电子科大研究生图论06-14年图论期末试题
- 格式:pdf
- 大小:570.15 KB
- 文档页数:49
电子科技大学研究生试题《图论及其应用》(参考答案)考试时间:120分钟一.填空题(每题3分,共18分)1.4个顶点的不同构的简单图共有__11___个;2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。
则G 中顶点数至少有__9___个;3.设n 阶无向图是由k(k ?2)棵树构成的森林,则图G 的边数m= _n-k____;4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_.5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。
图G二.单项选择(每题3分,共21分)1.下面给出的序列中,是某简单图的度序列的是( A )(A) (11123); (B) (233445); (C) (23445); (D) (1333).2.已知图G 如图所示,则它的同构图是( D )3. 下列图中,是欧拉图的是( D )4. 下列图中,不是哈密尔顿图的是(B )5. 下列图中,是可平面图的图的是(B )AC DA B CD6.下列图中,不是偶图的是( B )7.下列图中,存在完美匹配的图是(B )三.作图(6分)1.画出一个有欧拉闭迹和哈密尔顿圈的图;2.画出一个有欧拉闭迹但没有哈密尔顿圈的图;3.画出一个没有欧拉闭迹但有哈密尔顿圈的图;解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。
解:由克鲁斯克尔算法的其一最小生成树如下图:权和为:20.五.(8分)求下图G 的色多项式P k (G).解:用公式(G P k -G 的色多项式:)3)(3)()(45-++=k k k G P k 。
六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。
解:设该树有n 1个1度顶点,树的边数为m.一方面:2m=n 1+2n 2+…+kn k另一方面:m= n 1+n 2+…+n k -1 v v 13图G由上面两式可得:n 1=n 2+2n 3+…+(k -1)n k七.证明:(8分) 设G 是具有二分类(X,Y)的偶图,证明(1)G 不含奇圈;(2)若|X |≠|Y |,则G 是非哈密尔顿图。
图论作业3一、填空题1. 完全图K2n共有个不同的完美匹配。
2. 超方体Q6的最小覆盖包含的点数为。
3. 图K m,n (m≤n)的最小覆盖包含的点数为。
4. 完全图K60能分解为个边不重的一因子之并。
5. 完全图K61能分解为个边不重的二因子之并。
6. 假设G是具有n个点、m条边、k个连通分支的无圈图,则G的荫度为。
7. 图G是由3个连通分支K1, K2, K4组成的平面图,则其共有个面。
8. 设图G与K5同胚,则至少从G中删掉条边才可能使其成为可平面图。
9. 设连通平面图G具有5个顶点,9条边,则其面数为。
10. 若图G是10阶极大平面图,则其面数等于。
11. 若图G是10阶极大外平面图,其内部面共有个。
二、不定项选择题1. 关于非平凡树T,下面说法错误的是( )(A) T至少包含一个完美匹配;(B) T至多包含一个完美匹配;(C) T的荫度大于1;(D) T是只有一个面的平面图;(E) T的对偶图是简单图。
2. 下列说法正确的是( )(A) 三正则的偶图存在完美匹配;(B) 无割边的三正则图一定存在完美匹配;(C) 有割边的三正则图一定没有完美匹配;(D) 有完美匹配的三正则图一定没有割边;(E) 三正则哈密尔顿图存在完美匹配。
3. 下列说法正确的是( )(A) 在偶图中,最大匹配包含的边数等于最小覆盖包含的点数;(B) 任一非平凡正则偶图包含完美匹配;(C) 任一非平凡正则偶图可以1-因子分解;(D) 偶度正则偶图可以2-因子分解;(E) 非平凡偶图的最大匹配是唯一的。
