[高中数学解题技巧]高中数学模型解题法
- 格式:docx
- 大小:26.37 KB
- 文档页数:11
高中数学解题方法高中数学是一门关于数学的高级学科,其内容包含了现代数学的基本知识和理论。
在学习高中数学时,掌握一些解题方法对于提高数学水平非常重要。
本文将介绍一些常用的高中数学解题方法。
一、代数解题方法代数是高中数学的基础,也是解题过程中经常使用的数学工具之一。
在代数解题中,我们常常使用的方法有:1. 方程法:将问题转化为一个或多个方程,通过解方程来求解问题。
例如,已知一个几何图形的面积和周长,可以通过列方程解方程的方法来求解图形的尺寸。
2. 几何解法:有时候在解代数问题时,我们可以绘制几何图形,通过几何图形的性质和关系来解决问题。
例如,通过几何图形的相似性和比例关系来求解两个量之间的比值。
3. 因式分解法:将一个多项式进行因式分解,可以简化问题的计算。
因式分解法在解决方程和不等式问题时特别有用。
4. 递推法:递推法是一种迭代求解的方法,通过逐步推导得到结果。
递推法在解决数列和函数问题时经常使用。
例如,递推求和法可以用于求解等差数列的前n项和。
二、几何解题方法几何是高中数学的另一个重要内容,解题时也常常使用一些几何解题方法。
1. 利用图形的性质:几何图形有许多性质和定理,通过利用这些性质和定理可以解决一些几何问题。
例如,利用三角形的面积公式和相似性定理可以计算三角形的面积。
2. 几何运算:几何运算是指通过计算几何图形的面积、周长、体积等来解决问题。
例如,计算一个多边形的面积可以通过将其分解为若干个简单图形来进行计算。
3. 三角法:三角法是一种运用三角学思想解决几何问题的方法。
例如,可以通过正弦定理和余弦定理来解决三角形的边长和角度问题。
三、概率与统计解题方法概率与统计是数学的一个分支,研究随机现象和数据分析的方法。
在解决概率与统计问题时,我们可以使用以下方法:1. 概率模型:建立一个合适的概率模型,通过计算概率来求解问题。
例如,通过建立一个事件空间模型,可以计算某个事件发生的概率。
2. 统计分析:通过对收集到的数据进行统计分析,可以得到一些有关该数据的特征和规律。
高中数学19种答题方法 6种解题思想1.函数函数题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用三合一定理。
2.方程或不等式如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.初等函数面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴4.选择与填空中的不等式选择与填空中出现不等式的题目,优选特殊值法;5.参数的取值范围求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线问题圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.曲线方程求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.离心率求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列问题数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何问题立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接心心距创造直角三角形解题;13.导数导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.换元法遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;16.二项分布注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;17.绝对值问题绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;18.平移与平移有关的,注意口诀左加右减,上加下减只用于函数,沿向量平移一定要使用平移公式完成;19.中心对称关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
DO yAFBClx【模型解题法】高中数学抛物线焦点弦模型【模型思考】过抛物线焦点的直线,交抛物线于A B 、两点,则称线段AB 为抛物线的焦点弦。
