第五章 数据和函数的可视化
- 格式:ppt
- 大小:1.67 MB
- 文档页数:59
第五章数据处理和可视化表达课题数据处理和可视化表达课时4课时教材分析本章是必修一第五章的内容,随着移动互联网和物联网的飞速发展,人类社会产生的数据以惊人的速度增长,海量的数据几乎包含了一切形式的数据。
本章要让同学认识到大数据及其特征,认识大数据对人们日常生活的影响,了解数据采集、分析和可视化表达的基本方法;学会选用恰当的软件工具或平台处理数据,分析报告;学会利用python 的扩展库来解决会考题,理解对数据保护的意义。
学情分析在第五章当中学生已经对python语言已经有了基本的了解,在本章的学习党中除了了解大数据还要学习python的扩展库。
在本章节的学习当中要注重培养学生学习的主动性,培养学生自主学习的意识。
让学生学会选择恰当的学习工具进行学习,建构知识,培养技能,发展思维。
促进信息技术学科核心素养达成,完成项目学习目标。
教学目标1.能够理解大数据的4V特征并能举出例子。
2.了解数据采集,分析和可视化表达的基本方法。
3.了解python的第三方库的基础知识,学会利用第三方库来做题。
4.促进信息技术学科核心素养达成,完成学习目标。
重点与难点重点:大数据的4V特征,可视化表达的基本方法,python的扩展库。
难点:python的扩展库。
教学方法讲授法、任务驱动法、小组合作法、自主探究法课前准备多媒体课件、教学视频,随堂练习教学设计导入让学生进行思考你在网站购物时是否出现过类似的事情:当你在搜索一件物品的时候,购物网站就会给你进行类似商品的推荐和广告的投放。
从此例子来引入本章内容的学习。
授新课任务一:认识大数据的概念和特征1.让同学自行阅读课本P101-P102来了解大数据的概念和特征,阅读完成之后学生进行总结,教师加以补充,在上新课之前所举的购物网站的例子就是应用的大数据。
2.让学生4人为小组讨论一下在日常生活中还有哪些应用了大数据?例如移动支付、网约车、高德地图等。
任务二:观看视频总结大数据对日常生活的影响让学生们观看视频《大数据时代,我们无处可逃》然后以小组为单位讨论一下大数据时代对日常生活的影响。
Excel的高级数据处理技巧第一章:数据筛选和排序在Excel中,数据筛选和排序是常见的操作,可以帮助我们从大量数据中找到需要的信息。
在本章中,将介绍一些高级的数据筛选和排序技巧。
1.1 高级筛选:通过设置多个条件来筛选数据,可以使用逻辑运算符(如AND、OR)结合多个条件进行精确筛选。
1.2 高级排序:除了基本的排序功能外,Excel还提供了多列排序的功能,可以通过设置多个排序条件对数据进行更精细的排序。
1.3 自定义排序:在排序选项中,可以选择自定义排序顺序,例如按照自定义的顺序对月份进行排序。
第二章:数据透视表数据透视表是Excel中一个非常强大的工具,可以帮助我们对大量数据进行汇总和分析。
在本章中,将介绍一些高级的数据透视表技巧。
2.1 数据透视表筛选:可以通过设置条件来筛选数据透视表中的数据,只显示满足条件的数据。
2.2 合并数据透视表:可以将多个数据透视表合并在一起,形成一个更全面的数据透视表,方便数据分析和比较。
2.3 透视表字段排序:可以对数据透视表中的字段进行排序,例如按照销售额从高到低进行排序。
第三章:数据清洗和转换在 Excel 中,我们常常需要对原始数据进行清洗和转换,以保证数据的准确性和一致性。
在本章中,将介绍一些高级的数据清洗和转换技巧。
3.1 文本清洗:可以使用文本函数和正则表达式等工具对文本数据进行清洗和提取。
3.2 数据转换:可以使用数据透视表和函数等工具对原始数据进行转换,以满足不同需求的分析。
3.3 多表数据合并:可以使用数据连接和合并工具将多个表格中的数据合并在一起,方便数据分析。
第四章:高级函数和公式应用Excel提供了许多强大的函数和公式,可以帮助我们进行复杂的数据处理和计算。
在本章中,将介绍一些常用的高级函数和公式应用技巧。
4.1 ARRAY公式:ARRAY公式可以处理数组数据,可以进行多个单元格的计算和处理。
4.2 数据的动态更新:通过使用函数和公式,可以使数据在源数据更新后自动更新。