4. 下列说法中错误的是( )(A) 完全图K101包含1-因子;(B) 完全图K101包含2-因子;(C) 完全图K102包含1-因子;(D) 完全图K102包含2-因子;(E) 图G的一个完美匹配实际上就是它的一个1因子;(F) 图G的一个2-因子实际上就是它的一个哈密尔顿圈。
5. 下列说法正确的是( )(A) 方体Q n可以1-因子分解;(B) 非平凡树可以1-因子分解;(C) 无割边的3正则图可以1-因子分解;(D) 有割边的3正则图一定不可以1-因子分解;(E) 可1-因子分解的3正则图一定是哈密尔顿图。
图论期末考试试题和答案****一、单项选择题(每题2分,共20分)1. 图论中,图的基本元素不包括以下哪一项?A. 顶点B. 边C. 权重D. 节点答案:D2. 在图论中,一个图的路径是指什么?A. 一系列顶点B. 一系列边C. 一系列顶点和边的序列D. 一系列权重答案:C3. 有向图和无向图的主要区别是什么?A. 边的方向B. 顶点的数量C. 边的数量D. 图的颜色答案:A4. 在图论中,一个完全图是指什么?A. 所有顶点都相连的图B. 所有边都相连的图C. 所有顶点和边都相连的图D. 所有权重都相同的图答案:A5. 图论中的欧拉路径是指什么?A. 经过每条边恰好一次的路径B. 经过每个顶点恰好一次的路径C. 经过每条边恰好一次的回路D. 经过每个顶点恰好一次的回路答案:C6. 图论中的哈密顿路径是指什么?A. 经过每条边恰好一次的路径B. 经过每个顶点恰好一次的路径C. 经过每条边恰好一次的回路D. 经过每个顶点恰好一次的回路答案:B7. 在图论中,二分图是指什么?A. 图的顶点可以被分成两个不相交的集合B. 图的边可以被分成两个不相交的集合C. 图的顶点和边可以被分成两个不相交的集合D. 图的权重可以被分成两个不相交的集合答案:A8. 图论中的最短路径问题是指什么?A. 寻找从一个顶点到另一个顶点的最短路径B. 寻找从一个顶点到所有其他顶点的最短路径C. 寻找所有顶点之间的最短路径D. 寻找所有边之间的最短路径答案:A9. 图论中的最小生成树问题是指什么?A. 寻找一个图中所有顶点的最小生成树B. 寻找一个图中所有边的最小生成树C. 寻找一个连通图中所有顶点的最小生成树D. 寻找一个连通图中所有边的最小生成树答案:C10. 图论中的网络流问题是指什么?A. 在图中寻找最大流量B. 在图中寻找最小流量C. 在图中寻找最大流和最小割D. 在图中寻找最小流和最大割答案:C二、填空题(每题2分,共20分)1. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为______图。
《图论》练习题(2014)1、利用Dijkstra 算法求下图中顶点0v 到其它各顶点的距离,并写出到顶点8v 的最短路。
2、1、列出色数3为的三个图: 。
2、p 阶完全图的色数为: 。
3、p 阶树的邻接多项式为: 。
4、p 阶完全图的邻接多项式为: 。
5、如下图所示的图的邻接矩阵为 ,关联矩阵为 。
6、度序列为(2,2,2,2,2,2)的简单图是 。
7、是否存在度序列为(2,2,3,4,5,6),(1,2,3,4,4,5)的简单图?若存在,给出一个图;若不存在,请说明理由。
8、画出如下图的所有生成子图。
9、设图G 如下图所示,求该图的生成树个数)(G 。
v 2v 6v 4v 610、已知图G (V 、E ),画出G -V 5,G -v 3v 4,G[{v 2,v 3,v 5}],G[{v 3v 4,v 4,v 6,v 7v 8}]G :11、已知图G 的邻接矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2111102112011111A ,画出G ,并求出度序列。
12、证明:偶图G 的任意子图H 仍为偶图。
13、证明:设图G (V 、E )的度序列为(p d d d ,,,21 ),边数为q ,则q i d pi 21==∑14、证明:在任何图中,奇顶点个数为偶数。