过抛物线)0(22>=p px y 的焦点弦AB 的端点,A B 分别抛物线准线l 的垂线,交l 于D C 、,构成直角梯形ABCD (图1).这个图形是抛物线 问题中极为重要的一个模型,围绕它可以生出许 多重要的问题,抓住并用好这个模型,可以帮助 我们学好抛物线的基本知识与基本方法,同时, 它又体现了解析几何的重要思想方法。
在图1中, 有哪些重要的几何量可以算出来?又可以获得哪 些重要结论呢?【模型示例】设直线AB 的倾角为θ,当=90AB x θ⊥轴()时,称弦AB 为通径。
例1. 求通径长. 例2. 求焦点弦AB 长. 例3. 求AOB ∆的面积.例4. 连,(2)CF DF CF DF ⊥,求证图.例5. 设准线l 与x 轴交于点E ,求证:FE 是CE 与DE 的比例中项,即 2FE CE DE =⋅.例6. 如图3,直线AO 交准线于C ,求证:直线 x BC //轴. (多种课本中的题目) 例7.设抛物线)0(22>=p px y 的焦点为F ,经过点F 的直线交抛物线于B A ,两点.点C在抛物线的准线上,且x BC //轴. 证明直线AC 经过原点. 例8. 证明:梯形中位线MN 长为2sin pθ. 例9. 连,AN BN AN BN ⊥、图(5),证明:. 例10. 求证:以线段AB 为直径的圆与准线相切. 例11. 连NF ,证明:NF ⊥AB ,且2NFAF BF =⋅.例12. 已知抛物线y x 42=的焦点为F ,AB 是抛物线的焦点弦,过A 、B 两点分别作抛物线的切线,设其交点为M.(I )证明:点M 在抛物线的准线上; (Ⅱ)求证:FM →·AB →为定值; FBAy图1【模型解析】设直线AB 的倾角为θ,当=90AB x θ⊥轴()时,称弦AB 为通径。
高中数学通用模型解题方法及技巧一、选择题解答模型策略近几年来,陕西高考数学试题中选择题为10道,分值50分,占总分的33.3%。
注重多个知识点的小型综合,渗逶各种数学思想和方法,体现基础知识求深度的考基础考能力的导向,使作为中低档题的选择题成为具备较佳区分度的基本题型。
准确是解答选择题的先决条件。
选择题不设中间分,一步失误,造成错选,全题无分。
所以应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
迅速是赢得时间,获取高分的秘诀。
高考中考生“超时失分”是造成低分的一大因素。
对于选择题的答题时间,应该控制在30分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完。
一般地,选择题解答的策略是:①熟练掌握各种基本题型的一般解法。
②结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,灵活运用特例法、筛选法、图解法等选择题的常用解法与技巧。
③挖掘题目“个性”,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择。
二、填空题解答模型策略填空题是一种传统的题型,也是高考试卷中又一常见题型。
陕西高考中共5个小题,每题5分,共25分,占全卷总分的16.7%。
根据填空时所填写的内容形式,可以将填空题分成两种类型:一是定量型,要求学生填写数值、数集或数量关系,如:方程的解、不等式的解集、函数的定义域、值域、最大值或最小值、线段长度、角度大小等等。
由于填空题和选择题相比,缺少选择支的信息,所以高考题中多数是以定量型问题出现。
二是定性型,要求填写的是具有某种性质的对象或者填写给定的数学对象的某种性质,如:给定二次曲线的准线方程、焦点坐标、离心率等等。
在解答填空题时,基本要求就是:正确、迅速、合理、简捷。
一般来讲,每道题都应力争在1~3分钟内完成。
填空题只要求填写结果,每道题填对了得满分,填错了得零分,所以,考生在填空题上失分一般比选择题和解答题严重。
数学题目攻略高中数学题目解析与解答技巧数学题目攻略:高中数学题目解析与解答技巧数学作为一门重要的学科,无论是在高中阶段还是在大学阶段,都占据着重要的地位。
解题的能力在数学学习中尤为重要,因此,如何有效地解析和解答数学题目成为很多学生需要掌握的技巧。
本文将为大家介绍一些高中数学题目解析与解答的技巧,帮助大家更好地应对各种数学题目。
一、代数题目的解析与解答技巧在解析与解答代数题目时,可以采用以下技巧:1. 确定未知数及关系:首先要明确题目中的未知数及它们之间的关系,可以通过列方程或者确定数学模型的方式来确定未知数及其之间的关系。
2. 制定解题思路:明确了未知数及其之间的关系后,可以根据题目的要求制定相应的解题思路,可以是代入法、变量替换法等方法。
3. 化简和转换:对于复杂的代数式,可以通过进行化简和转换,将其转化为更简单的形式,从而更好地解答题目。
4. 注意特殊情况:解答代数题目时,要注意特殊情况的存在,这些特殊情况往往会对最终的答案产生影响。
