Lagrange插值
- 格式:ppt
- 大小:455.50 KB
- 文档页数:34
lagrange 共节点方法Lagrange插值是一种用于估计给定数据点集的未知函数的方法。
它的共节点方法是一种特定的Lagrange插值方法,它利用相同的节点来构造多个Lagrange插值多项式。
让我来详细解释一下。
首先,Lagrange插值的基本思想是使用一个多项式来通过给定的数据点。
假设我们有n+1个不同的数据点(x0, y0), (x1,y1), ..., (xn, yn),其中xi和yi分别是自变量和因变量的值。
Lagrange插值多项式L(x)可以通过以下公式计算得到:L(x) = Σ(yi li(x)), i=0 to n.其中li(x)是Lagrange基本多项式,它的表达式为:li(x) = Π(j=0 to n, j ≠ i) ((x xj) / (xi xj))。
这样,我们就可以得到通过这n+1个数据点的Lagrange插值多项式L(x)。
而共节点方法是Lagrange插值的一种特殊方法,它使用相同的节点来构造多个Lagrange插值多项式。
这意味着对于给定的n次Lagrange插值多项式,我们可以通过选择不同的插值节点来得到不同的插值多项式。
这种方法的优点是可以减少计算量,因为我们可以在不同的插值节点上重复使用已经计算好的Lagrange插值多项式。
然而,共节点方法也有一些局限性,因为它要求所有的插值多项式共享相同的插值节点,这可能会导致插值多项式之间的相互影响,从而影响插值的准确性。
因此,在使用共节点方法时,需要仔细考虑插值节点的选择,以确保插值多项式的准确性和稳定性。
总的来说,Lagrange插值的共节点方法是一种在选择相同插值节点的情况下构造多个Lagrange插值多项式的方法。
它在一定情况下可以减少计算量,但需要注意插值节点的选择以确保插值的准确性。
希望这个回答能够帮助你更好地理解Lagrange插值的共节点方法。
今天的上机作业1. Lagrange 插值给出()ln f x x 的数值表用Lagrange 插值计算ln 0.54的近似值。
2.Newton 插值用Newton 插值计算x=0.41的近似值。
3.插值法的全部内容把chap_2试验.doc 的全部内容作一边,粘在这个文件里(包括图形)答:grange 插值function f=lagrange_5(x) x0=[0.4,0.5,0.6,0.7,0.8];y0=[-0.916291,-0.693147,-0.510826,-0.356675,-0.223144]; L1=0;m=length(x0);n=length(y0);if m~=n, error('向量x 与y 的长度必须一致');end for i=1:nL=ones(1,length(x)); for j=1:n if j~=iL=L.*(x-x0(j))/(x0(i)-x0(j)); end endL1=L1+L*y0(i); end L1lagrange_5(0.54) L1 =-0.616142715200002.Newton插值function f=newton_li5(x) %x0为入的节点值,y0相应节点的函数值x0=[0.25 0.30 0.39 0.45 0.53];y0=[0.5000 0.5477 0.6245 0.6708 0.7280];n=length(x0)%syms xfor i=1:nf(i,1)=y0(i);endhx=f(1,1);xx=(1.0);for k=2:nfor i=k:nf(i,k)=(f(i,k-1)-f(i-1,k-1))/(x0(i)-x0(i-k+1)); %构造差商表endxx=xx*(x-x0(k-1));hx=hx+f(k,k)*xx; %计算函数的近似值end%f=expand(hx)Hxnewton(0.41)n =5hx =0.64030542443064ans =0.50000000000000 0 0 0 00.54770000000000 0.95400000000000 0 0 00.62450000000000 0.85333333333333 -0.71904761904761 0 00.67080000000000 0.77166666666666 -0.54444444444446 0.87301587301575 00.72800000000000 0.71500000000000 -0.40476190476189 0.60731538992422 -0.948930296755483.插值法的全部内容把chap_2试验.doc的全部内容作一边,粘在这个文件里(包括图形)P28 例22点插值function f=lagrange_2(x)x0=[0.32,0.34];y0=[0.314567,0.333487];L1=0;m=length(x0);n=length(y0);if m~=n, error('向量x与y的长度必须一致');endfor i=1:nL=ones(1,length(x));for j=1:nif j~=iL=L.