MATLAB教程2012a第5章习题解答-张志涌第5章 数据和函数的可视化习题5及解答1 椭圆的长、短轴2,4==b a ,用“小红点线〞画椭圆⎩⎨⎧==tb y ta x sin cos 。
〔参见图p5-1〕〖解答〗 clf a=4;b=2;t=0:pi/80:2*pi; x=a*cos(t); y=b*sin(t);plot(x,y,'r.','MarkerSize',15) axis equal xlabel('x') ylabel('y')shg-4-3-2-101234-3-2-1123xy2 根据表达式θρcos 1-=绘制如图p5-2的心脏线。
〔提示:采用极坐标绘线指令polar 〕〖解答〗 clftheta=0:pi/50:2*pi;rho=1-cos(theta);h=polar(theta,rho,'-r');%极坐标绘线指令。
h 是所画线的图柄。
set(h,'LineWidth',4) %利用set 设置h 图形对象的“线宽〞axis square %保证坐标的圆整性0.51 1.523021060240902701203001503301800ρ=1-cos θ3 A,B,C 三个城市上半年每个月的国民生产总值如见表p5.1。
试画出如图p5-3所示的三城市上半年每月生产总值的累计直方图。
表p5.1 各城市生产总值数据〔单位:亿元〕城市 1月 2月 3月 4月 5月 6月 A 170 120 180 200 190 220 B 120 100 110 180 170 180 C 70508010095120〖目的〗● 借助MATLAB 的帮助系统,学习直方图指令polar 的使用。
● bar 指令常用格式之一:bar(x,Y,'style') 。
x 是自变量列向量;Y 是与x 行数相同的矩阵,Y 的每一行被作为“一组〞数据;style 取stacked 时,同一组数据中每个元素对应的直方条被相互层叠。
如何使用Excel进行数据建模和数据分析数据建模和数据分析是现代信息技术领域中的重要技能。
在大数据时代,数据建模和数据分析能够帮助人们更好地理解和利用数据,从而做出更为准确的决策。
Excel作为一种常用的办公软件,在数据建模和数据分析中起着重要的作用。
本文将介绍如何使用Excel进行数据建模和数据分析。
第一章 Excel基础知识在使用Excel进行数据建模和数据分析之前,我们需要了解一些基础知识。
首先,我们需要熟悉Excel的基本操作,包括创建、打开和保存Excel文件,以及插入和删除单元格、行和列等操作。
此外,我们还需要了解Excel的常用函数和公式,如SUM、AVERAGE、MAX、MIN等,这些函数和公式能够帮助我们进行数据计算和统计。
第二章数据建模数据建模是将现实世界中的对象和关系转化为可计算的模型的过程。
在Excel中,我们可以使用表格、图表等形式对数据进行建模。
首先,我们可以使用Excel的链接功能将不同的数据表格进行关联,从而建立起数据之间的联系。
其次,在数据表格中,我们可以使用Excel的排序和筛选功能对数据进行有序和有条件的排列和筛选,以便更好地进行数据分析。
第三章数据清洗在进行数据建模和数据分析之前,我们需要对数据进行清洗。
数据清洗是指通过删除、修改或补充数据,使数据更加准确和完整的过程。
在Excel中,我们可以使用筛选功能对数据进行筛选和过滤,以去除不符合要求的数据。
同时,我们还可以使用Excel的查找和替换功能对数据进行查找和替换操作,从而进一步清洗数据。
第四章数据分析数据分析是指通过对数据进行加工、整理和分析,从中获取有用的信息和知识的过程。
在Excel中,我们可以使用各种函数和工具进行数据分析。
首先,我们可以使用Excel的图表功能对数据进行可视化展示,帮助我们更直观地理解数据。
其次,我们可以使用Excel的数据透视表功能对大量数据进行汇总和分析,从而发现数据中的规律和趋势。
使用Excel进行数据分析与可视化的方法与技巧第一章:介绍Excel数据分析的意义与基本概念(200字左右)Excel是目前最流行的电子表格软件,被广泛应用于数据分析和可视化领域。
数据分析是从大量数据中提取有用信息的过程,而数据可视化则是以图表、图形等形式直观地展示数据。
Excel提供了丰富的分析和可视化工具,可以帮助用户更轻松地理解和解释数据。