15、证明:整数序列(6,6,5,4,3,3,1)不可能为一个简单图的图序列。
16、证明顶点度数均为2的简单连通图是圈。
17、证明非平凡树T 的边连通度为'()1T κ=。
18、n 阶完全图n K 的连通度为()1T n κ=-。
19、设G 是一个p 阶图,且()()21,-≥∈∀p v d G V v ,则G 连通图。
20、若图G 是 不连通的,则其补图G C 是连通的。
21、证明:设G 是由1G 和2G 两个连通分支组成的图,则);();();(21x G P x G P x G P =。
v 1v 2v 3v 4v 5v 6v 8v 722、证明:设G 是由1G 和2G 两个连通分支组成的图,则)}(),(max{)(21G G G χχχ=。
离散数学图论部分期末复习辅导一、单项选择题 1.设图G =<V , E >,v V ,则下列结论成立的是 ( ) .A .deg(v )=2EB .deg(v )=EC .deg()2||v Vv E ∈=∑ D .deg()||v Vv E ∈=∑解 根据握手定理(图中所有结点的度数之和等于边数的两倍)知,答案C 成立。
答 C2.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110, 则G 的边数为( ).A .6B .5C .4D .3解 由邻接矩阵的定义知,无向图的邻接矩阵是对称的.即当结点v i 与v j 相邻时,结点v j 与v i 也相邻,所以连接结点v i 与v j 的一条边在邻接矩阵的第i 行第j 列处和第j 行第i 列处各有一个1,题中给出的邻接矩阵中共有10个1,故有102=5条边。
答 B3.已知无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0111110101110001000111010,则G 有( ).A .5点,8边B .6点,7边C .6点,8边D .5点,7边解 由邻接矩阵的定义知,矩阵是5阶方阵,所以图G 有5个结点,矩阵元素有14个1,14÷2=7,图G 有7条边。
答 D4.如图一所示,以下说法正确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集C .{(a, e ) ,(b, c )}是边割集D .{(d, e)}是边割集定义3.2.9 设无向图G =<V ,E >为连通图,若有边集E 1ÌE ,使图G 删除了E 1的所有边后,所得的子图是不连通图,而删除了E 1的任何真子集后,所得的子图仍是连通图,则称E 1是G 的一个边割集.若边割集为单元集{e },则称边e 为割边(或桥).解 割边首先是一条边,因为答案A 中的是边集,不可能是割边,因此答案A 是错误的.删除答案B 或C 中的边后,得到的图是还是连通图,因此答案B 、C 也是错误的.在图一中,删去(d , e )边,图就不连通了,所以答案D 正确. 答 D注:如果该题只给出图的结点和边,没有图示,大家也应该会做.如:若图G =<V , E >,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ) , (a , e ) , (b , c ) , (b , e ) , (c , e ) , (e , d )},则该图中的割边是什么?5.图G 如图二所示,以下说法正确的是 ( ). A .a 是割点 B .{b, c}是点割集 C .{b , d }是点割集 D .{c }是点割集定义3.2.7 设无向图G =<V ,E >为连通图,若有点集V 1ÌV ,使图G 删除了V 1的所有结点后,所得的子图是不连通图,而删除了V 1的任何真子集后,所得的子图仍是连通图,则称V 1是G 的一个点割集.若点割集为单元集{v },则称结点v 为割点.