二、几何题目的解析与解答技巧在解析与解答几何题目时,可以采用以下技巧:1. 确定图形性质:首先要明确题目中所给图形的性质,包括各边长、各角度、对称性等。
通过明确图形的性质,可以更好地解答题目。
2. 运用几何定理:在解答几何题目时,要熟练掌握各种几何定理,比如勾股定理、正弦定理、余弦定理等。
通过运用几何定理,可以更好地解析和解答几何题目。
3. 利用相似性:对于一些相似的图形,可以利用相似性质来解答题目。
通过寻找相似性质,可以简化题目的解答过程。
4. 运用三角函数:对于一些涉及到三角函数的几何问题,可以利用三角函数定理来解答。
比如利用正弦函数、余弦函数、正切函数来计算角度或边长等。
三、概率与统计题目的解析与解答技巧在解析与解答概率与统计题目时,可以采用以下技巧:1. 确定事件和样本空间:首先要明确题目中所给事件和样本空间。
通过确定事件和样本空间,可以建立概率模型,更好地解答题目。
高中数学解题思路方法与技巧分析高中数学是学生们学习过程中的一门重要学科,数学不仅是一门学科,更是一种思维方式和解决问题的方法。
掌握高中数学解题的思路、方法和技巧对学生们来说至关重要。
本文将从解题的一般思路入手,分析高中数学解题的方法与技巧,希望能为学生们提供一些解题的帮助。
一、数学解题的一般思路1. 理清题意。
在解题之前,首先要仔细阅读题目,理解题目所描述的情境或问题,找出题目中涉及的数学概念和知识点。
只有理清题意,才能正确地解答问题。
2. 探索问题,分析问题。
在理清题意的基础上,要对问题进行分析,弄清问题所涉及的数学原理和解决方法。
这个阶段通常需要考虑问题的各种可能性,进一步理解问题。
要灵活地运用各种数学思维方法,进行深入探讨,挖掘问题的本质。
3. 创立解决问题的数学模型。
在理解和分析问题后,要根据题目中的信息,建立问题的数学模型,将问题转化为数学形式,从而更好地解决问题。
4. 运用数学工具解决问题。
在建立了数学模型之后,就可以运用相应的数学原理、定理和方法,来解决问题。
这一步可能涉及到代数运算、几何推理、函数分析等等,需要根据具体情况进行灵活运用。
5. 检验与分析解答结果。
在解答问题之后,要对解答结果进行检验和分析,确认解答是否符合题目的要求,是否存在逻辑和数学上的错误,并且可以从解答结果中得出一些结论或启示。
二、高中数学解题的方法与技巧1. 掌握基本概念和定理。
在解题过程中,必须熟练掌握基本的数学概念和定理,比如三角函数、数列、导数积分等等,只有掌握了这些基本知识,才能更好地解决问题。
2. 善于画图。
在解决几何题目时,可以通过画图的方式,更好地理解题目并得出解答,画图是解决几何问题的有效方法,可以帮助我们看清问题的本质。
3. 灵活运用公式和定理。
在解题过程中,灵活运用各种数学公式和定理,可以帮助我们更快地解决问题,但也要注意不要机械应用,要结合具体情况适当变形或组合使用。
4. 善于进行逻辑推理。
高中数学解题大模型随着高中数学的不断发展,解题技巧也在不断的深入探索。
高中数学的解题是一门系统性的研究,解题模型也是一个重要的组成部分。
解题模型是指用某种格式或形式,把问题解决的方法表达出来,且表达形式应当比较完整,从而使问题得到解决。
在解题模型的研究中,有一系列常用的、核心的解题模型,这些模型在高中数学解题中都有其重要的作用。
下面将介绍几种最常用的解题模型。
1、概率解题模型。
概率解题模型用来解决概率的计算问题,其基本形式为:某事件的概率=此事件的发生的次数/可能发生的所有事件的次数。
概率解题模型在高中数学中有着广泛的应用。
2、数列解题模型。
数列解题模型是高中数学解题中最重要的一种模型,用来解决数列的求和、求平均数等问题。
这种模型一般采用数列通项公式的形式,通过构造数列公式,对一定规律的数列求出其求和、求平均数等关键数据。
3、二次函数解题模型。
二次函数解题模型是高中数学中常见的一种解题模型,指的是将二次函数的图像、周长、最大值、最小值、极值点、凹凸性等问题,用二次函数的函数表达式或变量关系来解决。
4、排列组合计算模型。
排列组合计算模型是指从所有可能的排列组合中选出满足某一要求的排列组合的个数,此类问题通常采用“排列组合数公式”的形式进行求解。
5、几何解题模型。
几何解题模型是指用直线、圆、三角形、椭圆等图形的性质来解决几何问题的模型,其中最重要的两个性质是“相似性”和“平行性”。
通过这两个性质,一些复杂的几何问题可以被轻松解决。
6、比例解题模型。
比例解题模型是指用比例关系解决问题的模型,它是高中数学中最常用的解题模型之一,它可以用来解决比例关系问题,如比例结合题、比例平分题、比例比较题等。
7、函数解题模型。
函数解题模型是指用函数的单调性和凹凸性来解决函数的一类问题,它是高中数学解题中常用的一种模型,有着广泛的应用。
