分支定界法知识
- 格式:doc
- 大小:26.00 KB
- 文档页数:1
分支定界法分支定界法是指以系统的结构为根据,划分以增强系统的面向特性来提出设计方案和获取满足特性的分析。
它旨在深入讨论系统的面向,思考如何穿越技术障碍,为建设一个系统或程序制定高效的解决方案。
它是一种能够带动系统行为的基础方法论,作为技术贴贴合系统的基础,是软件交互的核心技术。
从理论上讲,分支定界法是一种基于面向对象思想的技术,旨在优化软件开发流程、架构和设计,使得程序的流程更加完善,功能更加完善,可以改善系统的性能和可用性。
通常,分支定界法将系统分成若干个模块,并根据实际需求考虑设计模块之间的联系和交互。
比如,用户按照特定需求进行功能结构划分时,就会把一个软件系统分解成多个模块,每个模块负责实现一些特定功能,不同模块间的联系由定义的接口完成。
分支定界法的实施要求:首先,确认客观事实和设计需求,把客观事实提炼成抽象的需求,对需求进行定义和分解,得到一组架构和结构要素;其次,把要素组合起来划分模块,厘清模块之间的联系,定义模块之间的交互关系;再次,分析模块之间的联系,作出架构和结构选择;最后,根据分析结果制定设计方案,提出满足特性的分析,以便用于实施和交付的项目。
从现代软件开发的角度看,分支定界法是软件开发中最基本的一种方法,也是最高效的方法之一,它有助于提高系统的可维护性,减少设计漏洞,解决软件可扩展性和可重复性方面的问题。
此外,分支定界法有利于改善系统的性能,给系统或软件制定更加合理有效的解决方案,增强系统的安全性、稳定性和可用性,减少单位成本,提高开发效率,从而节约成本,达到预期的服务水平。
因此,分支定界法在系统设计开发中发挥着重要作用,成为现代软件开发流程的核心技术,是企业获取竞争优势的重要手段之一。
但是,分支定界法的有效落实需要充分考虑系统的实际需求和市场行情,充分发挥技术优势,全面提升软件开发效率,才能有效实现长期可持续发展。
分支定界法分支定界法,也称为分界定义法,是为了确定并将客观事物归类的一种逻辑基础规范。
它是一组文本规范,用于描述和分类客观事物,以及它们之间的关系。
它分析客观事物的共性,从这些共性,弄清楚客观事物以及它们之间的关系,形成分支定义法。
分支定界法最初创造于18世纪的德国,由卡尔文贝因茨(Karl von Bennizs)提出,他的著作 Theorie der classifikation(分类理论)发表于1790年。
他的主要思想是:通过对客观事物的共性的分析,将客观事物归类,并形成一系列的分类方法。
分支定界法一般包括三个层次:主类,亚类,次类。
主要是将客观事物按照一定的共性划分到不同的类别中,然后在每个主类中进行更详细的分析,形成子类,从而将客观事物更细致地分类。
分支定界法有很多优点。
首先,它可以更好地适应新出现的客观事物,以及客观事物可能出现的新情况。
这是因为,分支定界法有着一系列的分类方法,不仅具有某种共性,而且有着不同的子类,这些子类可以更好地形成客观事物之间的关系,并且有利于新类别的形成。
此外,分支定界法还可以帮助人们进行判断。
分界定义法是一种可以把客观事物细致分类的方法,从而可以更好地去判断两个客观事物之间是否有关系,或者相似度如何,从而帮助我们做出判断。
然而,分支定界法也有一定的局限性。
有时,分支定界法所指定的客观事物重叠,或者具有相同的共性,这会降低分类的准确性。
此外,它也会忽略一些客观事物的细微差别,这可能会影响分类的结果。
总之,分支定界法是一种有效的客观事物归类方法。
它可以更好地划分客观事物的共性,也可以更直观地反映客观事物之间的关系,从而有效地把客观事物归类。
此外,它还可以帮助我们做出判断,但它也有一定的局限性,必须在不同的客观事物之间上尽量保持准确性和细微差别。
分支定界法概述(1)分枝定界-简介分枝定界(branch and bound)是另一种系统地搜索解空间的方法,它与回溯法的主要区别在于对E-节点的扩充方式。
每个活节点有且仅有一次机会变成E-节点。