*(x-x0(j))/(x0(i)-x0(j));endendL1=L1+L*y0(i);endL1lagrange_2(0.3367)L1 =0.330365200000003点插值function f=lagrange_3(x)x0=[0.32,0.34,0.36];y0=[0.314567,0.333487,0.352274];L1=0;m=length(x0);n=length(y0);if m~=n, error('向量x与y的长度必须一致');endfor i=1:nL=ones(1,length(x));for j=1:nif j~=iL=L.*(x-x0(j))/(x0(i)-x0(j));endendL1=L1+L*y0(i);endL1lagrange_3(0.3367)L1 =0.33037436203750Lagrange插值法%eg1_lagr.mclear;clf;xx=linspace(-5,5,50); y=sin(xx); %作被插函数的图象disp('n x=4.5处的插值绝对误差的绝对值')x1=linspace(-5,5,3); y1=sin(x1); yy1=lagr1(x1,y1,xx); %2次插值chazhi_y45_2=lagr1(x1,y1,4.5);gd_wucha_limit_y45_2=abs(chazhi_y45_2-sin(4.5));disp(sprintf('%d %15.4f %15.4f',2,chazhi_y45_2,gd_wucha_limit_y45_2))x2=linspace(-5,5,5); y2=sin(x2); yy2=lagr1(x2,y2,xx); %4次插值chazhi_y45_4=lagr1(x2,y2,4.5);gd_wucha_limit_y45_4=abs(chazhi_y45_4-sin(4.5));disp(sprintf('%d %15.4f %15.4f',4,chazhi_y45_4,gd_wucha_limit_y45_4))x3=linspace(-5,5,9); y3=sin(x3); yy3=lagr1(x3,y3,xx); %8次插值chazhi_y45_8=lagr1(x3,y3,4.5);gd_wucha_limit_y45_8=abs(chazhi_y45_8-sin(4.5));disp(sprintf('%d %15.4f %15.4f',8,chazhi_y45_8,gd_wucha_limit_y45_8))plot(xx,y,'m-');hold on,pause,plot(x1,y1,'rs',xx,yy1,'r-'); hold on,pause,plot(x2,y2,'b*',xx,yy2,'b-'); hold on,pause,plot(x3,y3,'ko',xx,yy3,'k-'); hold on计算函数值function f=newton_li4(x) %x0为入的节点值,y0相应节点的函数值x0=[0.40,0.55,0.65,0.80,0.90,1.05];y0=[0.41075,0.57815,0.69675,0.88811,1.02652,1.25382];n=length(x0)%syms xfor i=1:nf(i,1)=y0(i);endhx=f(1,1);xx=(1.0);for k=2:nfor i=k:nf(i,k)=(f(i,k-1)-f(i-1,k-1))/(x0(i)-x0(i-k+1)); %构造差商表endxx=xx*(x-x0(k-1));hx=hx+f(k,k)*xx; %计算函数的近似值end%f=expand(hx)hxnewton(0.596)n =5hx =0.77193768707246ans =0.50000000000000 0 0 0 00.54770000000000 0.95400000000000 0 0 00.62450000000000 0.85333333333333 -0.71904761904761 0 00.67080000000000 0.77166666666666 -0.54444444444446 0.87301587301575 00.72800000000000 0.71500000000000 -0.40476190476189 0.60731538992422 -0.94893029675548Newton插值法%eg1_newton.mclear;clf;xx=linspace(-5,5,50); y=sin(xx); %作被插函数的图象disp('n