以上就是高中数学解题模型大全,在高中数学解题中,这些模型都有重要的作用,对于学生们,要掌握这些模型,把它们正确的应用到解题中,以便解决问题。
高中数学解题常用的几种解题思路和技巧数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。
下面为大家整理的《高中数学解题常用的几种解题思路和技巧》,仅供大家参考。
高中数学解题有效方法一、数形结合法高中数学题目对我们的逻辑思维、空间思维以及转换思维都有着较高要求,其具有较强的推证性和融合性,所以我们在解决高中数学题目时,必须严谨推导各种数量关系。
很多高中题目都并不是单纯的数量关系题,其还涉及到空间概念和其他概念,所以我们可以利用数形结合法理清题目中的各种数量关系,从而有效解决各种数学问题。
数形结合法主要是指将题目中的数量关系转化为图形,或者将图形转化为数量关系,从而将抽象的结构和形式转化为具体简单的数量关系,帮助我们更好解决数学问题。
例如,题目为“有一圆,圆心为O,其半径为1,圆中有一定点为A,有一动点为P,AP之间夹角为x,过P点做OA垂线,M为其垂足。
假设M到OP之间的距离为函数f (x),求y=f(x)在[0,?仔]的图像形状。
”这个题目涉及到了空间概念以及函数关系,所以我们在解决这个题目时不能只从一个方面来思考问题,也不能只对题目中的函数关系进行深入挖掘。
从已知条件可知题目要求我们解决几何图形中的函数问题,所以我们可以利用数形结合思想来解决这个问题。
首先我们可以根据已知条件绘出相应图形,如图1,显示的是依据题目中的关系绘制的图形。
根据题目已知条件可知圆的半径为1,所以OP=1,∠POM=x,OM=|cos|,然后我们可以建立关于f(x)的函数方程,可得所以我们可以计算出其周期为,其中最小值为0,最大值为,根据这些数量关系,我们可以绘制出y=f(x)在[0,?仔]的图像形状,如图2,显示的是y=f(x)在[0,?仔]的图像。
二、排除解题法排除解题法一般用于解决数学选择题,当我们应用排除法解决问题时,需掌握各种数学概念及公式,对题目中的答案进行论证,对不符合论证关系的答案进行排除,从而有效解决数学问题。
高中数学解题思路方法与技巧分析一、解题思路在解题过程中,首先要从题目中抽象出数学模型,并明确所求的未知量,以便运用数学知识解决问题。
这需要我们掌握以下几个步骤:1.阅读题目阅读题目时不能急于求解,应该认真阅读题目,理解题意,分析问题,明确所求,找出问题的关键点和难点,从而确定解题思路。
2.建立模型掌握问题的基本概念和所涉及的理论知识,建立数学模型,把问题转化为数学语言。
在建立模型的过程中,重要的是明确各量的含义,关系以及范围。
3.解决问题根据所掌握的数学知识,对建立好的模型进行运算和处理,得到所求的答案。
在此过程中,要注意计算的准确性,防止疏漏和错误。
二、解题方法在解题过程中,根据不同的题型和问题,需要掌握一些基本的解题方法,以便更好的解决问题。
1.分类讨论法当问题较为复杂时,可以运用分类讨论法进行解答。
例如,在解决方程或不等式时,可以先讨论特殊情况,再按照一般情况进行求解,从而得到解答。
2.化归法将复杂的问题化简,转化为容易处理的简单问题。
例如,化简分式、求根、化简指数等。
3.逆向法有些问题可以采用逆向思维进行解决,即从所求的答案出发,逆推回原方程或不等式,以求解所需要的量。
4.综合运用法对于一些复杂的题目,需要综合运用多种方法和理论知识,从不同角度对问题进行分析和处理,最终得出解答。
三、解题技巧1.熟练掌握基本知识要熟练掌握基本的数学知识,在面对复杂的问题时,才能够运用自如。
2.理解题意在解题过程中,要充分理解题意,搞清楚题目中的关键点和难点,以便找到解题思路。
3.画图辅助对于一些几何相关的问题,可以运用画图的方法进行解答,图像能更加直观地表现问题,有助于找到解题思路。
4.积累经验在学习过程中,要注意归纳总结,并积累解题经验,遇到类似问题时,能够迅速找到解答的方法。
综上所述,要想在高中数学中得到好成绩,需要掌握解题思路、方法和技巧。
在日常学习中,要勤于练习,逐渐掌握解题的各种方法,为解决高中数学问题打下坚实的基础。
