第3章 动量 牛顿运动定律
- 格式:ppt
- 大小:4.06 MB
- 文档页数:44
牛顿运动定律与动量守恒知识点总结在物理学的世界中,牛顿运动定律和动量守恒定律是极其重要的基础理论,它们为我们理解物体的运动和相互作用提供了关键的框架。
接下来,让我们深入探讨一下这两个重要的知识点。
一、牛顿运动定律牛顿第一定律,也被称为惯性定律,它指出:任何物体都要保持匀速直线运动或静止的状态,直到外力迫使它改变运动状态为止。
这意味着,如果一个物体没有受到力的作用,它要么静止不动,要么以恒定的速度直线运动。
惯性是物体保持原有运动状态的性质,质量越大,惯性越大。
比如,一辆重型卡车比一辆小型汽车更难改变其运动状态,就是因为卡车的质量更大,惯性更大。
牛顿第二定律是整个牛顿运动定律的核心,其表达式为 F = ma ,其中 F 表示作用在物体上的合力,m 是物体的质量,a 是物体的加速度。
这一定律告诉我们,当一个力作用在物体上时,物体的加速度与作用在它上面的力成正比,与物体的质量成反比。
举个例子,如果我们用更大的力推一个箱子,箱子的加速度就会更大;而如果箱子的质量很大,要使它获得相同的加速度,就需要施加更大的力。
牛顿第三定律指出:相互作用的两个物体之间的作用力和反作用力总是大小相等,方向相反,且作用在同一条直线上。
比如,当你站在地面上时,你对地面施加一个向下的压力,而地面同时对你施加一个向上的支持力,这两个力大小相等、方向相反。
二、动量守恒定律动量是一个与物体的速度和质量相关的物理量,其定义为p =mv ,其中 p 表示动量,m 是物体的质量,v 是物体的速度。
动量守恒定律表明:如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变。
这一定律在许多实际情况中都有着广泛的应用。
例如,在一个光滑水平面上的两个相互碰撞的物体。
在碰撞前,两个物体的总动量是一定的。
在碰撞过程中,虽然它们之间会相互施加力,导致各自的速度发生变化,但由于系统没有受到外力的作用,碰撞后的总动量仍然与碰撞前相同。
再比如,火箭发射的过程。
一、教学目标1. 理解牛顿运动定律的基本内容,掌握牛顿第一定律、第二定律和第三定律。
2. 熟悉力的分解与合成,掌握力的平行四边形法则。
3. 掌握动量定理、动量守恒定律和冲量定理,并能应用于实际问题。
4. 提高学生分析问题和解决问题的能力。
二、教学内容1. 牛顿运动定律1.1 牛顿第一定律:惯性定律1.2 牛顿第二定律:加速度定律1.3 牛顿第三定律:作用与反作用定律2. 力的分解与合成2.1 力的分解:将一个力分解为两个或多个分力2.2 力的合成:将两个或多个分力合成为一个力3. 动量定理、动量守恒定律和冲量定理3.1 动量定理:物体动量的变化等于作用在物体上的合外力与作用时间的乘积3.2 动量守恒定律:在一个封闭系统中,如果没有外力作用,系统的总动量保持不变3.3 冲量定理:物体动量的变化等于作用在物体上的冲量三、教学重点与难点1. 教学重点:1.1 牛顿运动定律的基本内容1.2 力的分解与合成1.3 动量定理、动量守恒定律和冲量定理2. 教学难点:1.1 牛顿第三定律的理解与应用1.2 动量守恒定律在不同场景下的应用四、教学过程1. 引入新课:通过生活中的实例,让学生了解力学在自然界和工程技术中的应用,激发学生的学习兴趣。
2. 讲授新课:2.1 牛顿运动定律:讲解牛顿第一定律、第二定律和第三定律的基本内容,通过实例分析,使学生理解定律的内涵。
2.2 力的分解与合成:讲解力的分解与合成的概念,并运用实例进行演示,使学生掌握力的平行四边形法则。
2.3 动量定理、动量守恒定律和冲量定理:讲解动量定理、动量守恒定律和冲量定理的基本内容,通过实例分析,使学生理解并掌握这些定理。
3. 学生练习交流:让学生分组讨论,解决一些实际问题,如汽车刹车、抛物运动等,提高学生的综合分析能力。
4. 课后作业:布置一些与本章内容相关的练习题,巩固学生的知识。
五、教学评价1. 课堂表现:观察学生在课堂上的学习态度、参与度和提问情况。
牛顿运动定律与动量守恒知识点总结一、牛顿运动定律(一)牛顿第一定律(惯性定律)任何物体都要保持匀速直线运动或静止的状态,直到外力迫使它改变运动状态为止。