x=4.5处的插值绝对误差的绝对值')x1=linspace(-5,5,3); y1=sin(x1); yy1=newton1(x1,y1,xx,2); %2次插值chazhi_y45_2=newton1(x1,y1,4.5,2);gd_wucha_limit_y45_2=abs(chazhi_y45_2-sin(4.5));disp(sprintf('%d %15.4f %15.4f',2,chazhi_y45_2,gd_wucha_limit_y45_2))x2=linspace(-5,5,5); y2=sin(x2); yy2=newton1(x2,y2,xx,4); %4次插值chazhi_y45_4=newton1(x2,y2,4.5,4);gd_wucha_limit_y45_4=abs(chazhi_y45_4-sin(4.5));disp(sprintf('%d %15.4f %15.4f',4,chazhi_y45_4,gd_wucha_limit_y45_4))x3=linspace(-5,5,9); y3=sin(x3); yy3=newton1(x3,y3,xx,8); %8次插值chazhi_y45_8=newton1(x3,y3,4.5,8);gd_wucha_limit_y45_8=abs(chazhi_y45_8-sin(4.5));disp(sprintf('%d %15.4f %15.4f',8,chazhi_y45_8,gd_wucha_limit_y45_8))plot(xx,y,'m-');hold on,pause,plot(x1,y1,'rs',xx,yy1,'r-'); hold on,pause,plot(x2,y2,'b*',xx,yy2,'b-'); hold on,pause,plot(x3,y3,'ko',xx,yy3,'k-'); hold on。
lagrange插值的原理
Lagrange插值是一种数值分析方法,用于在已知一些点上的函数值的情况下,通过一个多项式来近似这个函数。
其基本原理如下:
1. 首先,根据给定的插值节点和函数值,构造一个n次多项式。
2. 利用插值基函数的概念,构造n次Lagrange插值多项式。
插值基函数是n个线性无关的n次多项式,它们在插值节点上的值等于相应的函数值。
3. 通过插值基函数,构建一个关于待求点x的n次多项式。
待求点的近似值可以通过求解这个多项式在x处的值来得到。
Lagrange插值的优势在于,它可以根据给定的插值节点和函数值精确地构造出一个多项式,从而在插值节点附近实现较高的近似精度。
然而,Lagrange插值也存在一定的局限性,例如在插值节点外的预测精度可能会降低,而且计算复杂度较高。
需要注意的是,Lagrange插值不仅适用于一元函数的插值,还适用于多元函数的插值。
在实际应用中,Lagrange插值被广泛应用于数学、物理、工程等领域的问题求解。
拉格朗⽇(Lagrange)插值算法拉格朗⽇插值(Lagrange interpolation)是⼀种多项式插值⽅法,指插值条件中不出现被插函数导数值,过n+1个样点,满⾜如下图的插值条件的多项式。
也叫做拉格朗⽇公式。
这⾥以拉格朗⽇3次插值为例,利⽤C++进⾏实现:1//利⽤lagrange插值公式2 #include<iostream>3using namespace std;45double Lx(int i,double x,double* Arr)6 {7double fenzi=1,fenmu=1;8for (int k=0;k<4;k++)9 {10if (k==i)11continue;12 fenzi*=x-Arr[k];13 fenmu*=Arr[i]-Arr[k];14 }15return fenzi/fenmu;16 }1718int main()19 {20double xArr[4]={};21double yArr[4]={};22//输⼊4个节点坐标23 cout<<"请依次输⼊4个节点的坐标:"<<endl;24for (int i=0;i<4;i++)25 cin>>xArr[i]>>yArr[i];2627//输⼊要求解的节点的横坐标28 cout<<"请输⼊要求解的节点的横坐标:";29double x;30 cin>>x;31double y=0;32for (int i=0;i<4;i++)33 y+=Lx(i,x,xArr)*yArr[i];34 printf("x=%lf时,y=%lf\n",x,y);3536//分界,下⾯为已知y求x37 cout<<"请输⼊要求解的节点的纵坐标:";38 cin>>y;39 x=0;40for (int i=0;i<4;i++)41 x+=Lx(i,y,yArr)*xArr[i];42 printf("y=%lf时,x=%lf\n",y,x);4344 system("pause");45return0;46 }作者:耑新新,发布于转载请注明出处,欢迎邮件交流:zhuanxinxin@。