高中数学的解题技巧(三篇)高中数学的解题技巧 1一、选择题1.选择题是高考数学试卷的三大题型之一,题量一般为10到12个,较大部分选择题属于低中档题,且一般按由易到难排序,主要的数学思想和数学方法能通过它得到充分的体现和应用,并且因为它还有相对难度(如思维层次、解题方法的优劣选择,解题速度的快慢等),所以选择题已成为具有好区分度的基本题型之一.能否在选择题上获取高分,关系到高考数学成绩高低,解答选择题的基本要求是四个字——准确、迅速.2.选择题具有概括性强、知识覆盖面广、小巧灵活及有一定的综合性和深度等特点.选择题主要考查对基础知识的理解、对基本技能、基本计算、基本方法的熟练运用,以及考查考虑问题的严谨性,解题速度等方面.解答选择题的基本策略是充分利用题设和选项两方面提供的信息作出判断.一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不要采用常规解法;能使用间接法解的,就不选采用直接法解;对于明显可以否定的选项应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选简解法.解题时应仔细审题、深入分析、正确推理、谨防疏漏;初选后认真检验,确保准确.3.由于选择题80%以上的题目都可以用直接法通过思考、分析、运算得出结论.因此直接法是解答选择题基本、常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答.因此,我们还要掌握一些特殊的解答选择题方法.解选择题的特殊方法有直接法、特例法、排除法、数形结合法、较限法、估值法等.选择题的解题方法:方法一:直接法所谓直接法,就是直接从题设的条件出发,运用有关的概念、定义、性质、定理、法则和公式等知识,通过严密的推理与计算来得出题目的结论,然后再对照题目所给的四个选项来“对号入座”.其基本策略是由因导果,直接求解.方法二:特例法特例法的理论依据是:命题的一般性结论为真的先决条件是它的特殊情况为真,即普通性寓于特殊性之中,所谓特例法,就是用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有取特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.这种方法实际是一种“小题小做”的解题策略,对解答某些选择题有时往往十分奏效.注意:在题设条件都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的较佳策略.近几年高考选择题中可用或结合特例法来解答的约占30%.因此,特例法是求解选择题的好招.方法三:排除法数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论.注意:排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中占有很大的比重. 方法四:数形结合法数形结合,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来,通过对图形的处理,发挥直观对抽象的__作用,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.方法五:估算法在选择题中作准确计算不易时,可根据题干提供的信息,估算出结果的大致取值范围,排除错误的'选项.对于客观性试题,合理的估算往往比盲目的准确计算和严谨推理更为有效,可谓“一叶知秋”.方法六:综合法当单一的解题方法不能使试题迅速获解时,我们可以将多种方法融为一体,交叉使用,试题便能迎刃而解.根据题干提供的信息,不易找到解题思路时,我们可以从选项里找解题灵感.二、解答题1、确保运算准确,立足一次成功数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。
高中数学12种高分解题方法答题技巧高分数学解题方法1:调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于空白状态,创设数学情境,进而酝酿数学思维,提前进入角色,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
高分数学解题方法2:内紧外松,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
高分数学解题方法3:沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生旗开得胜的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的门坎效应,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
高分数学解题方法4:六先六后,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行六先六后的战术原则。
1.先易后难。
就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2.先熟后生。
通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。