理解这一定律时,要注意“惯性”这一概念。
惯性是物体保持原有运动状态的性质,质量是惯性大小的唯一量度。
质量越大,惯性越大,物体的运动状态就越难改变。
例如,一辆重型卡车和一辆小汽车,在相同的外力作用下,重型卡车的运动状态改变更困难,就是因为它的质量大,惯性大。
(二)牛顿第二定律物体的加速度跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同。
其表达式为 F = ma。
这一定律揭示了力与运动的关系。
当合外力为零时,加速度为零,物体将保持匀速直线运动或静止状态;当合外力不为零时,物体将产生加速度。
比如,用力推一个静止的箱子,推力越大,箱子的加速度就越大;箱子的质量越大,相同推力下产生的加速度就越小。
(三)牛顿第三定律两个物体之间的作用力和反作用力,总是大小相等,方向相反,作用在同一条直线上。
作用力与反作用力具有同时性、同性质、异体性等特点。
比如,人在地面上行走,脚对地面有向后的摩擦力,地面就对脚有向前的摩擦力,使人能够向前移动。
二、动量守恒定律(一)动量动量是物体的质量与速度的乘积,即 p = mv。
动量是矢量,其方向与速度的方向相同。
(二)动量守恒定律如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变。
例如,在光滑水平面上,两个质量分别为 m1 和 m2 的小球,速度分别为 v1 和 v2 ,它们发生碰撞后,速度分别变为 v1' 和 v2' 。
根据动量守恒定律,有 m1v1 + m2v2 = m1v1' + m2v2' 。
(三)动量守恒定律的适用条件1、系统不受外力或所受外力的合力为零。
2、系统所受内力远远大于外力,如爆炸、碰撞等过程。
3、系统在某一方向上所受合力为零,则在该方向上动量守恒。
2012年物理一轮精品复习学案:第2节 牛顿第二定律、两类动力学问题【考纲知识梳理】一、牛顿第二定律1、内容:牛顿通过大量定量实验研究总结出:物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向和合外力的方向相同。
这就是牛顿第二定律。
2、其数学表达式为:m Fa =ma F =牛顿第二定律分量式:⎩⎨⎧==yy x x ma F ma F用动量表述:t PF ∆=合3、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理微观粒子高速运动问题; 二、两类动力学问题1.由受力情况判断物体的运动状态;2.由运动情况判断的受力情况 三、单位制1、单位制:基本单位和导出单位一起组成了单位制。
(1)基本单位:所选定的基本物理量的(所有)单位都叫做基本单位,如在力学中,选定长度、质量和时间这三个基本物理量的单位作为基本单位: 长度一cm 、m 、km 等; 质量一g 、kg 等; 时间—s 、min 、h 等。
(2)导出单位:根据物理公式和基本单位,推导出其它物理量的单位叫导出单位。
2、由基本单位和导出单位一起组成了单位制。
选定基本物理量的不同单位作为基本单位,可以组成不同的单位制,如历史上力学中出现了厘米·克·秒制和米·千克·秒制两种不同的单位制,工程技术领域还有英尺·秒·磅制等。
【要点名师精解】一、对牛顿第二定律的理解1、牛顿第二定律的“四性”(1)瞬时性:对于一个质量一定的物体来说,它在某一时刻加速度的大小和方向,只由它在这一时刻所受到的合外力的大小和方向来决定.当它受到的合外力发生变化时,它的加速度随即也要发生变化,这便是牛顿第二定律的瞬时性的含义.例如,物体在力F1和力F2的共同作用下保持静止,这说明物体受到的合外力为零.若突然撤去力F2,而力F1保持不变,则物体将沿力F1的方向加速运动.这说明,在撤去力F2后的瞬时,物体获得了沿力F1方向的加速度a1.撤去力F2的作用是使物体所受的合外力由零变为F1,而同时发生的是物体的加速度由零变为a1.所以,物体运动的加速度和合外力是瞬时对应的.(2)矢量性(加速度的方向与合外力方向相同);合外力F是使物体产生加速度a的原因,反之,a是F产生的结果,故物体加速度方向总是与其受到的合外力方向一致,反之亦然。