οοο ο a bc d图一 οe ο οο a b c d图二ο解 在图二中,删去结点a 或删去结点c 或删去结点b 和d 图还是连通的,所以答案A 、C 、D 是错误的.在图二中删除结点b 和c ,得到的子图是不连通图,而只删除结点b 或结点c ,得到的子图仍然是连通的,由定义可以知道,{b, c }是点割集.所以答案B 是正确的. 答 B6.图G 如图三所示,以下说法正确的是 ( ) . A .{(a, d )}是割边 B .{(a, d )}是边割集C .{(a, d) ,(b, d)}是边割集D .{(b , d )}是边割集解 割边首先是一条边,{(a, d )}是边集,不可能是割边.在图三中,删除答案B 或D 中的边后,得到的图是还是连通图.因此答案A 、B 、D 是错误的.在图三中,删去(a,d )边和(b, d )边,图就不连通了,而只是删除(a, d )边或(b, d )边,图还是连通的,所以答案C 正确.7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是( ).图四A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的复习:定义3.2.5 在简单有向图中,若在任何结点偶对中,至少从一个结点到另一个结点可达的,则称图G 是单向(侧)连通的;若在任何结点偶对中,两结点对互相可达,则称图G 是强连通的;若图G 的底图,即在图G 中略去边的方向,得到的无向图是连通的,则称图G 是弱连ο ο ο a bcd图三ο通的.显然,强连通的一定是单向连通和弱连通的,单向连通的一定是弱连通,但其逆均不真.定理3.2.1一个有向图是强连通的,当且仅当G中有一个回路,其至少包含每个结点一次.单侧连通图判别法:若有向图G中存在一条经过每个结点至少一次的路,则G是单侧连通的。
电⼦科技⼤学《图论及其应⽤》复习总结--第四章欧拉图与哈密尔顿图第四章欧拉图与哈密尔顿图(⼀)、欧拉图及其性质(1)、问题背景---欧拉与哥尼斯堡七桥问题问题:对于图G,它在什么条件下满⾜从某点出发,经过每条边⼀次且仅⼀次,可以回到出发点?注:⼀笔画----中国古⽼的民间游戏(存在欧拉迹)要求:对于⼀个图G, 笔不离纸, ⼀笔画成.拓展:三笔画:在原图上添加三笔,可使其变为欧拉图。
定义1 对于连通图G,如果G中存在经过每条边的闭迹,则称G为欧拉图,简称G为E图。
欧拉闭迹⼜称为欧拉环游,或欧拉回路。
定理1 下列陈述对于⾮平凡连通图G是等价的:(1) G是欧拉图;(2) G的顶点度数为偶数;(3) G的边集合能划分为圈。
推论1 连通图G是欧拉图当且仅当G的顶点度数为偶。
推论2 连通⾮欧拉图G存在欧拉迹当且仅当G中只有两个顶点度数为奇数。
证明:若G和H是欧拉图,则G×H是欧拉图。
若G是⾮平凡的欧拉图,则G的每个块也是欧拉图。
(⼆)、Fleury算法(欧拉图中求出⼀条具体欧拉环游的⽅法)⽅法是尽可能避割边⾏⾛(三)、中国邮路问题(最优欧拉环游,管梅⾕)定理2 若W是包含图G的每条边⾄少⼀次的闭途径,则W具有最⼩权值当且仅当下列两个条件被满⾜:(1) G的每条边在W中最多重复⼀次;(2) 对于G的每个圈上的边来说,在W中重复的边的总权值不超过该圈⾮重复边总权值。
(四)、哈密尔顿图的概念定义1 :如果经过图G的每个顶点恰好⼀次后能够回到出发点,称这样的图为哈密尔顿图,简称H图。
所经过的闭途径是G的⼀个⽣成圈,称为G的哈密尔顿圈。
定义2: 如果存在经过G的每个顶点恰好⼀次的路,称该路为G的哈密尔顿路,简称H路。
(五)、哈密尔顿图性质与判定1、性质定理【必要条件】;定理1 (必要条件) 若G为H图,则对V(G)的任⼀⾮空顶点⼦集S,有:w(G−S)≤|S|注:不等式为G是H图的必要条件,即不等式不满⾜时,可断定对应图是⾮H、图。
1电子科技大学研究生试卷(考试时间: 至 ,共__2_小时)课程名称 图论及其应用 教师 学时 60 学分 教学方式 讲授 考核日期_2013__年_6__月__20__日 成绩 考核方式: (学生填写)一.填空题(每空2分,共20分)1. n 阶k 正则图G 的边数m =_____。