高中数学通用模型解题方法1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
中元素各表示什么?A表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
显然,这里很容易解出A={—1,3}.而B最多只有一个元素.故B只能是-1或者3。
根据条件,可以得到a=-1,a=1/3。
但是,这里千万小心,还有一个B为空集的情况,也就是a=0,不要把它搞忘记了。
3。
注意下列性质:要知道它的来历:若B为A的子集,则对于元素a1来说,有2种选择(在或者不在).同样,对于元素a2, a3,……a n,都有2种选择,所以,总共有种选择,即集合A有个子集.当然,我们也要注意到,这种情况之中,包含了这n个元素全部在何全部不在的情况,故真子集个数为,非空真子集个数为(3)德摩根定律:有些版本可能是这种写法,遇到后要能够看懂4. 你会用补集思想解决问题吗?(排除法、间接法)的取值范围。
注意,有时候由集合本身就可以得到大量信息,做题时不要错过;如告诉你函数f(x)=ax2+bx+c(a〉0) 在上单调递减,在上单调递增,就应该马上知道函数对称轴是x=1。
或者,我说在上 ,也应该马上可以想到m,n实际上就是方程的2个根5、熟悉命题的几种形式、∨∧⌝可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和“非”()()().命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
6、熟悉充要条件的性质(高考经常考)满足条件,满足条件,若;则是的充分非必要条件;若;则是的必要非充分条件;若;则是的充要条件;若;则是的既非充分又非必要条件;7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象.)注意映射个数的求法。
高中数学解题方法及技巧高中数学解题是复杂且需要技巧的任务。
随着数学水平的提高,学生需要使用不同的方法和技巧来解决更具挑战性的问题。
本文将探讨高中数学解题的一些常见方法和技巧,包括解题步骤、问题分类、应对策略等,希望能够帮助读者更好地解决高中数学问题。
五个解题步骤:高中数学的解题过程可以分为五个步骤,学生需要按照以下顺序进行:1. 读懂题目并理解问题。
首先,必须仔细阅读题目,理解题目意思,分析并确定题目的关键信息。
这意味着需要确定已知和未知量,以及需要解决的问题类型。
2. 创造一个问题解决方案。
在确定问题后,必须制定一个解决方案,这通常包括选择适当的公式和技巧,以及创建解题步骤。
3. 实施解决方案。
一旦选择和开发了解决方案,需要执行该方案。
这可能需要进行计算、使用公式和执行其他必要的步骤。
4. 检查答案。
在执行解决方案后,需要进行验证以确保正确性。
检查方案时应检查答案是否符合问题意图、要求公式公式是否使用错误、计算是否准确等。
5. 总结解决方案。
最后一步是总结解决方案。
这包括确定是否存在更好的方案或解决方案,以及根据成功或失败的经验制定更好的步骤和方案。
四种不同的问题类型:高中数学问题可以分为四种不同类型:代数问题、几何问题、概率和统计问题和离散数学问题。
以下是针对这四种类型的一些解决方案。
1. 代数问题解决方案:代数问题可能涉及方程、不等式等。
解决这种问题的最好方式是将问题转化为更轻松理解的形式。
在解决方程问题时,需要确定一些基本的步骤——比如因子分解、移项和合并同类项等。
2. 几何问题解决方案:在解决几何问题时,可能需要使用实体几何、大学几何、三角学和几何证明等概念。
要解决这种问题,可以使用一些几何公式,并结合良好的图像和图表来减少错误。
3. 概率和统计问题解决方案:这种类型的问题通常涉及百分比、平均数、标准差等。
要解决这种问题,必须熟悉概率和统计概念,使用一些常用调查技术,例如抽样、随机样本、频率和比例等。
高中数学数学模型解题技巧高中数学作为一门重要的学科,常常涉及到各种数学模型的解题。
数学模型是将实际问题抽象化为数学问题的过程,通过建立数学模型,我们可以更好地理解和解决实际问题。
然而,对于许多学生来说,数学模型解题常常是一项难题。
本文将介绍一些高中数学数学模型解题的技巧,帮助学生更好地应对这类题目。
首先,了解题目背景和要求是解决数学模型问题的第一步。
在解题过程中,我们需要仔细阅读题目,理解题目所描述的实际情境,并确定问题的要求。
例如,假设我们遇到一个汽车行驶问题,题目给出了汽车的速度和行驶时间,我们需要通过建立数学模型来求解汽车行驶的距离。
在这个例子中,我们需要明确问题的背景是汽车行驶,要求是求解行驶距离。
其次,建立数学模型是解决数学模型问题的关键。