当一个节点变为E-节点时,则生成从该节点移动一步即可到达的所有新节点。
在生成的节点中,抛弃那些不可能导出(最优)可行解的节点,其余节点加入活节点表,然后从表中选择一个节点作为下一个E-节点。
从活节点表中取出所选择的节点并进行扩充,直到找到解或活动表为空,扩充过程才结束。
分枝定界-方法有两种常用的方法可用来选择下一个E-节点(虽然也可能存在其他的方法):1) 先进先出(F I F O)即从活节点表中取出节点的顺序与加入节点的顺序相同,因此活节点表的性质与队列相同。
2) 最小耗费或最大收益法在这种模式中,每个节点都有一个对应的耗费或收益。
如果查找一个具有最小耗费的解,则活节点表可用最小堆来建立,下一个E-节点就是具有最小耗费的活节点;如果希望搜索一个具有最大收益的解,则可用最大堆来构造活节点表,下一个E-节点是具有最大收益的活节点。
分枝定界-例子例5-1 【迷宫老鼠】考察图16-3a 给出的迷宫老鼠例子和图1 6 - 1的解空间结构。
使用F I F O分枝定界,初始时取(1,1)作为E-节点且活动队列为空。
迷宫的位置(1 , 1)被置为1,以免再次返回到这个位置。
(1,1)被扩充,它的相邻节点(1,2)和(2,1)加入到队列中(即活节点表)。
为避免再次回到这两个位置,将位置(1,2)和(2,1)置为1。
此时迷宫如图1 7 - 1 a所示,E-节点(1,1)被删除。
节点(1,2)从队列中移出并被扩充。
检查它的三个相邻节点(见图1 6 - 1的解空间),只有(1,3)是可行的移动(剩余的两个节点是障碍节点),将其加入队列,并把相应的迷宫位置置为1,所得到的迷宫状态如图17-1b 所示。
节点(1,2)被删除,而下一个E-节点(2,1)将会被取出,当此节点被展开时,节点(3,1)被加入队列中,节点(3,1)被置为1,节点(2,1)被删除,所得到的迷宫如图17-1c 所示。
分支定界法《分支定界法》是一种把同类的事物按照一定的原则划分成不同分支定类的方法。
该方法的主要原理是,按照一定的规则将同类的事物按照不同的层次划分分类,从而来解决问题。
其实,分支定界法本质上是一种层次化的分类方法,这个分类方法可以帮助我们更好地按照一定的规则划分分类,从而更加清晰地观察每个分支的结构,从而建立有效的分支定界。
一般来说,把事物细分并划分分类的过程大致可分为三个步骤:第一步是根据一定的规则,把事物划分为不同的分类;第二步是确定每个分类分之间的界线,以及每个分类的概念;第三步是形成一个有意义的分支定界树,这样被分类的事物就会更加清晰明确。
分支定界法可以应用到不同领域,广泛作为研究分析的工具,有效地实现分支划分的目的。
例如,在政治学中,可以用分支定界法来划分政治体系的不同结构;在经济学中,可以用分支定界法来划分社会经济状况;在社会学中,可以用分支定界法来划分社会阶层;在教育学中,可以用分支定界法来划分不同层次的学生;在法律学中,可以用分支定界法来划分不同类别的案件;在医学中,可以用分支定界法来划分不同病症类型;在信息技术领域,可以用分支定界法来划分不同的存储结构;在商业管理中,可以用分支定界法来划分不同市场需求类别;在艺术设计中,可以用分支定界法来划分不同风格的作品;在心理学中,可以用分支定界法来划分不同类型的心理测试。
总之,分支定界法能够极大地提升研究和分析的效率,彻底改变现有的解决问题方法,在社会发展中发挥着重要作用。
分支定界法也有自身的缺点,最主要的是它主观性较大,受到专家个人把握的局限,可能产生一些错误的分类,从而影响正确的分类结果。
另外,分支定界法的实现需要花费大量的时间和精力,难以实现快速面临问题的解决效果。
尽管分支定界法的应用还存在一定的局限性,但仍有其重要的研究作用和应用价值,是现代化社会发展和繁荣的重要载体。
它为解决问题,更好地分析事物,并建立良好的结构,提供了可靠的工具。
分⽀定界法分⽀定界法(branch and bound)是⼀种求解离散数据组合的最优化问题。