2023高考一轮知识点精讲和最新高考题模拟题同步训练第三章牛顿运动定律专题13 牛顿第二定律的应用第一部分知识点精讲1. 瞬时加速度问题(1)两类模型(2). 在求解瞬时加速度时应注意的问题(i)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析。
(ii)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变。
(3)求解瞬时加速度的步骤2.动力学的两类基本问题第一类:已知受力情况求物体的运动情况。
第二类:已知运动情况求物体的受力情况。
不管是哪一类动力学问题,受力分析和运动状态分析都是关键环节。
(1)解决两类基本问题的方法以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如图:作为“桥梁”的加速度,既可能需要根据已知受力求解,也可能需要根据已知运动求解。
(2)动力学两类基本问题的解题步骤(3)掌握动力学两类基本问题的“两个分析”“一个桥梁”,以及在多个运动过程之间建立“联系”。
(i )把握“两个分析”“一个桥梁”(ii)找到不同过程之间的“联系”,如第一个过程的末速度就是下一个过程的初速度,若过程较为复杂,可画位置示意图确定位移之间的联系。
3.物体在五类光滑斜面上运动时间的比较第一类:等高斜面(如图1所示)由L =12 at 2,a =g sin θ,L =h sin θ可得t =1sin θ 2h g, 可知倾角越小,时间越长,图1中t 1>t 2>t 3。
第二类:同底斜面(如图2所示)由L =12 at 2,a =g sin θ,L =d cos θ可得t = 4d g sin 2θ, 可见θ=45°时时间最短,图2中t 1=t 3>t 2。
第三类:圆周内同顶端的斜面(如图3所示)在竖直面内的同一个圆周上,各斜面的顶端都在竖直圆周的最高点,底端都落在该圆周上。
由2R ·sin θ=12·g sin θ·t 2,可推得t 1=t 2=t 3。
牛顿运动定律与动量守恒知识点总结在物理学的殿堂中,牛顿运动定律和动量守恒定律无疑是两颗璀璨的明珠。
它们不仅是理解物体运动和相互作用的基石,也是解决众多物理问题的有力工具。
接下来,让我们一同深入探索这两个重要的知识点。
一、牛顿运动定律1、牛顿第一定律牛顿第一定律,也被称为惯性定律。
它指出:一切物体总保持匀速直线运动状态或静止状态,直到外力迫使它改变这种状态为止。
这意味着物体具有保持其运动状态不变的特性,即惯性。
惯性的大小只与物体的质量有关,质量越大,惯性越大。
例如,在一辆行驶的公交车上,如果突然刹车,乘客会向前倾。
这是因为乘客原本具有向前的运动惯性,而刹车的外力改变了车的运动状态,但乘客的身体由于惯性仍要保持原来的运动状态。
2、牛顿第二定律牛顿第二定律揭示了力与物体运动状态变化之间的定量关系。
其表达式为 F = ma,其中 F 表示作用在物体上的合力,m 是物体的质量,a 是物体的加速度。
这一定律表明,当物体受到外力作用时,它会产生加速度,且加速度的大小与合力成正比,与物体的质量成反比。
以举重运动员举起杠铃为例,运动员施加的力越大,杠铃的加速度就越大;而相同的力作用在更重的杠铃上,产生的加速度就会较小。
3、牛顿第三定律牛顿第三定律阐述了物体之间相互作用的规律:两个物体之间的作用力和反作用力总是大小相等、方向相反,且作用在同一条直线上。
这一定律强调了力的相互性,即任何一个力都有其对应的反作用力。
比如,当你用力推墙时,墙也会以同样大小的力推你。
你推墙的力是作用力,墙对你的反作用力会让你感受到无法推动墙。
二、动量守恒定律1、动量的定义动量(p)被定义为物体的质量(m)与速度(v)的乘积,即 p =mv。
动量是一个矢量,其方向与速度的方向相同。
2、动量守恒定律的内容如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变。
例如,在光滑水平面上做相向运动的两个小球,它们的质量分别为m1 和 m2,速度分别为 v1 和 v2。