建立数学模型是将实际问题转化为数学问题的过程,需要根据题目所给的条件和要求,选择适当的数学工具和方法。
在建立数学模型时,我们可以使用代数、几何、函数等数学概念和方法。
例如,在解决汽车行驶问题时,我们可以使用速度、时间和距离之间的关系进行建模,利用速度等于距离除以时间的公式来求解行驶距离。
然后,运用数学方法求解数学模型问题。
在建立数学模型后,我们需要运用数学方法来求解问题。
这包括代数运算、方程求解、函数图像分析等数学技巧。
在解题过程中,我们需要根据题目的要求,选择合适的数学方法进行求解。
例如,在解决汽车行驶问题时,我们可以使用代数运算和方程求解的方法,通过代入已知条件和未知数,求解出行驶距离的值。
最后,检验和解释结果是解决数学模型问题的最后一步。
在解题过程中,我们需要对所得的结果进行检验和解释。
检验结果是为了确保所得的解符合实际情况和题目要求。
解释结果是为了对解的意义和实际应用进行解释和说明。
例如,在解决汽车行驶问题时,我们可以检验所得的行驶距离是否满足速度和时间的关系,同时解释结果是指汽车在给定速度下行驶了多远。
通过以上的解题技巧,我们可以更好地解决高中数学数学模型问题。
高中数学解题大招,解题模型,提分秘籍,高中家长都在看高中数学是一个相对较难的学科,不少学生在学习时遇到了许多困难。
针对这个问题,以下是一些解题大招、解题模型和提分秘籍。
一、解题大招。
1.理清思路:在做数学题时,必须先理清思路,理清每一道题目的解题步骤,避免盲目求解。
2.画图分析:很多数学题都需要画图来解决问题。
画图有助于更好地理解问题、准确表达思维和从容解题。
3.建立数学模型:数学建模是一种数学智慧的应用,必须对不同题型建立相应的数学模型,可以把复杂的问题简单化,最终解决问题。
4.积极研究:积极研究教师发布的每道题目,分析题干和答案,多按照一定套路思考解题思路,提高解题技巧。
将解题困难部分列于数学笔记本上,应该随时找老师、同学讨论。
5.自己解题:在课后自主解题,通过不断练习、反复推敲巩固知识点和掌握解题思路。
二、解题模型。
1.构建二元一次方程组、求方程组解。
2.利用函数与导数的关系求最值。
3.数学归纳法证明等。
三、提分秘籍。
1.攻克数学基础知识,巩固基础。
初中时期数学基础的掌握对高中数学的学习至关重要。
2.模拟考情较真实,切莫错过学习机会。
不轻视同学的考试成绩,多看一些模拟题,研究常考题型。
3.课上积极思考,用课下时间练习巩固。
每节课的时间都应该充分利用,积极思考问题,利用下课时间教师留下的作业练习巩固。
4.勤加思考,多思多练可提高升学率。
应该不断思考问题,拓宽思维,多练习提高对数学的认识和掌握程度。
总之,高中数学的学习离不开大量的实践和练习,并且需要建立自己的解题模型,理清思路,注重基础知识的掌握和复习。
只要坚持不懈,就可以取得良好的成绩。
高中数学几何题解题技巧1.几何题,就一定有图,所以首先是读题看图,把已知的和未知的在图中标记出来2.结合问题进行推导,有的可以直接推导出来,有的比较隐蔽必须要不断尝试3.数形结合,把未知和已知联系起来,如果碰到必须要构造的,画辅助线,多尝试,找到最合适的辅助线4.其实题目都是有套路的,要多做同类题,然后通过类比,或许做几道就可以解决很多道题,多总结错题,久了就会发现很容易的2技巧一第一,熟悉基本的概念,公理,定理,以及各种推论,最好多做不同类型的学习题,加深映象和理解,了解各定理和推论的各种变式以及各自的应用范围。
第二,立体几何里面有一些特别的关系式,比如正弦定理,余弦定理,海伦公式,二面角的四角公式等等,这些都是被证实了的恒等式,平常注意记忆和运用。
第三,几何是一门以一些已知关系求取一些未知关系之间的关系的学科,所以作辅助线就显得很重要,主要是直观,因为有时候关系多了记不住,就要把他标记下来,所以要多多思索怎样作辅助,必须要什么辅助线才干达到目的。
第四,常常思索,想明白各种定理、推论之间的关系,各种变化的由来以及用处,真正融会贯穿,自然信手拈来。
说到底,现在学习的都是前人证实了的各种逻辑关系式,我们只不过学习并运用而也,就是要靠记忆,理解,运用了,基础最重要,所有复杂的东西都是由最基本的东西组成的,最基本的搞清楚了,复杂的东西自然就会了3技巧二1.首先,高中的立体几何大致有一定的分类,求最值,求角度,求角度的余弦值等,题型上分为选择填空和大题2.求角度问题上,一个方法就是通过在面或是线上作垂线来构造直角三角形,合理运用三垂线定理,这个方法必须要很好的观察能力和几何想象能力3.在求最值问题上,往往要结合函数,通过设某一条边或是某一个夹角来求出其他未知量,构造二次或者多次函数来求出几何图形的一些最值4.还可以运用空间坐标来求解,通过写出各个点的坐标,求出面的法向量,最后用向量来求夹角,这个方法比较简单粗暴,一般来说基本能搞定所有的立体几何问题,不过缺点是计算太烦,容易出错。