该算法执⾏的效率取决于你所找的问题解空间的上下界,如果找到⼀个很紧凑的上下界进⾏剪枝操作,该算法的执⾏效率会⾮常⾼,因此它是最有可能在多项式时间内求解NP问题的算法。
使⽤分⽀定界算法的⼀般步骤为:构造⼀棵搜索树,该搜索树指的是所有解空间,因此通过遍历该搜索树可以遍历到所有的解;构造问题解的上下界,上界⼀般为之前求出的最优解,下界为⽆约束条件下当前搜索路径的最优解,上下界的主要作⽤是对搜索树进⾏剪枝;通过回溯法遍历搜索树,并且不断更新上下界,如果当前解的下界已经超过上界,则进⾏剪枝;遍历结束时,所求的解为最优解。
接下来通过⼀个实例来讲解分⽀定界算法:某公司于⼄城市的销售点急需⼀批成品,该公司成品⽣产基地在甲城市。
甲城市与⼄城市之间共有 n 座城市,互相以公路连通。
甲城市、⼄城市以及其它各城市之间的公路连通情况及每段公路的长度由矩阵M1 给出。
每段公路均由地⽅政府收取不同额度的养路费等费⽤,具体数额由矩阵 M2 给出。
请给出在需付养路费总额不超过 1500 的情况下,该公司货车运送其产品从甲城市到⼄城市的最短运送路线。
(题⽬来源:北航研究⽣算法课)⾸先构造⼀棵搜索树,该搜索树并不需要显⽰的构建,⽽是在搜索过程中所遵循的⼀种搜索规则。
对于上述问题,以甲城市为根节点构建⼆叉树,其它节点由剩余城市表⽰,树的左⼦树表⽰当前路径包含该⽗节点,树的右⼦树表⽰当前路径不包含该⽗节点。
如图所⽰该搜索路径所表⽰的实际路径为1-3-4,即路径中不包含城市2。
然后分析该问题解的上下界:搜索路径的上界为当前已经求出的满⾜条件的最短路径长度。
搜索路径的下界为当前路径长度与⽆约束条件下路径终点到城市⼄的最短路径长度之和。
若上界⼤于下界,则可以继续搜索;若上界⼩于下界,则表⽰⽆更优解,此时可进⾏剪枝操作。
其中⽆约束条件下的任意点到城市⼄的最短路径长度可以使⽤Dijkstra或Floyd算法预先求出。
分支定界(branch and bound) 算法是一种在问题的解空间树上搜索问题的解
的方法。
但与回溯算法不同,分支定界算法采用广度优先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。
利用分支定界算法对问题的解空间树进行搜索,它的搜索策略是:
1 .产生当前扩展结点的所有子结点;
2 .在产生的子结点中,抛弃那些不可能产生可行解(或最优解)的结点;
3 .将其余的子结点加入活结点表;
4 .从活结点表中选择下一个活结点作为新的扩展结点。
如此循环,直到找到问题的可行解(最优解)或活结点表为空。
分支定界法本质还是一种枚举法,但是是隐枚举法。
它是整数规划领域中非常重要的一类算法思想。
是很多重要算法的源头。
它能解决的实际问题很多,最著名的一个应该就是求解背包问题。
定义
分支定界法(branch and bound)是一种求解整数规划问题的最常用算法。
这种方法不但可以求解纯整数规划,还可以求解混合整数规划问题。
算法步骤
第1步:放宽或取消原问题的某些约束条件,如求整数解的条件。
如果这时求出的最优解是原问题的可行解,那么这个解就是原问题的最优解,计算结束。
否则这个解的目标函数值是原问题的最优解的上界。
第2步:将放宽了某些约束条件的替代问题分成若干子问题,要求各子问题的解集合的并集要包含原问题的所有可行解,然后对每个子问题求最优解。
这些子问题的最优解中的最优者若是原问题的可行解,则它就是原问题的最优解,计算结束。
否则它的目标函数值就是原问题的一个新的上界。
另外,各子问题的最优解中,若有原问题的可行解的,选这些可行解的最大目标函数值,它就是原问题的最优解的一个下界。
第3步:对最优解的目标函数值已小于这个下界的问题,其可行解中必无原问题的最优解,可以放弃。
对最优解的目标函数值大于这个下界的子问题,都先保留下来,进入第4步。
第4步:在保留下的所有子问题中,选出最优解的目标函数值最大的一个,重复第1步和第2步。
如果已经找到该子问题的最优可行解,那么其目标函数值与前面保留的其他问题在内的所有子问题的可行解中目标函数值最大者,将它作为新的下界,重复第3步,直到求出最优解。