第二章:Excel数据分析的基本操作(200字左右)在 Excel 中进行数据分析的第一步是导入数据。
Excel支持导入文本文件、数据库、Web数据等多种数据源。
用户可以使用Excel的数据导入向导来导入不同类型的数据,并根据需要进行数据清洗和转换。
数据清洗是指对数据进行预处理,包括去除重复值、填充空白单元格、删除无效数据等操作。
数据转换可以将数据进行排序、筛选、合并等操作,以便更好地进行分析。
第三章:Excel数据分析函数与工具的应用(300字左右)Excel提供了丰富的函数和工具,以支持各种数据分析任务。
例如,SUM函数可以计算指定区域的所有数值之和,VLOOKUP函数可以在表格中根据指定条件查找对应的数值。
此外,Excel还提供了数据透视表的功能,用户可以通过拖拽字段来分析数据的不同维度,从而快速生成交叉报表和汇总统计。
Excel还内置了多种图表类型,例如饼图、柱状图、折线图等,用户可以根据需要选择适合的图表类型,并通过调整样式、颜色等参数来美化图表。
第四章:Excel数据可视化的技巧与实例(300字左右)在进行数据可视化时,用户可以使用Excel的图表工具来创建直观、易于理解的图表。
以下是一些技巧和实例:1.选择合适的图表类型:根据数据的性质和分析目的选择合适的图表类型。
例如,使用饼图来表示不同类别的占比,使用柱状图来比较不同组的数据。
2.调整图表样式:通过更改图表的样式、字体、颜色等参数,使图表更具吸引力和可读性。
3.添加数据标签和图例:为了让读者更容易理解图表中的数据,可以添加数据标签和图例。
python数据可视化第五章实训Python数据可视化第五章实训介绍本文将介绍Python数据可视化第五章实训,主要包括以下内容:1. 实验目的和背景2. 实验环境和工具3. 实验步骤和操作4. 实验结果分析和总结实验目的和背景本次实验的主要目的是了解如何使用Python进行数据可视化,掌握Matplotlib库的基本使用方法。
通过对实验数据进行处理和分析,学习如何绘制各种类型的图表,并能够根据需要对图表进行自定义设置。
实验环境和工具本次实验需要使用到以下工具和环境:1. Python 3.x版本2. Jupyter Notebook或其他Python IDE3. Matplotlib库Matplotlib是Python中用于绘制各种类型图表的一个常用库,它提供了简单易用的API接口,支持多种图表类型,并且可以进行自定义设置。
实验步骤和操作1. 安装Matplotlib库在Jupyter Notebook或其他Python IDE中打开命令行窗口,输入以下命令安装Matplotlib库:```pip install matplotlib```2. 导入Matplotlib库并加载数据集在代码文件中导入Matplotlib库并加载需要处理的数据集。
例如:```pythonimport matplotlib.pyplot as pltimport pandas as pd# 加载数据集data = pd.read_csv("data.csv")```3. 绘制折线图使用Matplotlib库绘制折线图,可以使用plot()函数实现。
例如:```python# 绘制折线图plt.plot(data['x'], data['y'])# 显示图表plt.show()```4. 绘制散点图使用Matplotlib库绘制散点图,可以使用scatter()函数实现。
m a t l a b综合大作业(附详细答案)-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII《MATLAB语言及应用》期末大作业报告1.