变换模型
模型8:线面平行转化模型
模型9:垂直转化模型
模型10:法向量与对称模型
模型11:阿圆与米勒问题模型
模型12:条件结构模型
模型13:循环结构模型
模型14:古典概型与几何概型
模型15:角模型
模型16:三角函数模型
模型17:向量模型
模型18:边角互化解三角形模型
模型19:化归为等差等比数列解决递推数列的问题模型模型20:构造函数模型解决不等式问题
模型21:解析几何中的最值模型。