竭诚为您提供优质的服务,优质的文档,谢谢阅读/双击去除
[高中数学解题技巧]高中数学模型解题
法
高中数学教学中,提升数学学习水平的关键是教师要教会学生解题的技巧和方法,好的解题技巧和方法能使学生的解题效率得到提升。
接下来小编为你整理了高中数学解题技巧,一起来看看吧。
高中数学解题技巧之19条铁律
铁律1
函数或方程或不等式的题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
铁律2
如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法。
铁律3
面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……
铁律4
选择与填空中出现不等式的题目,优选特殊值法。
铁律5
求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法。
铁律6
恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏。
铁律7
圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式。
铁律8
求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点)。
铁律9
求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可。
铁律10
三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围。
铁律11
数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想。
铁律12
立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间
的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题。
铁律13
导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上。
铁律14
导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上。
铁律15
遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成。
铁律16
注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等。
铁律17
绝对值问题优先选择去绝对值,去绝对值优先选择使用
定义。
铁律18
与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成。
铁律19
关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
高中数学解题技巧之5种答题思路
1、函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。
同学们在解题时可利用转化思想进行函数与方程间的相互转化。
2、数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。
它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3、特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。
不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
4、极限思想解题步骤
极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计
算结果。
5、分类讨论思想
同学们在解题时常常会遇到这样一种情况,解到某一步
之后,不能再以统一的方法、统一的式子继续进行下去,这
是因为被研究的对象包含了多种情况,这就需要对各种情况
加以分类,并逐类求解,然后综合归纳得解,这就是分类讨
论。
引起分类讨论的原因很多,数学概念本身具有多种情形,
数学运算法则、某些定理、公式的限制,图形位置的不确定
性,变化等均可能引起分类讨论。
建议同学们在分类讨论解
题时,要做到标准统一,不重不漏。
最后,小编希望文章对您有所帮助,如果有不周到的地方请
多谅解,更多相关的文章正在创作中,希望您定期关注。
谢谢支
持!
1111。