数组的创建和访问(20分,每小题2分):1)利用randn函数生成均值为1,方差为4的5*5矩阵A;实验程序:A=1+sqrt(4)*randn(5)实验结果:A =0.1349 3.3818 0.6266 1.2279 1.5888-2.3312 3.3783 2.4516 3.1335 -1.67241.2507 0.9247 -0.1766 1.11862.42861.5754 1.6546 5.3664 0.8087 4.2471-1.2929 1.3493 0.7272 -0.6647 -0.38362)将矩阵A按列拉长得到矩阵B;实验程序:B=A(:)实验结果:B =0.1349-2.33121.25071.5754-1.29293.38183.37830.92471.65461.34930.62662.4516-0.17665.36640.72721.22793.13351.11860.8087-0.66471.5888-1.67242.42864.2471-0.38363)提取矩阵A的第2行、第3行、第2列和第4列元素组成2*2的矩阵C;实验程序:C=[A(2,2),A(2,4);A(3,2),A(3,4)]实验结果:C =3.3783 3.13350.9247 1.11864)寻找矩阵A中大于0的元素;]实验程序:G=A(find(A>0))实验结果:G =0.13491.25071.57543.38183.37830.92471.65461.34930.62662.45165.36640.72721.22793.13351.11860.80871.58882.42864.24715)求矩阵A的转置矩阵D;实验程序:D=A'实验结果:D =0.1349 -2.3312 1.2507 1.5754 -1.29293.3818 3.3783 0.9247 1.6546 1.34930.6266 2.4516 -0.1766 5.3664 0.72721.2279 3.1335 1.1186 0.8087 -0.66471.5888 -1.67242.4286 4.2471 -0.38366)对矩阵A进行上下对称交换后进行左右对称交换得到矩阵E;实验程序:E=flipud(fliplr(A))实验结果:E =-0.3836 -0.6647 0.7272 1.3493 -1.29294.2471 0.80875.3664 1.6546 1.57542.4286 1.1186 -0.1766 0.9247 1.2507-1.6724 3.1335 2.4516 3.3783 -2.33121.5888 1.2279 0.6266 3.3818 0.13497)删除矩阵A的第2列和第4列得到矩阵F;实验程序:F=A;F(:,[2,4])=[]实验结果:F =0.1349 0.6266 1.5888-2.3312 2.4516 -1.67241.2507 -0.17662.42861.5754 5.3664 4.2471-1.2929 0.7272 -0.38368)求矩阵A的特征值和特征向量;实验程序:[Av,Ad]=eig(A)实验结果:特征向量Av =-0.4777 0.1090 + 0.3829i 0.1090 - 0.3829i -0.7900 -0.2579 -0.5651 -0.5944 -0.5944 -0.3439 -0.1272-0.2862 0.2779 + 0.0196i 0.2779 - 0.0196i -0.0612 -0.5682 -0.6087 0.5042 - 0.2283i 0.5042 + 0.2283i 0.0343 0.6786 0.0080 -0.1028 + 0.3059i -0.1028 - 0.3059i 0.5026 0.3660 特征值Ad =6.0481 0 0 0 00 -0.2877 + 3.4850i 0 0 00 0 -0.2877 - 3.4850i 0 00 0 0 0.5915 00 0 0 0 -2.30249)求矩阵A的每一列的和值;实验程序:lieSUM=sum(A)实验结果:lieSUM =-0.6632 10.6888 8.9951 5.6240 6.208710)求矩阵A的每一列的平均值;实验程序:average=mean(A)实验结果:average =-0.1326 2.1378 1.7990 1.1248 1.24172.