2.4个顶点的不同构单图的个数为________。
3.完全偶图,r s K (,2r s ≥且为偶数),则在其欧拉环游中共含____条边。
4.高为h 的完全2元树至少有_______片树叶。
5. G 由3个连通分支124,,K K K 组成的平面图,则其共有_______个面。
6. 设图G 与5K 同胚,则至少从G 中删掉_______条边,才可能使其成为可平面图。
7. 设G 为偶图,其最小点覆盖数为α,则其最大匹配包含的边数为________。
8. 完全图6K 能分解为________个边不重合的一因子之并。
9. 奇圈的边色数为______。
10. 彼得森图的点色数为_______。
二.单项选择(每题3分,共15分) 1.下面说法错误的是( )学 号 姓 名 学 院…………………… 密……………封……………线……………以……………内……………答…… ………题……………无……………效……………………2(A) 图G 中的一个点独立集,在其补图中的点导出子图必为一个完全子图;(B) 若图G 连通,则其补图必连通; (C) 存在5阶的自补图; (D) 4阶图的补图全是可平面图. 2.下列说法错误的是( ) (A) 非平凡树是偶图;(B) 超立方体图(n 方体,1n ≥)是偶图; (C) 存在完美匹配的圈是偶图; (D) 偶图至少包含一条边。
3.下面说法正确的是( )(A) 2连通图一定没有割点(假定可以有自环); (B) 没有割点的图一定没有割边;(C) 如果3阶及其以上的图G 是块,则G 中无环,且任意两点均位于同一圈上;(D) 有环的图一定不是块。
电子科技大学研究生试题《图论及其应用》(参考答案)考试时间:120分钟一.填空题(每题3分,共18分)1. 4个顶点的不同构的简单图共有__11—;2. 设无向图G中有12条边,已知G中3度顶点有6个,其余顶点的度数均小于3。
则G中顶点数至少有__9―;3. 设n阶无向图是由k(k 2)棵树构成的森林,则图G的边数m=_n-k _______4. 下图G是否是平面图?答—是___;是否可1-因子分解?答—是_.5. 下图G的点色数(G) __________ ,边色数(G) __5 ________ 。
图G二.单项选择(每题3分,共21分)1. 下面给出的序列中,是某简单图的度序列的是(A )(A) (11123); (B) (233445); (C) (23445); (D) (1333).2. 已知图G如图所示,贝卩它的同构图是(D )3. 下列图中,是欧拉图的是(D)4. 下列图中,不是哈密尔顿图的是(B )ABC5.下列图中,是可平面图的图的是(B )6. 下列图中,不是偶图的是(B )7. 下列图中,存在完美匹配的图是(B )三. 作图(6分)1. 画出一个有欧拉闭迹和哈密尔顿圈的图;2. 画出一个有欧拉闭迹但没有哈密尔顿圈的图;3. 画出一个没有欧拉闭迹但有哈密尔顿圈的图;四. (10分)求下图的最小生成树,并求其最小生成树的权值之和。
解:由克鲁斯克尔算法的其一最小生成树如下图:权和为:20.五. (8分)求下图G 的色多项式P k (G).解:用公式P k (G e) P k (G) P 「(G?eh 可得G 的色多项式:P k (G) (k )5 3(k )4 侏)3、k(k 1)2(k 2)(k 3)。
六. (10分)一棵树有n 图个顶点的度数为2, n a 个顶点的度数为3,…,m 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。
解:设该树有n 1个1度顶点,树的边数为 m.一方面:2m=n+2n 2+…+kn k另一方面: m= m+n 2+…+n k -1 解:由上面两式可得:n 1=门2+2皿+…+(k-1)n k七证明:(8分)设G是具有二分类(X,Y)的偶图,证明(1)G不含奇圈;(2) 若|X |工| Y |,则G是非哈密尔顿图。