符号计算(10分,每小题5分):1)求方程组20,0++=++=关于,y z的解;uy vz w y z w实验程序:S = solve('u*y^2 + v*z+w=0', 'y+z+w=0','y,z');y= S. y, z=S. z实验结果:y =[ -1/2/u*(-2*u*w-v+(4*u*w*v+v^2-4*u*w)^(1/2))-w] [ -1/2/u*(-2*u*w-v-(4*u*w*v+v^2-4*u*w)^(1/2))-w] z =[ 1/2/u*(-2*u*w-v+(4*u*w*v+v^2-4*u*w)^(1/2))] [ 1/2/u*(-2*u*w-v-(4*u*w*v+v^2-4*u*w)^(1/2))]2)利用dsolve 求解偏微分方程,dx dyy x dt dt==-的解; 实验程序:[x,y]=dsolve('Dx=y','Dy=-x')实验结果:x =-C1*cos(t)+C2*sin(t)y = C1*sin(t)+C2*cos(t)3.数据和函数的可视化(20分,每小题5分):1)二维图形绘制:绘制方程2222125x y a a +=-表示的一组椭圆,其中0.5:0.5:4.5a =;实验程序:t=0:0.01*pi:2*pi; for a=0.5:0.5:4.5; x=a*cos(t); y=sqrt(25-a^2)*sin(t); plot(x,y) hold on end实验结果:2) 利用plotyy 指令在同一张图上绘制sin y x =和10x y =在[0,4]x ∈上的曲线;实验程序:x=0:0.1:4; y1=sin(x); y2=10.^x;[ax,h1,h2]=plotyy(x,y1,x,y2); set(h1,'LineStyle','.','color','r'); set(h2,'LineStyle','-','color','g'); legend([h1,h2],{'y=sinx';'y=10^x'});实验结果:3)用曲面图表示函数22z x y =+;实验程序:x=-3:0.1:3; y=-3:0.1:3; [X,Y]=meshgrid(x,y); Z=X.^2+Y.^2; surf(X,Y,Z)实验结果:4)用stem 函数绘制对函数cos 4y t π=的采样序列;实验程序:t=-8:0.1:8;y=cos(pi.*t/4); stem(y)实验结果:4. 设采样频率为Fs = 1000 Hz ,已知原始信号为)150π2sin(2)80π2sin(t t x ⨯+⨯=,由于某一原因,原始信号被白噪声污染,实际获得的信号为))((ˆt size randn x x+=,要求设计出一个FIR 滤波器恢复出原始信号。
学习使用Excel进行数据分析与可视化第一章:Excel 数据分析与可视化入门Excel是一款功能强大的电子表格软件,除了用于基本的数据记录之外,它还可以进行数据分析与可视化。
本章将介绍Excel数据分析与可视化的基本概念和常用工具。
1.1 数据分析基础数据分析是指通过对数据进行收集、整理、处理和解释,得出结论和做出决策的过程。
Excel提供了许多数据分析工具,如排序、筛选、条件格式等,可以帮助我们更好地理解和利用数据。
1.2 数据可视化概述数据可视化是指通过图表、图形、表格等可视化方式,将复杂的数据信息转化为直观、易于理解的视觉展示。
Excel的图表功能十分强大,可以帮助我们更直观地观察和分析数据。
第二章:数据整理与清洗数据整理与清洗是进行数据分析与可视化的第一步。
本章将介绍Excel中常用的数据整理与清洗技巧,帮助我们从杂乱的数据中提取有用信息。
2.1 数据导入与导出Excel支持将数据从其他文件或数据库中导入,并将整理后的数据导出到其他格式。
介绍了如何使用Excel导入和导出数据的方法和技巧。
2.2 数据筛选与排序Excel提供了筛选和排序功能,可以根据自定义条件将数据筛选出来或按照指定的字段进行排序。
2.3 数据透视表数据透视表是Excel中非常强大的数据分析工具,可以帮助我们对大量数据进行快速汇总和分析,针对不同的维度和指标进行灵活的展示。
第三章:数据分析与计算在清洗和整理好数据之后,我们可以使用Excel进行更深入的数据分析和计算。
本章将介绍Excel中常用的数据分析和计算函数,帮助我们提取有价值的数据洞察。
3.1 常用的数据分析函数Excel中提供了各种各样的数据分析函数,如求和、平均值、最大值、最小值等,可以方便地进行数据计算和分析。
3.2 条件统计与筛选Excel中的条件统计与筛选功能可以帮助我们根据设定的条件,对数据进行统计和筛选,得到想要的结果。
3.3 数据建模与预测Excel提供了一些高级的数据建模和预测工具,如回归分析、趋势拟合等,可以帮助我们预测未来趋势,并进行决策分析。
Python数据可视化第五章实训一、简介本实训将介绍Python数据可视化中的第五章内容。
本章主要讲解了如何使用Python进行图表的定制化,以及如何将多个图表合并到一个画布中。
通过对本章内容的学习和实践,我们可以更好地掌握Python数据可视化的技巧,实现更加美观和有吸引力的数据可视化效果。
二、图表的定制化在数据可视化的过程中,我们经常需要对图表进行定制化,以满足我们的特定需求。
本章介绍了一些常用的图表定制化技巧,包括修改图表的颜色、字体、线条样式等。
下面分别介绍这些技巧的具体内容。
1. 修改颜色通过修改颜色,我们可以让图表更加生动和美观。
Python提供了多种方法来修改图表的颜色,包括使用预定义的颜色、使用RGB或RGBA颜色模式以及使用自定义的颜色映射。
下面是一些常用的修改颜色技巧:•使用预定义的颜色:可以使用Python的内置颜色名称,如red、green、blue等。
另外,还可以使用HTML颜色名称或十六进制颜色代码,例如#FF0000代表红色。
•使用RGB或RGBA颜色模式:RGB颜色模式使用红、绿、蓝三个通道来定义颜色,RGBA颜色模式除了三个通道外,还包含透明度通道。
使用这种颜色模式可以精确地定义图表的颜色。
•使用自定义的颜色映射:可以根据数据的特点使用自定义的颜色映射。
例如,可以使用深浅不同的蓝色来表示温度的高低。
2. 修改字体通过修改字体,我们可以让图表更加清晰和易读。
Python提供了多种方法来修改图表的字体,包括修改标题字体、坐标轴标签字体、图例字体等。
下面是一些常用的修改字体技巧:•修改标题字体:可以使用set_title()方法来修改标题的字体。
可以指定字体的名称、大小和样式。
•修改坐标轴标签字体:可以使用set_xlabel()方法和set_ylabel()方法来修改坐标轴标签的字体。
可以指定字体的名称、大小和样式。
•修改图例字体:可以使用legend()方法来设置图例的字体。
第五章可视化技术一.内容概述本章主要讲述了一系列的可视化技术。
这些技术(主要以filter,即过滤器实现)根据它们所处理的数据类型来分类。
一些filter接受的输入数据类型是vtkDasaSet,如下图:则这些filter为通用型filter。
当然,也有一些filter是针对特定的输入数据的,比如vtkPolyData.当阅读本章时,请务必记住以下两点:1.Filter可以产生多种输出数据,并且输出数据的数据类型并不一定与输入数据的数据类型相同。
2.Filter用于与创造复杂数据处理管道相结合。
二.各部分内容5.1可视化vtkDasaSet(以及它的子类)在这部分中主要讲述如何对数据类型为vtkDasaSet的数据进行一些常用的可视化操作。
由于vtkDasaSet是所有可视化数据的父类,所以,这里描述的方法可以对所有的数据类型都有效。
数据属性(data attribute)处理数据属性是以数据集合形式存放的信息。
VTK中,数据属性是与点(Point)及其网格(Cell)相关联的。
数据属性与数据集合结构被许多的filter所处理来生成新的结构和属性。
下图为与数据集合中的点和网格所关联的各种数据属性。
如上图所示,数据属性可以被归为标量,矢量,张量,法向量或者结构坐标。
数据属性就是以vtkDataArray来表示,每一个与vtkDasaSet相关联的vtkDataArray即为一个vtkDataArray的具体子类,例如vtkFloatArray或者vtkIntArray。
下图为vtkDataArray的继承图:这些数组可以被认识是存放相应数据的连续的内存空间,在这片空间中,数据数组可以被想像成由一系列小的数组组成。
创建属性数据由下面一系列动作组成:1.以需要的数据类型初始化一个一个数组2.声明每个属性元素的大小3.将它与一个数据集合相关联创建过程中要注意,与点相关联的属性的数目一定要等于数据集合中点的数目,同理,与网格相关联的属性数目一定要等于数据集合中网格的数目。